entc 376 chapter 9 lecture notes-iii-stress transformation

27
Chapter 9: Stress Transformation Finish Chapter 9 Work Problems Chapter 9: Stress Transformation

Upload: yahia-raad-al-ani

Post on 18-Apr-2015

31 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Chapter 9: Stress Transformation

Finish Chapter 9Work Problems

Chapter 9:  Stress Transformation

Page 2: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

9.5 Stress in Shafts Due to Axial Load and Torsion

Example: An axial force of 900 N and a torque of 2.5 N∙m are applied to the shaft as shown.  If the shaft has diameter of 40mm, determine the principal stresses at a point P on its surface.

Initial stress element at P

1

2x

x

kPa7.409

)9.198()2

2.7160()2

(R

kPa1.3582

kPa2.71602

2222y

yavg

xy

=

+−

=τ+σ−σ

=

=+

=σ+σ

x

x

3

Combined loadings (Ch. 8)C (σavg, 0)C (358.1,0)

A (σx , τxy)A (0, 198.9)

σ1 = 767.7 kPaσ2 = -51.5 kPa

Clockwise angle = 14.5o

= Tc/J

=N/A

Page 3: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

9.6 Stress Variations Throughout a prismatic Beam 

Page 4: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Direction (orientation) contours which give the directions of principal stresses of equal magnitude

Tensile principal stress contours which give the locations of identical tensile principal stresses

Stress Trajectories & Contours

Page 5: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

σ2= σx =σLongitudinal

σ1= σy= σHoop

25° CCW°

°

Example A tank is to be made by rolling flat sheet of AISI 1040 cold‐drawn steel into thespiral shape as shown, where the spiral makes an angle of 65° with the horizontal axis of the tank.  P=1.75 MPa, Di=900 mm.

(a) Specify a thickness, t, to provide N=4 based on sy or N=6 based on su.(b) Determine the stress condition on an element aligned with the weld. 

Initial Stress element  =Principal Stress Element

σ2= σx =σLongitudinal

σ1= σy= σHoop

Stress Element along Weld Line

25°

τvw σw

σvτwv

True 3‐D View of Initial Stress Element (not used in this example)

σ2= σx =σLongitudinal

σ1= σy= σHoop

σ3= σz= σRadial

X‐axis

Page 6: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

)(205.1138

908)(9088900

8,

06.7)5.111(2

)900)(75.1(222

5.1116

6696

3.1414

5654

900nominal&

669,565:104075.1

.son based 6Nor son based 4N provide to t,, thicknessaSpecify (a)

min

uy

donecorrectisassumptionwallthint

DmeanmmtDD

assumptionwallthinofvaliditycheckmmtspecifysizepreferredFor

mmMPa

mmMPapDpDtt

pD

twotheofsmallerMPas

MPas

mmDgivenDcylinderwalledthinAssume

MPasMPassteelCDAISIMPap

m

im

allowable

m

Hoop

mmHoop

allowableu

d

yd

im

uy

−⇒>==

=+=+=−⇒=

====∴=

=====

===

==−

===

==

φ

σσσ

σσ

σ

Q

Cont’d

MPa66.492

MPa31.99)mm8(2

)mm908)(MPa75.1(t2

pD

)b(

1alLongitudinx2

mTangentialorHoopy1

=σ=σ=σ

===σ=σ=σ

elementstress principalthe as same the is elementstress initialthe case this In :s)coordinate Y-Xthe on based element(stress elementstress initialthe Construct

weld.the with aligned element an on conditionstress the Determine

Page 7: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

σ2= σx =σLongitudinal= 49.66MPa

σ1= σy= σHoop= 99.31MPa

Initial Stress Element = Principal Stress Element,

and a special case in Mohr’s circle

Cont’d

X‐axis25° CCW

σv= 90.44 MPa

σw= 58.52MPaτwv

τvw = 19.02 MPa

Stress Element along Weld Line

τ (CW)

+σσ1σ2O=σavg

X‐axis

50° CCW

σv

σw

τvw

τwv •

• •0

R

(σv, τvw) 

(σw, τwv) 

MPa44.90)50cos(83.2448.74)50cos(RMPa02.19)50sin(83.24)50sin(R

MPa52.58)50cos(83.2448.74)50cos(R

.weldthealongconditionstresstherepresentthatcircletheonsintpothefindto5025x2byCCWRotate

MPa83.242/)66.4931.99(2/)(RRadiusMPa48.742/)66.4931.99(2/)(Center

avgv

wv

avgw

21

21avg

=°+=°+σ=σ=°=°=τ

=°−=°−σ=σ

°=°

=−=σ−σ==

=+=σ+σ=σ=

Page 8: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

σ2= σx =σLongitudinal

σ1= σy= σHoop

25°

τvw σw

σv

τwv

Initial Stress element  =Principal Stress Element

Stress Element along Weld Line

σ2= σx =σLongitudinal= 49.66MPa

σ1= σy= σHoop= 99.31MPa

25° CCW

σv= 90.44 MPa

σw= 58.52MPaτwv

τvw = 19.02 MPa

Summary

X‐axis

Page 9: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

9.7 Absolute Maximum Shear Stress

General 3D state of stress Thru 3D stress transformation σ

and τ acting on any skewed plane can be determined.

There is an orientation having only principal stresses (σmin, σint, σmax)acting on the element – Triaxial Stress.

At another orientation the absolute maximum shear stress τabs max will occur.

Page 10: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

2

2minmax

avg

minmax

σ+σ=σ

σ−σ=τ maxabs

How to find τabs max

←Circle with the largest R

Page 11: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Need to take a 3D view and find τabs max when the in‐plane principal stresses have the same sign – both tensile or both compressive

A plane stress case with principal stresses having the same sign

220)( maxmax

max'z'xσ

=−σ

=τ=τ maxabs

Given plane stress case

Both tensile

Page 12: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

2)( minmax

max'y'xσ−σ

=τ=τ maxabs

No need to take a 3D view when the in‐plane principal stresses have the opposite – one tensile and one  compressive

Opposite sign

Given plane stress case

A plane stress case with principal stresses having the opposite sign

Page 13: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

τ (cw)

+σσ1=0

σ2σ3

τ (cw)

σ1

σ2σ3=0

Key: τmax is the radius of the largest circle.

Special Case 1 in TextbookSpecial Case 2 in Textbook

Initial Stress Elements

Principal Stress Elements

τ (cw)

σ1σ2=0σ3

σ1 > σ2 = 0 > σ3 σ1 > σ2 > σ3 = 0σ1 = 0 > σ2 > σ3 

Need 3D View Need 3D View

Review: Mohr’s Circle

Page 14: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Example: Due to the applied loading, the element at the point on the frame is subjected to the state of stress shown.  Determine the principal stresses and the absolute maximum shear stress at the point.

Opposite sign

σmax = -10+41.2=31.2σmin = -10-41.2 = -51.2θ = 38.0o

Page 15: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Example: The point on the surface of the cylindrical pressure vessel is subjected to the state of stress.  Determine the absolute maximum shear stress at the point.

An orientation of an element 45° within the plane containing σmax=32MPa and σmin=0yields the state of absolute maximum shear stress and the associated average normal stress.

This is a case that principal stresses have the same sign, so need to think the stress state in 3D.

MPa162

0322

MPa162

0322minmax

avg

minmax

=+

=σ+σ

=−

=σ−σ

=τ maxabs

Page 16: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Homework # 10Due Thursday April 16

9-699-739-759-889-97

Exam 2: Thursday 4/23/09 (not next Thursday)

Page 17: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Lets work some problems

Page 18: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Materials after this slide are extra references

Page 19: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Initial State of Stress

Initial Stress Element(based on xyz coordinates)

Stress Analysis

Design Project

Min Principal Stress

Max Shear Stress

Chapter 11:  The General Case of Combined Stress and Mohr’s Circle

Goals:

Combined Stress

σxAτxy

τyx

σy

x

y

Mohr’s Circle

σdirect or uniaxial

τdirectτtorsionalσbending

τv(beam)

Max Principal Stress

Page 20: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

More about Initial Stress Element for a General Case of Combined Stresses

Direct Normaland/or

Bending Stress

Torsional Shearand/or

Vertical Shear

σx

Pointof

Interestτxy

τyx

σy

σy

σx

τxy

τyx

(Combined) Normal Stress (Combined) Shear Stress

What are the “resultant” σ’s (called max principal stress and min principal stress) and τmax (maximum shear) due to all stresses combined?

x

y

Plane Stress

Page 21: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Stress Transformation: Uniaxial Stress

θθσ=θθ=

θ

θ==τ

θσ=θ=

θ

θ==σ

θθ

θθ

cossincossinAP

cosA

sinPAV

coscosAP

cosA

cosPAN

x

2x

2

A

θ=θ=

sinPVcosPN

Forces

θ

θ=θ cos

AA

PAP

x =σ

V

N

S = P

σθ

τθ

x

y

xmax

xmax

21,45

,0

σ=τ=τ°=θ

σ=σ=σ°=θ

θ

θ

When

When

Page 22: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Stress Transformation: Biaxial Stress (no shear stress)

θθσ−σ=τ

θθσ−θσ=θττ

θσ+θσ=σ

θθσ+θσ=θσσ

θ

θ

θ

θ

θ

θ

cossin)(cos)tanA(sin)A()secA(

:sincos

sin)tanA(cos)A()secA(:

yx

yx

2y

2x

yx

of directionthe inm equilibriuForce

of directionthe inm equilibriuForce

θθ

θθ

τ=τ

σ+σ=σ+σ'

yx'

θσ−σ−=τ

θσ−σ−σ+σ=σ

θπ

+θτσ

θ

θ

θθ

2sin)(21

2cos)(21)(

21

:

yx'

yxyx'

'' for 2

substitute , and find To

θσ−σ+σ+σ= 2cos)(21)(

21

yxyx

θσ−σ= 2sin)(21

yx

stresses principalcalledare stress normal ofvalues min and max Such

smallest.the is otherthe and largestthe is one stressesthese Among ;σ to from varies σ yxθ σ

θσ−σ+σ+σ=σθ 2cos)(21)(

21

yxyxQ

σx

σy

σx

σy

σx

σy

τθ

σθ

τθ

σθ

σθ

τθ

τθ’

σθ’

σθ’

τθ’

A

Page 23: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Stress Transformation: General Case of Plane Stress

θτ−θσ−σ−=τ

θτ−θσ−σ+σ+σ=σ

θ

θ

2cos2sin)(21

2sin2cos)(21)(

21

xyyx

xyyxyx

:equationsstress shear and normal General

planes)principaltheonstressesshearnoareThere

stressprincipalmin

stressprincipalmax

.,e.i(0

)](21[)(

21

)](21[)(

210

dd

2xy

2yxyx2min

2xy

2yxyx1max

τ+σ−σ−σ+σ=σ==σ

τ+σ−σ+σ+σ=σ==σ⇒=θσ

θ

θ

θθ

))(21

()](21[

dd

avgmaxavgyx

2xy

2yxmax

στσ=σ+σ=σ

°τ+σ−σ=τ

=θτ

θ

θ

withdaccompanieis (i.e.,

planes)principaltheto45atoccur

0 Remember the τmax=((σx/2)2 + τxy2)½ in Ch. 10?

0

)2

()

avg

2xy

2yx22avg

=τσ=σ

τ+σ−σ

=τ+σ−σ

τσ

θθ

θθ

θθ

and at center withcircle a of equation anis This

(

:gives and Combine

σx

σy

τθ

σθ

τxyτyx

σx

σy

σx

σy

τxy

τyxτxy

τyx

Mohr’s Circle

Page 24: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Special Cases: Both Principal Stresses Have the Same Sign

σ1 > σ2 > σ3 =0 (Both are tensile)

σ1=0 > σ2 > σ3  (Both are compressive)

.

)no(

)(21

max

StressincipalPrMinStressincipalPrMaxmax

τ

τ

σ−σ=τ

thefindtowantwe and elementstressinitialanonactingstresses principal min and maxwithcasestressuniaxialaasviewedbe canIt

Plane Stress

Page 25: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Case 1: σ1 > σ2 > σ3 =0 (Both Are Tensile)

2

StressincipalPrMinTrue0Circles'Mohrst1thefromStressincipalPrMinCircles'Mohrst1thefromStressincipalPrMax

1max

3

2

1

σ=τ

==σ=σ=σ

.stressshearimummaxtruetheis

MPa3.1082

6.2162

)(21

and,stressprincipalimummintruethenowis0.,e.i

.caseD3aconsidertoneedwe,Thus!signsamethehaveand

MPa4.1036.56160RMPa6.2166.56160R

MPa6.564040baR

MPa40b

MPa40)120200(21)(

21a

MPa160)120200(21)(

21o,Center

:Circles'MohrFirst

131max

3

21

avg2

avg1

2222max

xy

yx

yxavg

==σ

=σ−σ=τ

=σ−

σσ

=−=−σ=σ

=+=+σ=σ=+=+==τ

=τ=

=−=σ−σ=

=+=σ+σ=σ=

Q

Same Sign

σ1

σ2

x-y planey’-z plane

x’-z plane

x-y plane

x’y’

Page 26: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

Case 2: σ1=0 > σ2 > σ3  (Both are Compressive)

2

circles'Mohrst1thefromStressincipalPrMincircles'Mohrst1thefromStressincipalPrMax

StressincipalPrMaxTrue0

3max

3

2

1

σ=τ

=σ=σ

==σ

.stressshearimummaxtruetheis

MPa3.932

6.1862

)(21

and)principalmintrue(MPa6.186and,MPa4.43

,stressprincipalimummaxtruethenowis0.,e.i.caseD3aconsidertoneedwe,Thus

!signsamethehaveand

MPa6.1866.71115RMPa4.436.71115R

MPa6.713065baR

MPa30b

MPa65)18050(21)(

21a

MPa115)18050(21)(

21o,Center

:Circles'MohrFirst

331max

32

1

21

avg2

avg1

2222max

xy

yx

yxavg

−=−

=σ−σ=τ

−=σ−=σ=σ

−σσ

−=−−=−σ=σ

−=+−=+σ=σ=+=+==τ

=τ=

=+−=σ−σ=

−=−−=σ+σ=σ=

Q

σ3=–186.6MPa

σ2 =–43.4MPa

Page 27: ENTC 376 Chapter 9 Lecture Notes-III-Stress Transformation

τ (cw)

+σσ1=0

σ2σ3

τ (cw)

σ1

σ2σ3=0

Key: τmax is the radius of the largest circle.

Special Case 1 in TextbookSpecial Case 2 in Textbook

Initial Stress Elements

Principal Stress Elements

τ (cw)

σ1σ2=0σ3

σ1 > σ2 = 0 > σ3 σ1 > σ2 > σ3 = 0σ1 = 0 > σ2 > σ3 

Need 3D View Need 3D View

Review: Mohr’s Circle