guifre vidal- entanglement renormalization in two spatial dimensions: frustrated antiferromagnets...

35
Erwin Schrodinger Institute (ESI) Thu 13 th Aug 2009 Workshop: Quantum Computation and Quantum Spin Systems Entanglement Renormalization in two spatial dimensions: Guifre Vidal frustrated antiferromagnets and interacting fermions

Upload: imaxsw

Post on 29-Jul-2015

12 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Erwin Schrodinger Institute (ESI) Thu 13th Aug 2009

Workshop: Quantum Computation

and Quantum Spin Systems

Entanglement Renormalizationin two spatial dimensions:

frustrated antiferromagnets

Guifre Vidal

frustrated antiferromagnetsand interacting fermions

Page 2: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Entanglement Renormalization/MERA

Outline

• Quantum Computation

MERA = multi-scale entanglement renormalization ansatz

• Renormalization Group

transformation

• 1D systems • 2D systems

• spin systems(commuting variables)

• fermion systems(anticommuting variables)

Page 3: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Tensor Network representation of a many-body state

1 2

1 2

... 1 21 1 1

...N

N

d d d

GS i i i Ni i i

c i i i= = =

Ψ =∑∑ ∑⋯

1 2 ... N⊗ ⊗ ⊗H H H⋯d

N

1D TTNMPS (1D)

...1i

2i 3iNi

4i

Nd coefficients

1D TTN

PEPS

(2D)1D MERA

MPS (1D)

( )O N coefficients

Page 4: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Disclaimer

• No proofs (actually, no theorems) Merlin and Arthur

• Variational ansatz that is physically motivated (locality, entanglement)

• Numerical/analytical evidence that the MERA approximates ground states well in several particular cases.

• Counter-examples? Sure (but this is not the point)

Page 5: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Entanglement Renormalization/MERA

Outline

• Quantum Computation

MERA = multi-scale entanglement renormalization ansatz

• Renormalization Group

transformation

• 1D systems • 2D systems

• spin systems(commuting variables)

• fermion systems(anticommuting variables)

Page 6: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Tree Tensor Network (TTN)

• coarse-graining transformation:

=w

†w

I*( )ijk ijk

ijk

µ νµνδ=∑w w

'L'Ψ

w

isometry:ijkµw

w

'L

( 2 )L

(1)L

( 0 )L

( )0Ψ

( )1Ψ

( )2Ψ

Page 7: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Tree Tensor Network (TTN)

• quantum circuit:

isometry0 0

unitary=

'L23' 0N⊗Ψ ⊗ 'L

3' 0⊗Ψ ⊗

00 00 00 00 00

( 2 )L

(1)L

( 0 )L

00

0000 00 00 00 00 00 00 00

00 00

000

Ψ

0N⊗

Page 8: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Multi-scale Entanglement Renormalization Ansatz (MERA)

• Entanglement renormalization -- coarse-graining transformation:

'Ψ 'L

=w

†w

Iw

isometry

=u

†u

unitary(disentangler)

u

Vidal, Phys. Rev. Lett. 99, 220405 (2007); ibid 101, 110501 (2008)

Ψ

'Ψ w

u

L

'L

( 2 )L

(1)L

( 0 )L

( )0Ψ

( )1Ψ

( )2Ψ

Page 9: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

′L

L

L

w

u

w

′L

• why do we want disentanglers ?

without disentanglers: with disentanglers:

entangled

sites

unentangled

site

L

L u

Page 10: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Multi-scale Entanglement Renormalization Ansatz (MERA)

• quantum circuit

isometry0 0

unitary=

( 2 )L

(1)L

( 0 )L

0000 00 00 00 00

0000

00

Ψ

0N⊗

Page 11: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Quantum Circuit as a Many-Body Ansatz

Ψ

0N⊗

“generic” quantum circuit ansatz

Ψ

0N⊗

tree quantum circuit ansatz

Page 12: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Quantum Circuit as a Many-Body Ansatz

• Entanglement ?

Ψ

0N⊗

NS ∼entanglement

(1)S O∼entanglement

Ψ

0N⊗

/2 2NNS ∼

entanglemententropy /2 (1)NS O∼

entanglemententropy

Page 13: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Quantum Circuit as a Many-Body Ansatz

Entanglement

Ψ

0N⊗

Ψ

0N⊗

NS ∼ (1)S O∼entanglement entanglement

Ψ

0N⊗

/2 2NNS ∼ /2 (1)NS O∼

entanglemententropy

entanglemententropy

/2 log( )NS N∼entanglemententropy

Page 14: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Quantum Circuit as a Many-Body Ansatz

• Causal cone/cost ?

( )O Nwidth ~ (1)Owidth ~

Ψ

0N⊗

Ψ

0N⊗

exp( )Ncost ~

( )O Nwidth ~

cost ~

(1)Owidth ~

(log )O N

Page 15: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Quantum Circuit as a Many-Body Ansatz

Causal cone

Ψ

0N⊗

Ψ

0N⊗

( )O Nwidth ~ (1)Owidth ~

Ψ

0N⊗

( )O Nexp( )Ncost ~

width ~ (1)Ocost ~

width ~

(1)O

(1)O

cost ~

width ~

(log )O N

Page 16: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Summary: 1D MERA = quantum circuit + small causal cones = variational ansatz

Ψ

0N⊗

• efficient representation parameters4( log )O NχN

log N

• efficient representation parameters4( log )O Nχ(translation invariance)

• efficient simulationcomputational

costs

8( log )O Nχ(translation invariance)

• non-trivially entangled /2 logNS N∼entanglement entropy

• good approximation to ground states, including critical systems

Page 17: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

( 3 )L

( 2 )L

(1)L

( 0 )L

⋯ ⋯

Example: scale invariant MERA

critical exponents

Vidal, Phys. Rev. Lett. 99, 220405 (2007) Vidal, Phys. Rev. Lett. 101, 110501 (2008)Evenbly, Vidal, arXiv:0710.0692 Evenbly, Vidal, arXiv:0801.2449Giovannetti, Montangero, Fazio, Phys. Rev. Lett. 101, 180503 (2008)Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)

Aguado, Vidal, Phys. Rev. Lett. 100, 070404 (2008)Koenig, Reichardt, Vidal, Phys. Rev. B 79, 195123 (2009)

critical systems(1D)

topologically ordered systems

(2D)

OPE, CFT

Page 18: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

1D critical systems

Computation of ground state energy (1D scale invariant MERA)

Evenbly, Vidal, Phys. Rev. B 79, 144108 (2009)

10101010-5-5-5-5

10101010-4-4-4-4

10101010-3-3-3-3

1D MERA, Ground-Energies1D MERA, Ground-Energies1D MERA, Ground-Energies1D MERA, Ground-Energies

Ene

rgy

Err

or,

Ene

rgy

Err

or,

Ene

rgy

Err

or,

Ene

rgy

Err

or,

∆∆ ∆∆EE EE

IsingIsingIsingIsingXXXXXXXXHeisenbergHeisenbergHeisenbergHeisenbergPottsPottsPottsPotts

8888 16161616 24242424 32323232 40404040 48484848 56565656

10101010-9-9-9-9

10101010-8-8-8-8

10101010-7-7-7-7

10101010-6-6-6-6

χχχχ

Ene

rgy

Err

or,

Ene

rgy

Err

or,

Ene

rgy

Err

or,

Ene

rgy

Err

or,

Page 19: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Bulk

1D critical systems

Scaling dimensions/critical exponents

scaling

dimension

scaling

dimension error

0 0 ----

CFT∆MERA∆

(I)

Pfeifer, Evenbly, Vidal, Phys. Rev. A 79(4), 040301(R) (2009)

2

1(0) ( )r

rφ φ ∆∼ 1

x x zr r r

r r

H σ σ σ+= − −∑ ∑Quantum Ising chain

ε

1/ 8

1 1 / 8+

2 1/ 8+2

0

1

0

2

0 0 ----

0.125 0.124997 0.003%

1 0.99993 0.007%

1.125 1.12495 0.005%

1.125 1.12499 0.001%

2 1.99956 0.022%

2 1.99985 0.007%

2 1.99994 0.003%

2 2.00057 0.03%

(I)( )σ( )ε

Page 20: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Entanglement Renormalization/MERA

Outline

• Quantum Computation

MERA = multi-scale entanglement renormalization ansatz

• Renormalization Group

transformation

• 1D systems • 2D systems

• spin systems(commuting variables)

• fermion systems(anticommuting variables)

Page 21: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

1D MERA

2D MERA

w

u

L

'L

2-site causal cone

Evenbly, Vidal, Phys. Rev. B 79, 144108 (2009)

wv uL 'L

2D MERA

2x2-site causal cone

Page 22: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

• efficient representation parameters( log )qO Nχ(translation invariance)

• efficient simulationcomputational

costs

'( log )qO Nχ(translation invariance)

• Entropic area law LxLS L∼entanglement entropy

• good approximation to ground states

2D MERA

Vidal, Phys. Rev. Lett. 101, 110501 (2008)Evenbly, Vidal, arXiv:0710.0692 Evenbly, Vidal, arXiv:0801.2449Cincio, Dziarmaga, Rams, Phys. Rev. Lett. 100, 240603 (2008)Evenbly, Vidal, Phys. Rev. Lett. 102, 180406 (2009)

Aguado, Vidal, Phys. Rev. Lett. 100, 070404 (2008)Koenig, Reichardt, Vidal, Phys. Rev. B 79, 195123 (2009)

Evenbly, Vidal, arXiv:0904.3383

Corboz, Evenbly, Verstraete, Vidal, arXiv:0904.4151Pineda, Barthel, Eisert, arXiv:0905.0669 Corboz, Vidal, arXiv:0907.3184Barthel, Pineda, Eisert, arXiv:0907.3689

topological order(analytical)

scalable simulations

frustrated spins

interacting fermions

• good approximation to ground states

Page 23: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Example: Heisenberg antiferromagnet on Kagome latticeEvenbly, Vidal, arXiv:0904.3383

,i j

i j

H S S= ⋅∑Hamiltonian:

• Favours antiferromagnetic alignment

• Geometrically frustrated

• Ground state?• Ground state?

(Quantum Monte Carlo techniques suffer from sign problem)

Page 24: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Example: Heisenberg antiferromagnet on Kagome lattice

- Valence Bond Crystal ? - Spin Liquid ?

Singh, Huse, Phys. Rev. B 76, 180407 (2007)

series expansion

Marston, Zeng (1991), Syromyatnikov, Maleyev (2002) Nikolic, Senthil (2003), Budnik, Auerbach (2004)

Jiang, Weng, Sheng, Phys. Rev. Lett. 101, 117203 (2008)

DMRG

Ran, Hermele, Lee, Wen, Phys. Rev. Lett. 98, 117205 (2007)

Gutzwiller ansatz

Page 25: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

2D MERA (!!?)

Example: Heisenberg antiferromagnet on Kagome latticeEvenbly, Vidal, arXiv:0904.3383

Page 26: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Example: Heisenberg antiferromagnet on Kagome lattice

MERA solution (infinite lattice with 36-spin unit cell):

Order VBC

0 -0.375

1 -0.375

2 -0.42187

3 -0.42578

Singh, Huse, Phys. Rev. B 76, 180407 (2007)

series expansion

Evenbly, Vidal, arXiv:0904.3383

3 -0.42578

4 -0.43155

5 -0.43208

VBC

8 -0.4298

14 -0.4307

20 -0.4314

26 -0.4319

1-layer MERA

χ-0.420

-0.426

-0.432

-0.423

-0.429

5th4th

3rd

2nd

8χ =14χ =20χ =

26χ =energy

series exp.

MERA

Page 27: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Entanglement Renormalization/MERA

Outline

• Quantum Computation

MERA = multi-scale entanglement renormalization ansatz

• Renormalization Group

transformation

• 1D systems • 2D systems

• spin systems(commuting variables)

• fermion systems(anticommuting variables)

Page 28: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

( 2 )L

(1)L

( 0 )L

0000 00 00 00 00

0000

00

Ψ

0N⊗

Corboz, Evenbly, Verstraete, Vidal, arXiv:0904.4151Corboz, Vidal, arXiv:0907.3184

Pineda, Barthel, Eisert, arXiv:0905.0669 Barthel, Pineda, Eisert, arXiv:0907.3689

( 0 )L

Ψ

quantum wire

1 2 2 1a a a a=Bosons: b =

Fermions:1 2 2 1a a a a= − f = swap

Page 29: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

quantum wire

1 2 2 1a a a a=Bosons:

Fermions: 1 2 2 1a a a a= −

b

f

=

= swap

parity sectors + + + + + − + −( ) ( )V V V+ −≅ ⊕

parity sectors

swap =+ + + +

swap =+ − + −

swap =+ − +−

swap = −−− − −

Page 30: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions
Page 31: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

Benchmark results1) free spinless fermions on 6x6 lattice (periodic BC)

† † † †

,

[ ( )] 2free r s r s r s r rr s r

H c c c c c c c cγ λ= − + −∑ ∑pairing potential

chemical potential

0 0

†( ) r r rC r c c+=0 0r r r+

Page 32: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

Benchmark results

† † † †free

,

[ ( )] 2r s r s r s r rr s r

H c c c c c c c cγ λ= − + −∑ ∑

2) interacting spinless fermions on a 6x6 lattice (PBC)

pairing potential

chemical potential

† †int free

,r r s s

r s

H H V c c c c= + ∑

interaction

Page 33: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

Benchmark results

† † † †free

,

[ ( )] 2r s r s r s r rr s r

H c c c c c c c cγ λ= − + −∑ ∑pairing potential

chemical potential

† †int free

,r r s s

r s

H H V c c c c= + ∑

2) interacting spinless fermions on a 6x6 lattice (PBC)

interaction

† †( ) k kP k c c−=

| ( ) |totk

P P k=∑

pairing amplitude

Page 34: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

Fermionic MERA

† † † †

,

[ ( )] 2free r s r s r s r rr s r

H c c c c c c c cγ λ= − + −∑ ∑pairing potential

chemical potential

3) scalability: free spinless fermions on a LxL lattice (PBC)with L up to 162

Benchmark results

Page 35: Guifre Vidal- Entanglement Renormalization in two spatial dimensions: Frustrated antiferromagnets and interacting fermions

MERA = quantum circuit + small causal cone

Conclusions

• 1D: quantum criticality

• 2D: frustrated antiferromagnetsinteracting fermions

• cost of simulations entanglement

What can be simulated efficiently?