entanglement renormalization

14
Entanglement Renormalization Frontiers in Quantum Nanoscience A Sir Mark Oliphant & PITP Conference Noosa, January 2006 Guifre Vidal The University of Queenslan

Upload: deanna

Post on 19-Jan-2016

88 views

Category:

Documents


3 download

DESCRIPTION

Frontiers in Quantum Nanoscience A Sir Mark Oliphant & PITP Conference. Entanglement Renormalization. Noosa, January 2006. Guifre Vidal The University of Queensland. Science and Technology of. quantum many-body systems. simulation algorithms. entanglement. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Entanglement Renormalization

Entanglement Renormalization

Frontiers in Quantum NanoscienceA Sir Mark Oliphant & PITP Conference

Noosa, January 2006

Guifre Vidal The University of Queensland

Page 2: Entanglement Renormalization

Introduction

Science and Technology of

quantum many-body

systems

entanglement

Quantum Information Theory

simulation algorithms

Computational Physics

Page 3: Entanglement Renormalization

Outline

•Overview: new simulation algorithms for quantum systems

•Time evolution in 1D quantum lattices (e.g. spin chains)

•Entanglement renormalization

Page 4: Entanglement Renormalization

Recent results

timeDMRG

1D ground state

•White1992

TEBD

1D timeevolution

2003

PEPS

2D•Verstraete•Cirac

2004

Entanglement renormalization

2005

2D

1D

•Hastings •Osborne

(Other tools: mean field, density functional theory, quantum Monte Carlo, positive-P representation...)

Page 5: Entanglement Renormalization

Computational problem

• Simulating N quantum systems on a classical computer seems to be hard

Hilbert Space dimension = 24816

Hilbert Space dimension = 1,267,650,600,228,229,401,496,703,205,376

100N = 10 20 30 40

310 610 910 30101210dim(H) =

“small” system to test2D Heisenberg model (High-T superconductivity)

Page 6: Entanglement Renormalization

problems: solutions:

1

1

1n

n

i i ni i

i i

(i) state

(ii)1

1

1 1

1 1n

n

n n

i ij j n n

j j i i

U U j j i i

evolution

coefficients2n 1 ni i

i1 in…

i1 in…

U

j1 jn…

coefficients22 n 1

1

n

n

i ij jU

• Use a tensor network:

i1 in...i1 in...

(for 1D systemsMPS, DMRG)

• Decompose it into small gates:

(if , with )iHU e [ , 1]s s

s

H h i1 in...

j1 jn...

Page 7: Entanglement Renormalization

simulation of time evolution in 1D quantum lattices (spin chains, fermions, bosons,...)

•efficient update of ' U

'

U

=

operations

22 n

' U

i1 in...

•efficient description of

matrix product state

i1 in...

j1 jn...

Uand

Trotter expansion

Page 8: Entanglement Renormalization

BA

Entanglement & efficient simulations

coefficients2ni1 in…

2( )O n coefficients

tensor network(1D: matrix product state)

i1 in…

1, , 1, ,

1,2i

22coef

111 bap

222 bap

333 bap

bap

•Schmidt decomposition

1, ,

entanglementefficiency

/ 22 ?n

Page 9: Entanglement Renormalization

Entanglement in 1D systems

•Toy model I (non-critical chain):

•Toy model II (critical chain):

correlation length

#2 ( )S const #Snumber of

shared singletsA:B

#2 s pn # log( )S n

Page 10: Entanglement Renormalization

summary:

• non-critical 1D spins coefficientsn 0 ( )O n

• critical 1D spins coefficientsn pn ( )qO n

• arbitrary state spins coefficientsn / 22n ( 2 )nO n

In DMRG, TEBD & PEPS, the amount of entanglement determines the efficiency of the simulation

Entanglement renormalization

disentangle the systemchange of attitude

Page 11: Entanglement Renormalization

Examples:

U U

U

complete disentanglement

no disentanglement

partial disentanglement

Entanglement renormalization

Page 12: Entanglement Renormalization

Multi-scale entanglement renormalization ansatz (MERA)

Entanglement renormalization

Page 13: Entanglement Renormalization

Performance:

DMRG ( )

Entanglement renormalization( )

system size (1D)

greatest achievements in 13 yearsaccording to S. White

first tests at UQ

memory

time

5,000n 1000 days in “big” machine

C, fortran,highly optimized

16,000n 8eff a few hours in this laptop matlab

code

Extension to 2D: work in progress

Page 14: Entanglement Renormalization

Conclusions

•Understanding the structure of entanglement in quantum many-body systems is the key to achieving an efficient simulation in a wide range of problems.

•There are new tools to efficiently simulate quantum lattice systems in 1D, 2D, ...

or simply...