error correction coding for passive optical networks · 2019. 3. 1. · poninnovation 2,005 2,010...

17
Error Correction Coding for Passive Optical Networks Rainer Strobel 2019-02-27 1 OWHTC2019 2019-02-27 Intel Connected Home Division

Upload: others

Post on 09-Feb-2021

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Error Correction Coding for Passive Optical Networks

    Rainer Strobel

    2019-02-27

    1 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Overview

    1 Introduction

    2 Error Correction in PON

    3 Improved Receiver Architectures

    4 Conclusion and Outlook

    2 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Passive Optical Networks

    Fiber

    ONU

    OLT

    CPE

    Splitter ONU

    DPU

    CPECopper

    PON Characteristics

    • Fiber access network, fiber to the home (FTTH), but alsofiber to the building/distirbution point (FTTB, FTTdp)

    • Point-to-multipoint (P2MP) link between optical linetermination (OLT) and multiple optical network units (ONU)

    • No active components between OLT and ONU

    • Typical reach 20 km, typical split factor 32

    • Low cost electrical/optical components

    3 OWHTC2019 2019-02-27 Intel Connected Home Division

  • PON Innovation

    2,005 2,010 2,015 2,020100

    101

    102

    NRZEDB?PAM4?

    Year

    Agg.rate/G

    bit/s PON Standards

    Modulation

    • NRZ used instandard PONs

    • EDB, PAM-4discussed forG.HSP

    Multiplexing

    • TDMA used instandard PONs

    • TWDM usedin more recentPONs

    Coding

    • RS code used inlegacy PONs

    • LDPC introduced inIEEE 802.3ca andconsidered for G.HSP

    4 OWHTC2019 2019-02-27 Intel Connected Home Division

  • PON Innovation

    2,005 2,010 2,015 2,020100

    101

    102

    TDMA TWDMNRZ

    Year

    Agg.rate/G

    bit/s PON Standards

    Modulation

    • NRZ used instandard PONs

    • EDB, PAM-4discussed forG.HSP

    Multiplexing

    • TDMA used instandard PONs

    • TWDM usedin more recentPONs

    Coding

    • RS code used inlegacy PONs

    • LDPC introduced inIEEE 802.3ca andconsidered for G.HSP

    4 OWHTC2019 2019-02-27 Intel Connected Home Division

  • PON Innovation

    2,005 2,010 2,015 2,020100

    101

    102

    TDMA TWDM

    NRZ

    Reed-Solomon LDPC

    Year

    Agg.rate/G

    bit/s PON Standards

    Modulation

    • NRZ used instandard PONs

    • EDB, PAM-4discussed forG.HSP

    Multiplexing

    • TDMA used instandard PONs

    • TWDM usedin more recentPONs

    Coding

    • RS code used inlegacy PONs

    • LDPC introduced inIEEE 802.3ca andconsidered for G.HSP

    4 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Overview

    1 Introduction

    2 Error Correction in PON

    3 Improved Receiver Architectures

    4 Conclusion and Outlook

    5 OWHTC2019 2019-02-27 Intel Connected Home Division

  • ONU Receiver Block Diagram

    CDR

    PhaseError

    LDPCDecoder

    Decode

    PLL

    RXClock

    LLRCalculation

    APD TIA LA

    PMD PMA PCS

    PON Physical Layer

    PCS: Physical Coding Sublayer (LDPC, scrambling, control channel)

    PMA: Physical Medium Attachment (digital signal recovery)

    PMD: Physical Medium Dependent (optoelectronic conversion)

    LDPC Requirements (25G)

    • Output bit error rate < 10−12 at 10−2 receive bit error rate

    • Low latency ≈ 10µs for wireless front-haul

    6 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Binary Receiver Error Probabilities

    21 22 23 24 25

    10−11

    10−9

    10−7

    10−5

    10−3

    10−1

    Fiber length/km

    Biterrorrate

    Raw

    Coded

    0 0.5 1 1.5 2

    Unit interval

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Am

    plitu

    de

    ×10-5

    0 1 2

    PDF ×105

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5×10-5

    • Optical channel cannot bedescribed by a simple binarysymmetric channel (BSC) oradditive white Gaussiannoise (AWGN) channel

    • Definition of codingrequirements with raw BERis not convenient

    7 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Receiver Optimization - Binary Receiver

    0.8 1 1.2 1.4

    ·10−5

    10−3

    10−2

    10−1

    100

    Threshold

    Biterrorrate

    pe(x = 0)

    pe(x = 1)pe

    py(y = 0) = py(y = 1)

    Min. BER

    Max. I(x, y)

    0.8 1 1.2 1.4

    ·10−5

    0

    0.2

    0.4

    0.6

    0.8

    1

    Threshold

    I(x,y)

    Threshold Control

    • Minimum input BERpoint can be differentfrom optimal LDPCoperating point

    8 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Statistical Properties

    Errors per Codeword

    150 200

    10−6

    10−4

    10−2

    100

    Errors per codeword

    Probab

    ility

    25G PON

    Poisson

    • Distribution of errors percodeword influences LDPCperformance

    Burst Errors

    1 2 3 4 510−10

    10−7

    10−4

    10−1

    Number of consecutive errorsProbab

    ility

    25G PON

    Uncorrelated

    • Knowledge of burst errorscan be used for decoding

    9 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Binary Error Models

    px(1) =12

    px(0) =12

    py(1) =1−pe(1)+pe(0)

    2

    px|y(1|1) = 1− pe(1)

    px|y(0|0) = 1− pe(0)

    px|y(0|1) = pe(0)

    px|y(1|0) = pe(1)

    py(0) =1−pe(0)+pe(1)

    2

    Memoryless Channel

    x ∈ {0, 1}: transmitted symbol;y ∈ {0, 1}: received symbolpe(0), pe(1): Error probability of1 and 0 transmitted

    p(01|11)

    px(1)

    py(0)

    px(1)

    py(1)

    px(0)

    py(1)

    px(0)

    py(0)p(00|01)

    p(11|00)p(00|11)

    p(11|11)

    Binary Channel with Memory

    Transition matrix T and statevector p = [pxy(0, 0),pxy(0, 1), pxy(1, 0), pxy(1, 1)]

    T

    such that pt+1 = Tpt.

    10 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Overview

    1 Introduction

    2 Error Correction in PON

    3 Improved Receiver Architectures

    4 Conclusion and Outlook

    11 OWHTC2019 2019-02-27 Intel Connected Home Division

  • ONU Receiver Implementation

    CDR

    PhaseError

    PLL

    RXClock

    LLRCalculation

    APD TIA LA

    Hard Decision Receiver

    • Low cost components

    • Low power consumption

    • Lower FEC performance

    ClockRecovery

    PhaseError

    ADC

    PLL

    RXClock

    LLRCalculation

    APD TIA

    Soft Decision Receiver

    • Analog-to-digital converterrequired

    • Higher FEC performance

    Binary Receiver/Soft Input

    • Derive soft input for LDPCfrom CDR

    • Compromise betweencomplexity and powerconsumption

    12 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Receiver Optimization - Soft Information

    CDR State Informationt+ 12

    time

    CDRstate s[t]

    tt− 2

    y[t+1

    2]

    RXSignal

    RXClock

    t− 12t− 1t− 3

    y[t]y[t−1

    2]y[t−1]y[t−

    3

    2]y[t−2]

    −5 0 50

    0.2

    0.4

    LLR

    Probab

    ility Default

    Shifted

    • Derive LLR from CDR states

    • Optimize sample points

    Analog-to-Digital Converter

    Amplitude

    Zero

    ProbDensity

    One

    −10 −5 0 50

    0.2

    0.4

    LLR

    Probab

    ility

    • Optimize quantizationintervals of ADC

    13 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Overview

    1 Introduction

    2 Error Correction in PON

    3 Improved Receiver Architectures

    4 Conclusion and Outlook

    14 OWHTC2019 2019-02-27 Intel Connected Home Division

  • Conclusion and Outlook

    Conclusion

    • Coding is a key component for evolving fiber accesstechnologies

    • Optimized channel coding requires

    good understanding and modeling of the channelinnovative, cost-efficient transceiver designs

    Outlook

    • Coding in combination with improved modulation formats

    • Digital signal processing and error correction coding

    • Energy efficient designs for high throughput

    15 OWHTC2019 2019-02-27 Intel Connected Home Division

    IntroductionError Correction in PONImproved Receiver ArchitecturesConclusion and Outlook