erosion over time

9
Theoretical and Applied Fracture Mechanics 6 (1986) 207-215 207 North-Holland ON THE TIME-DEPENDENCE OF THE EROSION RATE- A PROBABILISTIC APPROACH TO EROSION H.W. BARGMANN Ecole Polytechnique F~d~r ale de Lausanne, CH-1015 Lausanne, Switzerland A highly simplified model is presented of the erosion process under liquid impact. The theory ou tlined allows the mathematical expectation of the erosion rate as a function of time (erosion curve) to be predicted. This simplified theory of erosion is based on the statistical nature of the repetitive lo adin g due to liquid impact. It employ s a classification of individual impacts according to their quality of o r effectiveness i n rem oving material. The specific loss of material (per impact) is considered to be a random variable, which assumes different, discrete values depending on the order of repetitions of effective impacts at the sam e location on the target (surface). The probabilities of producing any of these repetitions are calculated. For particular applications, the theory requires characteristic data for the specific loss of material as well as typical data concerning the hydrodynamic loading conditions. For the cas e of a ductile erosion process, a very approximate solution is presented. Nevertheless, it exhibits the typical features of erosion curves as presented in the literature. "As long as the surface is smooth, it offers no hold for the impinging drops of water and the water flows off on all sides. Therefore erosion does not occur for some time. However, as soon as any roughness forms, erosion develops rapidly because the water penetrates the unevenness of the surface at a high pressure due to the impact, and acts very violently. Finally, when the erosion has attained a considerable depth, a layer of water adheres to the now completely roughened surface. This water dampens the impact of subsequent drops so that their destructive action is diminished. The specific erosion consequently decreases after a certain depth has been reached." E. Honegger (1927) 1. Introduction Since Honegger's experiments in 1927 it has been known that erosion by liquid impact does not develop at a constant rate. Honegger [1] presented erosion curves which exhibited, after an initial incubation period, a phase of increasing erosion rate (acceleration), followed by a phase of decreasing rate (deceleration). His explana- tion is essentially the same as that put forward in recent publications on erosion under drop im- pingement [2,3], Fig. 1. Even today, opinions differ about which stage in the erosion process is the most important. The quantitative prediction of the erosion curve could definitely be an im- portant step towards finally establishing not loading conditions. The particular shape of the erosion curve de- pends, of course, on the material and (geomet- ric) surface conditions of the solid structure, as well as on the type of (thermo- and) hydro- dynamic impact loading. It is obvious that realis- tic analytical solutions to this problem cannot be expected and an approximate numerical solution is extremely time-consuming and expensive, even with the simplest of assumed material be- havior and failure mechanism. Experimental studies also are difficult, time-consuming and expensive. What remains is then the hope that, on the basis of preliminary experimental evidence, a 016%8442/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-H olland)

Upload: kpleafy

Post on 05-Apr-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 1/9

Theoretical and Applied Fracture Mechanics 6 (1986) 207-215 207North-Holland

O N T H E T I M E - D E PE N D E N C E O F T H E E R O S I O N R A T E - A P R O B A B IL I ST I C

A P P R O A C H T O E R O S I O N

H .W . B A R G M A N N

Ecole Polytechnique F~d~rale de Lausanne, CH-1015 Lausanne, Switzerland

A highly simplified mod el is presented o f the erosion process under liquid impact. The theory ou tlined allows themathematical expectation of the erosion rate as a function of time (erosion curve) to be predicted.

This simplified theory of erosion is based on the s tatistical nature of the repe titive lo adin g due to liquid impac t. Itemploy s a classification of individual impacts according to their qu ality of o r effectiveness in rem oving material. T hespecific loss of m aterial (p er impact) is considered to be a random variable, w hich assumes different, discrete valuesdepend ing on the order of repetitions of effective impacts at the sam e location on the target (su rface). Th e probabilities ofproducing an y of these repetitions are calculated. For particular applications, the theory req uires characteristic data for the

specific loss of material as well as typical data concerning the hydrodynamic loading conditions.For the cas e of a ductile erosion process, a very approx imate solution is presented. N evertheless, it exhibits the typical

features of erosion curves as presented in the literature.

" A s l o n g a s th e s u r f a c e i s s m o o t h , i t o f f e r s n o h o l d f o r t h e i m p i n g i n g d r o p s o f w a t e r a n d t h e

w a t e r f lo w s o f f o n a ll s i de s . T h e r e f o r e e r o s i o n d o e s n o t o c c u r f o r s o m e t i m e . H o w e v e r , a s s o o n

a s a n y r o u g h n e s s f o r m s , e r o s i o n d e v e l o p s r a p i d ly b e c a u s e t h e w a t e r p e n e t r a t e s t h e u n e v e n n e s s

o f t h e s u r f a c e a t a h ig h p r e s s u r e d u e t o th e i m p a c t , a n d a c t s v e r y v i o le n t l y . F i n a ll y , w h e n t h e

e r o s i o n h a s a t t a i n e d a c o n s i d e r a b l e d e p t h , a l a y e r o f w a t e r a d h e r e s t o t h e n o w c o m p l e t e l y

r o u g h e n e d s u r fa c e . T h i s w a t e r d a m p e n s t h e i m p a c t o f s u b s e q u e n t d r o p s s o t h a t t h e ir

d e s t r u c t i v e a c t i o n i s d i m i n i s h e d . T h e s p e c if i c e r o s i o n c o n s e q u e n t l y d e c r e a s e s a f t e r a c e r t a i n

d e p t h h a s b e e n r e a c h e d . "

E . H o n e g g e r (1 9 2 7 )

1 . I n t r o d u c t io n

S i n c e H o n e g g e r ' s e x p e r i m e n t s i n 1 92 7 i t h a s

b e e n k n o w n t h a t e r o s i o n b y l iq u id i m p a c t d o e s

n o t d e v e l o p a t a c o n s t a n t r a t e . H o n e g g e r [ 1 ]

p r e s e n t e d e r o s i o n c u r v e s w h i c h e x h i b i t e d , a f t e ra n i n i ti a l in c u b a t i o n p e r i o d , a p h a s e o f in c r e a s i n g

e r o s i o n r a t e ( a c c e l e r a t i o n ) , f o l l o w e d b y a p h a s e

o f d e c r e a s i n g r a t e ( d e c e l e r a t io n ) . H i s e x p l a n a -

t i o n i s e s s e n t ia l l y th e s a m e a s t h a t p u t f o r w a r d i n

r e c e n t p u b l i c a t i o n s o n e r o s i o n u n d e r d r o p i m -

p i n g e m e n t [ 2 , 3 ] , F i g . 1 . E v e n t o d a y , o p i n i o n s

d i f f e r a b o u t w h i c h s t a g e i n t h e e r o s i o n p r o c e s s i s

t h e m o s t i m p o r t a n t . T h e q u a n t i ta t i v e p r e d i c ti o n

o f th e e r o s i o n c u r v e c o u l d d e f i n i te l y b e a n i m -

p o r t a n t s t e p t o w a r d s f in a ll y e s t a b l is h i n g n o t

o v e r l y c o n s e r v a t i v e , a d m i s s i b l e h y d r o d y n a m i c

l o a d i n g c o n d i t i o n s .

T h e p a r t i c u l a r s h a p e o f t h e e r o s i o n c u r v e d e -

p e n d s , o f c o u r s e, o n t h e m a t e r i a l a n d ( g e o m e t -

r i c) s u r f a c e c o n d i t i o n s o f t h e s o l i d s t r u c t u r e , a s

w e l l a s o n t h e t y p e o f ( t h e r m o - a n d ) h y d r o -d y n a m i c i m p a c t l o a d i n g . I t is o b v i o u s t h a t r e a li s -

t i c a n a l y t i c a l s o l u t i o n s t o t h i s p r o b l e m c a n n o t b e

e x p e c t e d a n d a n a p p r o x i m a t e n u m e r i c a l s o l u t i o n

i s e x t r e m e l y t i m e - c o n s u m i n g a n d e x p e n s i v e ,

e v e n w i t h t h e s i m p l e s t o f a s s u m e d m a t e r i a l b e -

h a v i o r a n d f a i l u r e m e c h a n i s m . E x p e r i m e n t a l

s t u d i e s a l s o a r e d i f f i c u l t , t i m e - c o n s u m i n g a n d

e x p e n s i v e .

W h a t r e m a i n s i s t h e n t h e h o p e t h a t, o n t h e

b a s is o f p r e l im i n a r y e x p e r i m e n t a l e v i d e n c e , a

016%8442/86/$3.50 © 1986, Elsevier Science Publishers B.V. (North-H olland)

Page 2: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 2/9

208 H . W . B a r g m a n n / O n t h e t i m e - d e p e n d e n c e o f t h e e r o s i o n r a te

~b

o =

I Ii1T Trr J~

VTime of Exposure

¢b

U J

I II

, i I

i g m ~ "

V iTime of Exposure

®

o =

(b

T i m e o f E x p o s u r e T ime o f Exposure

F i g 1 . T y p i c a l e r o s i o n r a t e v s . t i m e c u r v e s a c c o r d i n g t o

d i f f e r e n t i n v e s t i g a t o r s [ 2 ] .

h igh ly s impl i f i e d a ppr oa c h w i l l c on t a in t he e s se n-

t i al f e a tu r e s a nd p r o v ide so m e ba s i c i ns igh t, a nd

a n u n d e r s t a n d i n g o f th e c o n t r o l li n g p a r a m e t e r s .

Wi th a c ons i s t e n t s e t o f c onc e p t s i t i s t he n poss -

i b l e t o g u i d e t h e e x p e r i m e n t a l w o r k n e e d e d ; t o

c he c k , i n p r i nc ip l e , t he r e su l t s o f c om pu te r c a l -

c u l a t i ons ; t o a dv i se on t he c ho i c e o f a ppr opr i a t e

ma te r i a l s a nd f i na l l y t o de f ine t he a dmis s ib l eh y d r o d y n a m i c l o a d i n g c o n d i t i o n s .

T h e p r o b l e m o f e r o s i o n u n d e r l i q u i d i m p a c t

i nvo lve s a w ide va r i e ty o f ma te r i a l , so l i d me c h -

a n i c s a n d f l u i d d y n a m i c s p a r a m e t e r s . W h e n

f a t i gue a nd b r i t t l e f a i l u r e c a n be e xc lude d , t he

e r os ion p r oc e s s i s duc t i l e a nd dur ing a n i nc uba -

t io n p e r i o d s h o w s c o m p l e x d e t a i l s o f g r a in b o u n -

da r y de l i ne a t i on a nd p l a s t i c de pr e s s ion o f i n-

d iv idua l g r a ins be low the o r i g ina l su r f a c e l e ve l ,

f i na l l y l e a d ing t o a ge ne r a l , f a i r l y un i f o r m undu-

l a ti o n o f th e s u r f a c e a n d t h e f o r m a t i o n o f s m a ll ,

s m o o t h - e d g e d p i t s . T h i s h a s b e e n d e s c r i b e d i nd e t a il b y V y a s a n d P r e e c e [4 ]. T o w a r d s t h e e n d

o f th e i n c u b a t i o n p e r i o d , t h e g e n e r a l u n d u l a t i o n s

w h i c h m a y b e c o n s i d e r e d a s r e s u l t i n g f r o m t h e

c o m b i n e d p r e s s u r e p u l s e s o f a l a r g e n u m b e r o f

c o l l a p s i n g b u b b l e s , o r f r o m i m p i n g i n g d r o p s ,

de ve lop i n to c r a t e r - l i ke de pr e s s ions w i th l a r ge

s m o o t h l i p s .

M a t e r i a l l o s s i s c o n s i d e r e d t o o c c u r f r o m t h e

l i ps o f t he c r a t e r s by duc t i l e r up tu r e a nd a ga in

those p r e s su r e pu l se s ( e f f e c t i ve impa c t s ) ma y be

c o n s i d e r e d r e s p o n s i b l e f o r it . A m a r k e d t im e -

de p e nd e nc e i n the m a te r i a l lo s s r a t e i s obs e r ve d .

T h e c h a n g e o f s u r f a c e t o p o g r a p h y a s e r o s i o n

p r o c e e d s a n d i t s f e e d b a c k t o t h e h y d r o d y n a m i c

loa d ing ( e .g . t r a ppe d ga s a n d / o r l i qu id a t t he

b o t t o m o f d e e p c r a t e rs ; c h a n g e s i n i m p a c t a n g l e)a r e c o n s i d e r e d t o b e m a j o r f a c t o r s . A n o t h e r

f a c t o r m a y b e t h e c h a n g e i n m a t e r i a l b e h a v i o r

due t o r e pe t i t i ve impa c t l oa d ing , i . e . , w or k ha r d -

e n i n g m a y p l a y a r o l e . F o r e x a m p l e , a n a v e r a g e

inc r e a se i n su r f a c e ha r dne ss by a f a c to r o f tw o

h a s b e e n r e p o r t e d a n d a l m o s t a c u b i c d e p e n d -

e nc e o f e r os ion r e s i s t a nc e on ha r dne ss [ 3] .

A l l t h e s e c h a n g e s a r e l i k e l y t o m a k e r e m o v a l

o f ma te r i a l f a r mor e e f f e c t i ve w hi l e e r os ion p r o -

c e e ds t h r ough t he l a ye r s ve r y c lose t o t he su r -

f a c e , i . e . , a t t he e a r l y s t a ge ( a f t e r a poss ib l e

i n c u b a t i o n p e r i o d ) .

T h e p u r p o s e o f th i s p a p e r i s t o p r e s e n t a

h igh ly s impl i f i ed mo de l o f t he e r os ion p r o c e s s

unde r l i qu id impa c t . A t he or y i s ou t l i ne d w hic h

a l lo w s t h e m a t h e m a t i c a l e x p e c t a t i o n o f t h e e r o -

s ion r a t e a s a f unc t i on o f t ime ( e r os ion c u r ve ) t o

be p r e d i c t e d . T h i s t he or y i s ba se d on t he s t a t i s t i -

c a l na tu r e o f the r e pe t i t i ve l oa d ing b y li qu id

impa c t . I t e m ploy s a c l a ss i f ic a t ion o f i nd iv idua l

impa c t s a c c or d ing t o t he i r q ua l i t y o f o r e f f e c t i ve -

ne s s i n r e moving ma te r i a l . T o t h i s e nd , t he

spe c i f i c l os s o f ma te r i a l ( pe r impa c t ) i s c ons id -e r e d t o b e a r a n d o m v a r i a b l e w h i c h a s s u m e s

d i f f e r e n t v a l u e s d e p e n d i n g o n t h e o r d e r o f r e p e -

t i t ion o f impa c t s a t t he s a m e loc a t i on on t he

t a r ge t ( su r fa c e ) . I n t he c a se o f a duc t i l e e r os ion

p r o c e s s , w e a s s u m e t h a t t h e e a r l y r e p e t i t i o n s o f

t he impa c t l oa d ing a r e mos t e f f e c t i ve f o r t he

r e m o v a l o f m a t er i a l. N e v e r t h e l e s s , t h e v e r y a p -

p r ox ima te so lu t i on e xh ib i t s t he t yp i c a l f e a tu r e s

o f e r o s i o n c u r v e s a s p r e s e n t e d i n t h e l i t e r a t u r e [

T h e t h e o r e t i c a l a p p r o a c h e s a d v a n c e d s o f a r f o r t h e q u a n -t i ta t i v e p r e d i c t io n o f t h e e r o s i o n r a t e t i m e - b e h a v i o r a r e

e s s e n t ia l l y b a s e d o n a d h o c a s s u m p t i o n s c h a r a c t e r i s i n g o v e r -

a l l e f f e c ts . N o n e o f t h e m e x a m i n e s o r m o d e l s t h e a c t u a l

p h y s i c a l o c c u r r e n c e s i n a m o r e s p e c i f ic w a y , s o t h e y d o n o t

l e n d t h e m s e l v e s t o f u r t h e r p h y s i c a l r e f i n e m e n t .

H e y m a n n [ 5] c o n s i d e r s th e l i f e t i m e s o f t h e t o p s u r f a c e

a n d s u b s u r f a c e l a y e r s a s r a n d o m v a r i a b l e s w i t h a s s u m e d

p r o b a b i l i t y d e n s i ti e s . T h e s e d e n s i t i e s a r e s u p p o s e d t o r e f l e c t

a ll s t a ti s ti c a l a s p e c ts o f t h e e r o s i o n p r o b l e m . T h e a p p r o a c h

i s s e lf - c o n s i s te n t ; t h e r e i s , h o w e v e r , n o d i r e c t w a y o f m a k -

i n g a p h y s i c a l r e f i n e m e n t ,

C o n t i n u e d o n p . 2 0 9

Page 3: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 3/9

H.W. Bargmann / On the time-dependenceof the erosion rate 209

2 . T h e s p e c i fi c lo s s o f m a t e r i a l

W e c o n s i d e r t h e S p ec if ic l o ss o f m a t e r i a l ( p e r

i m p a c t ) t o b e a d i sc r e te r a n d o m v a r i a b le m ,

t a k i n g t h e v a l u e s m i w i t h a c e r t a i n p r o b a b i l i t y p i .

T h i s p r o b a b il i ty m a y c h a n g e w i th t h e n u m b e r No f i m p a c t s , p~(N )= pN. A t t h e N t h i m p a c t , t h e

m e a n o r e x p e c t e d v a l u e o f t h e s p e c if ic lo s s o f

m a t e r i a l i s t h e n g i v e n b y

N = _ _ e N { m } = E m , p N , p N = _ e U { m = r n ,} ,i

N = 1 , 2 , 3 , . . . (i)

From the physical point of view, we need a

classification of the individual impacts according

to their quality of or effectiveness in removing

material. Various types of classifications are con-

ceivable. We shall adopt a particularly simple

one which appears to be supported by ex-

perimental evidence. Moreover, this approach

should lend itself to straightforward extensions

and refinements.

3 . T h e r e p e t it i v e n a t u r e o f e r o s i o n

A s i m p l e , v e r y a p p r o x i m a t e c l a s s if i ca t io n is

s u g g e s t e d , t a k i n g i n t o a c c o u n t t h e s t a t i s t i c a l n a -

t u r e o f r e p e t i t i v e l o a d i n g b y l iq u i d i m p a c t . L e t u sc o n s i d e r t h e p r o b l e m o f p ro d u c i n g c r a te r s in a

s o l id t a r g e t b y r a n d o m p r o j e c t i o n o f l iq u i d j et s

Footnote 1 Cont.

The fundamental reasoning in Thiruvengadam's theory[6] is, in a sense, a vicious circle. His 'efficiency' of erosion ,introduced as a premise, is very closely connected with his' intensity' (or rate) of erosion for w hich he dra w s hisconclusion. He thus g ives as proo f the assumption fromwhich he starts.

Despite references to concepts such as fatigue andWeibull distribution, Springer [7] assumes from the outsetthat the erosion rate is constant with time. His model comesdown to the assumption that shorter incubation periodscorrespond to higher subsequent erosion rates. This may,for certain empirical data, be an approximation for theacceleration phase if an incubation period exists.

The mathematical approach recently advanced by Nos-kievic [8] definitely takes us outside the discipline otphysics. Notwithstanding numerous allusions to concepts ofrigid body dyn amics, viscoelasticity and dam ped v ibrations,the w hole approa ch is still a curve fitting exercise in elemen -tary geometry.

o r d r o p s ( l i q u i d i m p a c t ) . T h e a c t u a l s i t u a t i o n i s

e x t r e m e l y c o m p l e x . O v e r l a p p i n g c r a t e r s o f v a r i-

o u s s i z e s m a y c o n t i n u o u s l y c o v e r t h e e n t i r e s u r -

f a c e ( F ig . 2 ) . W e a d o p t a s i m p l if i e d m o d e l w h e r e

o n l y n o n - o v e r l a p p i n g c r a t e r s o f t h e s a m e s i z e

m a y r e p e a t e d l y c o v e r t h e s u r f a c e l a y e r s o f t h et a r g e t . T h u s , s u c c e s s iv e c r a t e r s a r e c o n s i d e r e d

e i t h e r n o t t o o v e r l a p a t a ll o r t o o v e r l a p c o m -

p l e t e l y , a n d p a r t i a l o v e r l a p p i n g i s e x c l u d e d .

L e t t h e p r o b a b i l i t y o f h i t ti n g a n e x i s t i n g c r a t e r

b y l iq u id i m p a c t b e d e n o t e d b y p . A s s u m e t h i s

p r o b a b i l i t y t o b e c o n s t a n t a n d e q u a l t o t h e r a t i o

o f th e a r e a o f a c r a t e r t o t h e a r e a o f t h e t o t a l

s u r f a c e e x p o s e d t o li q u id i m p a c t . T h e s m a l l e r t h e

i m p i n g i n g j e t o r d r o p c o m p a r e d t o t h e s iz e o f t h e

c r a t e r , t h e b e t t e r t h i s a s s u m p t i o n i s f u l fi l le d . I t

f u r t h e r c o n t a i n s t h e i d e a t h a t w h e r e v e r t h e c r a t e r

i s o n t h e s u r f a c e , t h e c h a n c e s o f h i tt i n g i t a r e t h e

s a m e .

L e t u s c o n s i d e r , a t t h e N t h i m p a c t , t h e N

s e p a r a t e e v e n ts : " p r o d u c i n g a n e w c r a t e r " , " p r o -

d u c i n g a f ir st r e p e t i t i o n " , " p r o d u c i n g a s e c o n d

r e p e t i t i o n " , . . . . " p r o d u c i n g a ( N - 1 ) th r e p e ti -

t i o n " . T h e s e e v e n t s to g e t h e r f o r m t h e c e r t a in

e v e n t . I t i s c o n v e n i e n t t o d e f i n e t h e p r o d u c t i o n

o f a 0 th r e p e t i t i o n a s th e f o r m a t i o n o f a n e w

c r a t e r .

W e m a y t h e n b a s e t h e c l a ss i fi c a ti o n o f t h e

i n d i v id u a l i m p a c t s o n t h e r e p e t i t i v e n a t u r e o (i m p a c t l o a d i n g a n d w e m a y c h o o s e t h e p r o b a b i l i -

t y p U e q u a l t o t h e p r o b a b i l i t y o f p r o d u c i n g a n i t h

r e p e t i t i o n , a t t h e N t h i m p a c t ,

N N

P i = P r e v i, i = O , 1 , 2 , . . . , ( N - 1 ) , ( 2 )

N N

w h e r e P re p 0 - P ne w " W e t h u s h a v e t o d e t e r m i n eN

t h e p r o b a b i l i t i e s P r e p i" L e t u s c o n s i d e r a p r e l i m i -

n a r y p r o b l e m f i r s t .

Fig. 2. S urfa ce under repetitive impacts. The surface at thecenter corresponds to the superposition of major craters(left) corresponding to effective impacts and weaker craters(right). In the simplified mod el, craters o f one size only coverthe surface, and we assu me that the successive craters areeither not at all or totally overlapping. Weak impacts affect,first of all, the material behavior.

Page 4: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 4/9

210 H.W . Bargm ann / On the time-dependence of the erosion rate

3.1. The configurations o f the erosion process

F i r s t l y , w e w i l l c o n s i d e r a n o t h e r s e t o f e v e n t s .

W e r e c o r d , after t h e N t h i m p a c t , t h e t o t a l a r -

r a n g e m e n t o f n e w c r a t er s a n d t h e d i f f e r e n t r e p e -

t i t i o n s o b t a i n e d u p t o a n d i n c l u d i n g t h e N t hi m p a c t . W e c o n s i d e r s u c h a n a r r a n g e m e n t t o b e

u n i q u e l y d e f i n e d b y t h e t o t a l n u m b e r s o f t h e

d i f f e r en t r ep e t i t i o n s . W e s h a l l c a l l s u ch an a r -

r a n g e m e n t a " c o n f i g u r a t i o n C iN a f t e r t h e N t h

i m p a c t " o f t h e e r o s i o n p r o c e s s , a n d c o n s i d e r it a s

a n e v e n t . A g a i n , t h e s e e v e n t s t o g e t h e r , i - -

l , 2 . . . . , r e ( N ) , f o r m t h e c e r t a i n e v e n t ( b u t in a

d i f f e r e n t p r o b a b i l i t y s p a c e f r o m b e f o r e ) .

W e a d o p t a s p e c i a l n o t a t i o n f o r t h e p r o b a b i l i t y

o f h a v i n g o b t a i n e d a p a r t i c u l a r c o n f i g u r a t i o n C iN.N

F o r e x a m p l e , F i g . 3 , w e w r i t eP3,2,2

f o r t h e

p r o b a b i l i t y o f h a v i n g o b t a i n e d , a f t e r t h e N t h

N c o n t a i n i n gm p a c t , t h e c o n f i g u r a t i o n C 3 , 2 , 2 , 1 . . . . . 1

t h e f o l l o w i n g e l e m e n t s : ( i ) o n e s e c o n d r e p e t i t i o n

(3 o v e r l ap p i n g c r a t e r s ) , ( i i) t w o f i r s t r ep e t i t i o n s

(2 o v e r l ap p i n g c r a t e r s e ach ) , an d ( i ii ) N - 7 n ew

c r a t e r s. N o t e t h a t t h e o c c u r r e n c e o f n e w c r a te r s

i s n o t ex p l i c i tl y i n d i ca t ed ; c f . F i g . 3 . F o r t h e

p r o b a b i l i t y o f h a v i n g o b t a i n e d , a f t e r t h e N t h

i m p a c t , a c o n f i g u r a t i o n w i th n e w c r a t e r s o n l y , w e

w r i t e p N . O b v i o u s l y , s u c h a c o n f i g u r a t i o n

e x h i b i ts e x a c t l y N n e w c r a t e r s . W e n o t e h e r e t h e

v a r i o u s p r o b a b i l i t i e s f o r t h e f i r s t t h r e e i m p a c t s .A f t e r t h e f i r st i m p a c t , N = 1 , w e o b v i o u s l y

h a v e

Px --- 1. (3)

A f t e r t h e s e c o n d , N = 2 , F i g . 4 ,

P~ = (1 - P ) P I = (1 - p ) , p22 = P P I = P .( 4 )

A f t e r t h e t h i r d i m p a c t , N = 3 , a c c o r d i n g t o t h e

1 2 3 4 . N - 4

( I ) 0 © 0 - 03 2 2 1 1

pN3 ; 2 , 2

F i g , 3 . C o n f i g u r a t i o n c 3 N , 2 , 2 ,1 . . . . . l w i t h o n e s e c o n d r e p e t i t i o n

( 3 o v e r l a p p i n g c r a t e r s ) a n d t w o f i r s t r e p e t i t i o n s ( 2 o v e r l a p p i n g

c r a t e r s e a c h ) a f te r t h e N t h i m p a c t . T h e p r o b a b i l i ty o f h a v i n g

o b t a i n e d t h i s c o n f i g u r a t io n a f t e r t h e N t h i m p a c t i s d e n o t e d

b y p N3,2,2"

O O O2 p 2

P 2 1

F i g . 4 . P r o b a b i l i t i e s P ~ a n d P~2 o f h a v i n g o b t a i n e d , a f t e r t h e

s e c o n d i m p a c t o n e f ir s t r e p e t i t i o n C 22 , a n d t w o n e w c r a t e r s

C~.,, r e s p e c t i v e l y .

t h e o r e m o n t o t a l p r o b a b i l i t y ,

P~ = (1 - 2p)P~ = ( 1 - 2 p ) ( 1 - p ) ,

P3 = 2pP~ + ( 1 - p ) P ~ = 3 p( 1 - p ) , ( 5)

p~ = p p 2 = p 2 .

T h e f o r m u l a t i o n f o r h i g h e r v a l u e s o f N i ss t r a ig h t f o r w a r d . F o r N = 4 - 7 t h e c o r r e s p o n d i n g

p r o b a b i l i t i e s a r e g i v e n i n A p p e n d i x 1 .

3.2. Dif fer ent order repetit ions

H a v i n g f o u n d t h e p r o b a b i l i t i e s u p t o o r d e r

( N - 1 ) f o r th e v a r i o u s c o n f i g u r a t i o n s , w e c a nN

n e x t d e t e r m i n e t h e p r o b a b i l i ti e s P n e w o f p r o d u c -

i n g a new crater a t th e N t h i m p a c t . W e h a v e , f o r

N = 1 , 2 , 3 , . . . ,

P '~w = P~ = 1 , p 2 ew = P~ = l - p ,(6 )

3 (1 2 p )P : + ( 1 p ) P ~ = ( 1 p )2P ne w ~-- - - -

a n d s o o n . S e e A p p e n d i x 2 f o r t h e c o r r e s p o n d i n g

p r o b a b i l i t i e s a t i m p a c t s N = 4 - 7 .

S i m i l a r l y , w e c a n d e t e r m i n e t h e p r o b a b i l i t i e sN

P re p1 o f p r o d u c i n g , a t t h e N t h i m p a c t , a f i rs trepetition. T h u s , f o r N = 1 , 2 , 3 . . . . .

2 2P ) e p 1 = 0 , P r e p 1 = P 2 = P ,

(7 )P~ep, = 2pP~ = 2p(1 - p )

a n d s o o n . S e e A p p e n d i x 2 fo r t h e c o r r e s p o n d in g

p r o b a b i l i t i e s a t i m p a c t s N = 4 - 7 .N

W e n o t e t h e p r o b a b i l i t i e s P r e p 2 o f p r o d u c i n g ,

a t t h e N t h i m p a c t , a second repeti t ion, a g a i n f o r

N = 1 , 2 , 3 ,

3 2 2P~ep 2 = Prep2 2 = 0 , Prep 2 = PP2 = P (8 )

S e e A p p e n d i x 2 f o r t h e c o r r e s p o n d i n g p r o b -

ab i l i t i e s a t i mp ac t s N = 4 -7 .N N N f o rT h e p r o b a b i l i t i e s P r e p 3 , P r e p 4 a n d P r e p 5

p r o d u c i n g , a t t h e N t h i m p a c t , a t h i r d , a f o u r t h

Page 5: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 5/9

H.W . Bargm ann / On the t ime-dependence of the erosion rate 2 1 1

a n d a f i f th r e p e t i t i o n , r e s p e c t i v e l y , a r e g i v e n in

A p p e n d i x 2 .

L e t u s f i n a ll y n o t e t h e p r o b a b i l i t ie s p N p ~ 2 o f

p r o d u c i n g , a t t h e N t h i m p a c t , a se c ond o r h i gher

repetition. I t f o l lo w s i m m e d i a t e l y

N

N __ p SP r e p s > 2 - 1 - P r e p I n e w •

T h u s w e h a v e

P ~ e p ~ > 2 2 3 3 p 2: P r e p s 2 = 0 , P r e p s > 2 = P r e p 2 =

(9 )

( lO)

a n d s o o n .

4 . T h e e x p e c t a t i o n o f t h e e r o s io n c u r v e

T o b r i n g o u t t h e e s s e n t i a l p i c t u r e o f t h e d e -

p e n d e n c e o f t h e p r o b a b i l i t y o f a f i r s t r e p e t i t i o no n t h e n u m b e r o f im p a c t s , a n d f o r t h is p u r p o s e

o n l y , l e t u s c h o o s e f o r t h e p r o b a b i l i t y o f h i t t i n g

a n e x i s t i n g c r a t e r t h e v a l u e p = 0 . 5. T h e c o r r e s -

p o n d i n ~ v a l u e s fo r t h e p ro b ab i l i t i e s P~n ew , prN epl

an d P~ep ~2 fo r t h e f i r st 7 i mp ac t s , a r e g i v en i n

Fig . 5 .

A t t h i s p o i n t i t i s i n t e r e s t i n g t o o b s e r v e t h a t aN

w e i g h t e d s u p e r p o s i t i o n o f prNpl and Preps2 re-

s u l t s i n t h e t y p i c a l s h a p e o f a n e r o s i o n r a t e v s .

t i m e c u r v e i f t h e n u m b e r N o f e f fe c t iv e im p a c t s

is ta k e n a s a m e a s u r e o f ti m e ( w h ic h s h o u l d b e a

r e a s o n a b l e a s s u m p t i o n ) , F i g . 6 , c u r v e ( a ) .

i i i.0 l ' ' ' j . ~

P r ~ p X N f Ni X P n e w / / P r e p > 2

o.s i ~

0 .00 1 2 3 4 S 6 7 - ~ i ~ ' - N

Fig. 5. Probab ilities or prod ucing, at the N th impact, a newcrater, a first repetition, or a second or higher repetition. Forthe purp ose of illustration, the probability of hitting anexisting crater has b ee n assum ed to be p = 0.5.

1,0

0.5

0.0 l

~ ( a ) s t a t io n a r y v a lu e

~ " N f o r N " - " o o/ I ~ e p > 2

/ //

/ / / P r N 3/ ep>_./ /

~ r ' r ep 2 / ~ /

w3 /,, 5 6 7 ,'~.m.--N

2.0

; / m 6

t

1.0

Fig. 6 . Eros ion ra te vs . t im e (specif ic loss of mate r ia l vs .

number N o f impac t s ) r e l a t ive to i t s s t a t iona ry va lue . The

d i f f e ren t cu rves (a ) , (b ) , and ( c) co r re spond to th ree d i f f e ren t

in f luences o f ea r ly r epe t i t ions , c f . Tab le 1 .

T h i s o b s e r v a t i o n i s n o s u r p r i s e . I n f a c t t h e

e x p e c t e d v a l u e o f t h e s p e c i f i c l o s s o f m a t e r i a l , a tt h e N t h i m p a c t , c a n b e w r i t t e n , e q . ( 1 ) ,

N N N~ 1 ~ E~{m} m l P r e p 1 "~ m 2 P r e p ~ > 2 ,

N = 1 , 2 , 3 , . . . ( 1 1 )

T h e n a l l w e h a v e t o a s s e r t i s t h a t t h e s p e c i f i c

l o ss o f m a t e r i a l m 1 f o r a f i r s t r e p e t i t i o n i s m u c h

g r e a t e r t h a n t h e a v e r a g e s p e c if i c l o ss m 2 f o r t h e

s e c o n d a n d a l l h i g h e r r e p e t i t i o n s ; t h i s i s a m p l y

j u st if i ed t h r o u g h o u t t h e l i t e r a tu r e . W e n o t e t h a t

cu rv e ( a ) i n F i g . 6 ex h i b i t s a l l t h e s t ag es u s u a l l y

f o u n d i n e r o s i o n c u r v e s: a n i n c u b a t i o n p e r i o d , a na c c e l e r a t i o n p h a s e , a d e c e l e r a t i o n p h a s e a n d a

f i n a l s t a t i o n a r y s t a g e w i t h c o n s t a n t e r o s i o n r a t e .

I t is n a t u r a l t o a s k h o w t h e s h a p e o f t h e

e r o s i o n c u r v e w i l l b e i n f l u e n c e d b y t h e h i g h e r

o r d e r r e p e t i t i o n p r o b a b i l i t i e s . T h e v a l u e s f o r t h e• . • N N N N

p r o b a b l l m e s P r e p 2 , P r e p 3 , P r e p 4 a n d P r e p 5 a r e

g i v e n i n F i g . 6 . A g a i n , w e o b s e r v e t h a t w e i g h t e d

s u p e r p o s i t i o n s o f v a r i o u s P r e p / r e s u l t i n s h a p e s

w h i c h a r e t y p i c a l f o r e r o s i o n r a t e v s . t i m e c u r v e s

a s r e p o r t e d i n t h e l i t e r a t u r e . N o t e t h a t t h e p a r -

Page 6: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 6/9

212 H . W . B a r g m a n n / O n t h e t i m e - d e p e n d e n c e O f t h e e r o s i o n ra te

t icu lar curves (a) , (b ) and (c) , Fig . 6 , represen t

t h e r e l at i v e e x p e c t e d v a l u e ( i .e . , m e a s u r e d i n

u n i ts o f t h e co r r e sp o n d in g s t a t io n a r y ex p ec te d

v a lu e ) o f t h e sp ec i f i c l o ss o f m a te r i a l , a t t h e N th

impact , hence a t t ime t~¢ ,

kN__ N Nk~k = Ek {m} ~] N: m i P r e p i + l n k + i P r e p ~ k + 1 ,i - 1

N = 1 , 2 , 3 . . . . , ( 1 2 )

wh er e m i d en o te s t h e sp ec if i c l o ss o f m a te r i a l f o r

an i t h r ep e t i t i o n , an d m ,+~ d en o te s t h e av e r ag e

loss fo r the (k + 1) th and a ll h igher re pet i t ion s;

c f . eq . ( 1 ) . Th e cu r v es in F ig . 6 we r e g e n e r a t e d

b y u s in g th e n u m er i ca l v a lu es f o r t h e r e l a t iv e

e f f ec t s o f ea r ly r ep e t i t i o n s a s g iv en in Tab le 1 .

F in a l ly , we n o te th a t eq s . ( 1 ) an d ( 2 ) a l so

a l lo w f o r t h e g en e r a l c a se wh e r e m o ~ O , a n d m o

d en o te s t h e sp ec if i c l o ss o f m a te r i a l w h en a n ewcr a t e r i s p r o d u ced . I t h a s b ee n o b s e r v e d in ce r -

t a in , l e ss f r eq u e n t , c a se s t h a t t h e e r o s io n cu r v e

s t a r t s w i th a m ax im u m v a lu e , w i th o u t an acce l e -

ra t ion phase ; th is cou ld cor respond to a s ign i f ic -

an t m a te r i a l l o ss ev en wh en a n ew c r a t e r i s

f o r m e d [ 5 ] .

5 . C o n c l u s i o n s

I t ap p ea r s t h a t t h e f o l lo win g co n c lu s io n s can

n o w b e d r a w n .( 1 ) O n th e b as i s o f t h e s t a t is t i c a l n a tu r e o f t h e

r ep e t i t i v e lo ad in g b y l iq u id im p ac t a t h eo r y h as

b e e n o u t l i n e d w h i c h a l l o w s t h e m a t h e m a t i c a l

ex p ec ta t io n o f t h e e r o s io n r a t e a s a f u n c t io n o f

t im e ( e r o s io n cu r v e ) t o b e p r ed ic t ed . Th e sp ec i f i c

lo ss o f m a te r i a l ( p e r im p ac t ) m ay a ssu m e d i f f er -

en t d i sc r e t e v a lu es , w i th p r o b ab i l i t i e s co r r e s -

p o n d in g to : t h e f o r m a t io n o f a n ew c r a t e r ; a f i r s t

r ep e t i t i o n o f im p ac t s ; a seco n d s r ep e t i t i o n ; o r a

r ep e t i t i o n o f ev en h ig h e r o r d e r , a t t h e sam e

Table 1

Relative effect of early repetitions (normalized by stationary

e f f e c t o f l a t e r r e p e t i t i o n s ) , cf. eq. (12) and Fig. 6

m I m 2 m 3 m4 m5

m 6 m6 m6 m6 m 6

Erosion r a t e

curve

(a) 3 1 1 1 1

(b) 3 0 3 0 2

(C) 3 0.5 1 2 3

l o ca t io n o n th e t a r g e t ( su r f ace ) . Fo r a d u c t i l e

e r o s io n p r o cess an d o n th e a ssu m p t io n th a t t h e

ea r ly r ep e t i t i o n s a r e t h e m o s t e f f ec t iv e f o r r e -

m o v in g m a te r i a l , a so lu t io n i s p r e sen ted .

Al th o u g h th is i s a v e r y ap p r o x im a te so lu t io n i t

ex h ib i t s t h e ty p ica l sh ap e o f e r o s io n cu r v es u su -a l ly f o u n d in th e l i t e r a tu r e : an in cu b a t io n p e r io d ,

th e p h ases o f acce l e r a t io n an d d ece le r a t io n , a s

wel l as the f ina l s ta t ionary s tage of a constan t

e r o s io n r a t e .

( 2 ) W e n o te th a t t h e sp ec i f i c l o ss o f m a te r i a l

en te r s t h e e x p r e ss io n f o r t h e ex p ec ta t io n o f t h e

e r o s io n cu r v e o n ly in t h e f o r m o f a d i sc r e t e

we ig h t in g f u n c t io n , i n a we ig h ted su m o f p r o b -

ab i l i t i e s . W e m ig h t t h e r e f o r e th in k th a t t h e ty p i -

ca l sh ap es o f e r o s io n cu r v es a r e t o a l a rg e ex ten t

s t a t i s t i c a l i n n a tu r e . Th ey sh o u ld th en b e r e l a -

t i v e ly in sen s i ti v e to p a r t i cu l a r l o ad in g co n d i t io n s ,m a te r i a l b eh av io r , an d f a i lu r e m ech an i sm s .

( 3 ) Th e ab o v e sh o u ld b e t r u e a l th o u g h th e

n u m b e r N o f i m p a c t s m a y b e i n t e rp r e t e d i n

sev e r a l way s . I n p r in c ip l e , N m ay r e f e r t o t h e

v e r y l a r g e n u m b er o f i n d iv id u a l im p ac t s ( o f av e r -

ag e in t en s i ty ) . I t m ay e q u a l ly we l l r e f e r o n ly to a

sm a l l n u m b er o f e f f ec t iv e im p ac t s ( a l so o f av e r -

ag e in t en s i ty ) . C o n seq u en t ly th e sp ec i f i c l o ss o f

m a te r i a l v a lu es f o r e i th e r i n t e r p r e t a t io n m u s t b e

a d j u s t e d .

( 4 ) Fo r p a r t i cu l a r ap p l i ca t io n s , t h e th eo r y r e -q u i r e s ch a r ac t e r i s t i c d a t a f o r t h e sp ec i f i c l o ss o f

m a te r i a l a s we l l a s t y p ica l d a t a f o r h y d r o d y n am ic

lo ad in g . Fu r th e r sy s t em a t i c e f f o r t i s n ee d ed to

c l a ssi f y th e w id e r an g es o f m a te r i a l b eh av io r an d

f a i lu r e m ech an i sm s an d th e v a r io u s h y d -

r o d y n am ic lo ad in g co n d i t io n s . I n p a r t i cu l a r , i t i s

r e c o m m e n d e d t h a t a p p r o x i m a t e c a l c u l a t i o n s c o n -

ce r n in g th e f o r m a t io n o f c r a t e r s an d d u c t i l e f a i-

lu re , as wel l as fo r b r i t t le fa i lu re and fa t igue , a l l

c a u s e d b y l i q u i d i m p a c t , b e p e r f o r m e d .

( 5 ) Th e s im p l i fi ed th eo r y p r e sen te d a l lo ws

s t r a ig h t f o r war d in - d ep th r e f in em en t s an d d i r ec tg en e r a l i za t io n s o n v a r io u s l ev e l s t o b e m ad e .

Th e co n cep t s p r e sen ted in th i s p ap e r f o r a d u c -

t i le p r o cess o f e r o s io n can a l so b e ap p l i ed , w i th

m in o r m o d i f i ca t io n s , t o t h e ca se o f e r o s io n b y

fa t igue and br i t t le fa i lu re .

A p p e n d i x 1 : P r o b a b i l i t i e s f o r t h e c o n f i g u r a t i o n s

I n Sec t io n 3 .1 th e p r o b ab i l i t i e s o f t h e co n f ig u -

Page 7: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 7/9

H.W . B argm ann / On the time-dependence of the erosion rate 213

r a t io n s o f th e e r o s i o n p r o c e s s h a v e b e e n p r e s e n -

t ed , f o r t h e f ir s t 3 im p ac t s , N = 1 - 3 , eq s ( 3 ) - ( 5 ) .

W e m a y w r i t e , i n g e n e r a l ,

p N = p N p ~ .- ~ , N = 1 , 2 , 3 , . . . ( A. 1)

N

w h e r e t h e c o l u m n p N = ( p N . , p 2 N , . . . ,P r o ( N ) ' }

i s f o r m ed o f t h e ( u n c o n d i t io n a l ) p r o b ab i l i t i e s

t h a t , a t t h e N t h i m p a c t , t h e e r o s i o n p r o c e s s

wi l l p a ss t o t h e co n f ig u r a t io n s C N , i=

1 , 2 . . . . , r e ( N ) , r e sp ec t iv e ly .

W e d e n o t e b y P t h e m a t r ix o f t h e tr a n s it i o n

p r o b ab i l i t i e s p q ( N ) = - p N , p N = IIp~ll. The t rans-

i t i o n p r o b ab i l i t y p N i s t h e co n d i t io n a l p r o b ab i l i -

t y , a t t h e N th im p ac t ( o r a t im e t N ) , t h a t a f t e r

t h e N t h i m p a c t C N i s o b t a i n e d u n d e r t h e a s-

s u m p t i o n t h a t c N . ~ w a s o b t a i n e d a t t h e ( N -

1 ) th im p ac t .

W e n o te th a t i n each l i n e o f t h e m a t r ix p Nt h e r e i s a t l e a s t o n e e l e m e n t d i f f e r e n t f r o m z e r o ,

Na n d t h e t r an s i ti o n p r o b a b i l it i e s p q , f o r a n y N ,

m(N)

p N = I , j = l , 2 , . . . , m ( N - 1 ) .

i = 1 ( A . 2 )

W e f in a l ly h av e

p ~ = ( p 2 p 3 . . . p N ) T p ~ , N = 1 , 2 , 3 . . . .

( A . 3 )w h e r e T d e n o t e s t h e t r a n s p o s e d m a t r i x , a n d

P ~ - { P ~ } = 0 } .W e p r e sen t i n t h e f o l lo win g th e p r o b ab i l i t i e s

p N o f t h e c o n f ig u r a ti o n s C N , i = 1 , 2 . . . . .

r e ( N ) , f o r N = 4 - 7 .

N = 4

P31 P32 p3

p l

e~

P ~

P•

e ~ ,2

( 1 - 3p)

3p ( 1 - 2p)( A . 4 )

p (1 -p )

P

Psa t i s f y th e r e l a t io n

N = 5

e~ e~ e~ P~ eLP 51 ( 1 - 4 p )

P s 4 p ( 1 - 3 p )

P53 p (1 - 2p )

p54 p (1 - p )

P~ pP~.2 2p (1 - 2p)

P ~ .2 p 2 p

N = 6

Ps P~ ts pS p5 p52,2 P53,

(A.5)

P ~

e~

P ~

e ~

e ~

P ~

e ~ .2

P~ .2

P~ ,2

P~,2.2

P~,3

( 1 - 5p )

5p (1 -4 p)

P

3p

( 1 - 3p )

P

2p

( 1 - 2p )

P

P

(1 -p )

P

( 1 - 3p)

2 p ( i - 2 p )

P

P

P

( A . 6 )

Page 8: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 8/9

2 1 4

N = 7

H . W . B a r g m a n n / O n t h e t i m e - d e p e n d en c e o f t h e e r os io n r a te

p ~ p ~ p 6 6 p 6 6 . 6 p . . . .- 3 P4 5 P6 P2 .2 P3 ,2 4 ,2 P2,2,2 P3,2

e ;

e ;

e ;

e~

e~

P2

P;

P~,2

P~,2

P~.2

P~,2

P~,2,2P~,2,2

P~,3

P~,3

(1 - 6p )

6p ( i - 5 p )

p

4p

(1 - 4p )

P

3p

( 1 - 3p)

P ( 1 - 2p )

P (1 - p )

P

( 1 - 4p)

2 p ( 1 - 3 p )

2 p p ( 1 - 2 p )

p p

2p (1 - 3p)p 3p

P ( 1 - 2 p )

2 p

A p p e n d i x 2 : P r o b a b i l i t i e s f o r t h e r e p e t i t i o n s

I n S e c t i o n 3 . 2 t h e p r o b a b i l i t i e s f o r r e p e t i t i o n s

o f v a ri o u s o r d e r h a v e b e e n g i v e n , f o r t h e fi rs t

t h r e e i m p a c t s , N = 1 - 3 , e q s . ( 6 ) - ( 8 ) .N

F o r N = 4 - 7 , t h e p r o b a b i l i t i e s P ,e ,~ o f p r o d u c -

i n g , a t t h e N t h i m p a c t , a n e w c r a t e r a r e a s

f o l l o w s :

4Pnew = (1 - 3 p ) P ~ + ( 1 - 2p)P3~ + ( 1 - p ) p 3 ,

5Pnew = (1 - 4 p ) P ~ + ( 1 - 3 p ) e 4 + ( 1 - 2 p ) e ~

+ (1 - p ) P ~ + ( 1 - 2 p ) P ~ , 2 ,

6Pnew = ( 1 - - 5p)eS~ + (1 - 4 p ) e ~ + (1 - 3p )P53

+ ( 1 - 2 p ) P ~ + ( 1 - p ) P ~

+ ( 1 - 3 p ) P S 2 , : + ( 1 - 2 p ) P ~ . : , ( A . 8 )

7e .ew = ( 1 -- 6 p ) P 6 + ( 1 - 5 p ) P~ + ( 1 - 4 p ) P 6

+ (1 - 3 p ) P ~ + ( 1 - 2 p ) P 6 + (1 - p ) e ~

+ ( 1 - 4 p ) p 6 2 + ( 1 - 3p)P~,2

+ ( 1 - 2 p ) p 6 , 2

- I - ( 1 6 _ _3 p ) P 2 , 2 , z + ( 1 2 p ) p 6 , 3

( A . 7 )

N o f p r o d u c i n g , a t t h eh e p r o b a b i l i t i e s P r e p l

N t h i m p a c t , a f i r s t r e p e t i t i o n a r e , f o r N = 4 - 7 , a s

f o l l o w s :

4 = 3 p e ~ + p e 3P r e p 1

5 4 2 p P ~ + P P 3 ,rep 1 = 4 P P 1 + 4

P~eol = 5pp51 + 3pP52 + 2pP53 + PPS2,2 + P P' , ,

( A . 9 )

P ;e p 1 = 6 p e ~ + 4 p P 6 + 3 p P 6 + 2 p P 6 + p P ~

+ 2 p p 6 ,2 + P P ~ , 2 .

W e n o t e

N N u ( A . 1 0 )P r e p s 2 = V r e p ~ l - P r e p 1

NT h e p r o b a b i l i t i e s P r ep 2 o f p r o d u c i n g , a t t h e

N t h i m p a c t , a s e c o n d r e p e t i t i o n a r e , f o r N = 4 - 7 ,

a s f o l l o w s :

p r 4 p 2 = - p P ~ ,

P ~ep 2 = P P ~ + 2 P P ~ 2 ,

P ~ e p z = p P S + 2 p P ~, z + pP53, 2 , (A . 1 1)

6P~ep ~ = PP ~ + 2PP~ ,2 + PP~ ,2 + pp64 , z + 3PP 2,2 ,2 .

Page 9: Erosion Over Time

8/2/2019 Erosion Over Time

http://slidepdf.com/reader/full/erosion-over-time 9/9

H. W . Bargm ann / O n the t ime-dependence of the erosion rate 2 1 5

W e n o t e

N N N ( A . 12)P r e p > ~ 3 = P r e p s > 2 - P r e p 2 •

N o f p r o d u c in g , a t t h eh e p r o b ab i l i t i e s P r ep 3

N t h i m p a c t , a third repeti t ion a r e , f o r N = 1 - 7 ,

as fo l lows:

P ~ e p 3 2 3 = 0= P r e p 3 = P r e p 3

4 4 3P r e p 3 -~- P 4 = P ,

P ~ ep 3 = P P ~ ,

p 6 o . 3 = p p 5 + p P L ,

7 - - 2pP63,3 + 6 6Prep 3 - P P 3 + P P 3 , 2 •

W e n o t e

N N N

P r e p s > 4 - -" P r e p s > 3 - P r e p 3 •

( A . 1 3 )

( A . 1 4 )

T h e p r o b a b i l i t i e s Pr~p4 o f p r o d u c in g , a t th e

N t h i m p a c t , a fourth repet i t ion a r e , f o r N = 1 - 7 ,

as fo l lows:

P ~ e p 4 2 3 : 4= P r e p 4 = P r e p 4 P r e p 4 = 0 ,

e ~ e p 4 ~ - P55 = p 4 ,

p 6 e p 4 = p p 5 4 ,

7 6 6Prep 4 -~ - P P 4 + P P4 , 2 •

W e n o t eN N N

e r e p > ~ 5 = P r e p s > 4 - P r e p 4 .

( A . 1 5 )

( A . 1 6 )

NTh e p r o b ab i l i t i e s P r ep 5 o f p r o d u c in g , a t t h e

N t h i m p a c t , af i f th repet i t ion a r e , f o r N = 1 - 7 , a s

f o l lo ws :

P ~ e p 5 2 3 4 5 ~ 0= P r e p 5 = P r e p 5 = P r e p 5 : -- P r e p 5 ,

p r6 p5 = p 6 = p 5 , ( A . 1 7 )

7 6P r e p 5 = PP5 •

W e n o t e

N : p N NP r e p s > 6 r e p ~ 5 - - P r e p 5 . ( A . 1 8 )

A c k n o w l e d g m e n t

I t i s a p le a s u r e t o a c k n o w l e d g e v a l u a b l e d i s c u s -

s i o n s w i th P r o f e s s o r I . L . R y h m i n g , a n d h i s v e r y

e n c o u r a g i n g i n t e r e s t t h r o u g h o u t t h e p r e p a r a t i o n o f

t h i s w o r k .

R e f e r e n c e s

[ 1] E . H o n e g g e r , " E s s a i s d ' 6 r o s i o n d e s a i le t t e s d e t u r b i n e sv a p e u r " , R e v u e B B C 1 4 ( 4 ) 9 5 - 1 0 4 ( 1 9 2 7 ) .

[2 ] C . M . P r e e c e , " C a v i t a t i o n E r o s i o n " , i n : C . M . P r e e c e ,

e d . , Erosion, Treatise on Materials Science and Technolo-

g y , V o l . 1 6 , A c a d e m i c P r e s s , N e w Y o r k ( 1 9 7 9 ) .

[3 ] J . H . B r u n t o n a n d M . C . R o c h e s t e r , " E r o s i o n o f S o li d

S u r f a ce s b y th e I m p a c t o f L i q u i d D r o p s " , i n : C . M .

P r e e c e , e d . , Erosion, Treatise on Materials Science and

Technology , V o l . 1 6 , A c a d e m i c P r e s s , N e w Y o r k ( 1 9 7 9 ) .

[4 ] B , V y a s a n d C . M . P r e e c e , " C a v i t a t i o n - I n d u c e d D e f o r m a -

t i o n o f A l u m i n i u m " , i n : Erosion, Wear, and Interfaces

with Corrosion, A S T M S T P 5 6 7 , P h il a d e l p h ia ( 1 9 7 4 ).

[5 ] F . J . H e y m a n n , " O n t h e T i m e D e p e n d e n c e o f t h e R a t e o f

E r o s i o n D u e t o I m p i n g e m e n t o r C a v i t a t i o n " , i n : Eros ion

by Cavitat ion o r Imp ingem ent, A S T M S T P 4 0 8, P h i la d e l -p h i a ( 1 9 6 7 ) .

[6 ] A . T h i r u v e n g a d a m a n d S . L . R u d y , " E x p e r i m e n t a l a n d

A n a l y t i c a l I n v e s t i g a t i o n s o n M u l t i p l e L i q u i d I m p a c t E r o -

s i o n " , N A S A C R - 1 2 8 8 , W a s h i n g t o n , D C ( 1 9 6 9) .

[ 7] G . S p r i n g e r , Eros ion by L iqu id Impac t , W i l e y , N e w Y o r k

( 1 9 7 6 ) .

[8 ] J . N o s k i e v i c , " T h e e x t e n d e d m a t h e m a t i c a l m o d e l o f c a v i -

t a t io n a n d e r o s i o n w e a r " , i n : Proc . 6 th In t . Con f . on

Eros ion by L iqu id and So l id Impac t , C a m b r i d g e , E n g -

l a n d ( 1 9 8 3 ) .