entanglement purificationquantuminformation.physi.uni-heidelberg.de/pic/lec0514.pdf · generalized...

29
Entanglement Purification Lecture Note 4 Jian-Wei Pan

Upload: others

Post on 22-May-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Entanglement Purification

Lecture Note 4

Jian-Wei Pan

Introduction(1)

Both long distance quantum teleportation or global quantum key distribution need to distribute a certain supply of pairs of particles in a maximally entangled state to two distant users.

Introduction(2)

However, distributed qubits will interact with the environment and decoherence will happen.

)(00 0)( tEE tU⎯⎯→⎯ )(11 1

)( tEE tU⎯⎯→⎯

Here , represents the qubit state and represents the environment initial state, is the joint unitary time evolution operator. For arbitrary qubit state:

)(1)(0)10( 1100)(

10 tEtEE tU αααα +⎯⎯→⎯+

2 *0 0 1 1 0

2*1 0 0 1 1

( )q E q E

E Et Tr

E E

α α αρ ρ

α α α+

⎡ ⎤⎢ ⎥= =⎢ ⎥⎣ ⎦

tetEtE Γ−=)()( 10

The off-diagonal element of the qubit density matrix will drop down with the rate , depends on the coupling between qubit and environment.

The maximally entangled state will be in some mixed state with a certain entanglement fidelity due to the process.

)(tΓ

0 1 E)(tU

Introduction(3)

Solution to the decoherence

Quantum Error Correction for Quantum computationQuantum Entanglement Purification for Quantum CommunicationQuantum Communication based on Decoherence Free Subspace

The basic idea of entanglement purification is to extract from a large ensemble of low-fidelity EPR pairs a small sub-ensemble with sufficiently high fidelity EPR pair.

Entanglement Purification----improve purity of any kind of unknown mixed state

Local filtering----improve entanglement quality of known state

Entanglement Concentration---- improve entanglement quality for pure unknown

state

Principle of Entanglement PurificationModel:

Suppose Alice want to share an ensembles of 2-qubit maximally entangled states with Bob via a noise channel. After the transmission, the state has been changed into a general mixed state M, the purity of M can be expressed as .

Several ingredients in the Entanglement Purification:

(1) Bell states: , ;

(2) Werner state: ;

(3) Pauli rotation: , , ;

(4) CNOT gate: ,

2/)( HVVH −=Ψ−

−− ΨΨ= MF

xσ zσyσ

)0110(2

1±=Ψ± )1100(

21

±=Φ±

−−++++−− ΦΦ−

+ΦΦ−

+ΨΨ−

+ΨΨ=3

13

13

1 FFFFWF

yxxyx ⊕→1010

0000

0111

1101

Principle of Entanglement PurificationSteps of Entanglement Purification:

(1) Random Bilateral Pauli Rotation on each photon in the states. This step can change arbitrary mixed state into Werner state:

(2) A Unilateral Rotations converting the states from mostly Werner states to the analogous mostly states, ( maps ) , (3) Bilateral CNOT operations on two photon pairs in the Werner state.

µΦ→Ψ±

−Ψ

−−++++−− ΦΦ−

+ΦΦ−

+ΨΨ−

+ΨΨ=3

13

13

1 FFFFWF

yσ+Φ yσ

[C. Bennett, et al., PRL 76, 772 (1996)]

Bilateral CNOT operations will convert the Bell states as the form:

For example:

F(1-F)/3 Probability, we have TS

++ ΦΨ

TS

TBSBTASATBSBTASATBSBTASATBSBTASA

TBSBTASATBSBTASATBSBTASATBSBTASA

TBTATBTASBSASBSATS

CNOT

CNOTCNOT

++

++

ΨΨ=

+++=

+++=

++=ΦΨ

)1001001101101100(21

)1011000111100100(21

)]1100)(0110[(21)(

Principle of Entanglement Purification

(4) Measuring the target pair in z basis, if the result is parallel, keep the source pair, if not, discard the source pairs. After the protocol, the purity of the source pair has been improved:

If , then2/1>F FF >′

[C. Bennett, et al., PRL 76, 772 (1996)]

Via several this kind processes, we can purify a general mixed state into a highly entangled state.

Experiment of Entanglement Purification

• The theoretical proposal needs a C-Not gate which requires high non-linearities.

• Unluckily, no efficient C-Not gate exists at the moment

A better solution for experiments

[J.-W. Pan et al., Nature 410, 1067 (2001)]

2F

)1( FF −

FF )1( −2)1( F−

abtabs ⟩Φ⋅⟩Φ ++ ||

abtabs ⟩Ψ⋅⟩Φ ++ ||

abtabs ⟩Φ⋅⟩Ψ ++ ||

abtabs ⟩Ψ⋅⟩Ψ ++ ||

Initial State:

Purified State:

||)1(|| ++++ Ψ⟨⟩Ψ−+Φ⟨⟩Φ= ababab FFρ

||)(1|| ++++ Ψ⟨⟩Ψ′−+Φ⟨⟩Φ′=′ ababab FFρ

)2/1 if()(1 22

2

>>−+

=′ FFFF

FF

2211 || baba ⟩Φ⋅⟩Φ ++

)|||(|)|||(|

2222

111121

baba

baba

VVHHVVHH⟩⟩+⟩⟩⋅

⟩⟩+⟩⟩

2121 bbaa HHHH

2121 bbaa VVVV2121 bbaa VHVH

2121 bbaa HVHV

)|||||||(|2

143434343 bbaabbaa VVVVHHHH ⟩⟩⟩⟩+⟩⟩⟩⟩

)|||(|2

1| 333333 bababa VVHH >>+>>=>Φ+

=

Four-fold events No four-fold events

For the first case,

50%

2/2Fprobability of

||)(1|| ++++ Ψ⟨⟩Ψ′−+Φ⟨⟩Φ′=′ ababab FFρ

2211 || baba ⟩Ψ⋅⟩Ψ ++2211 || baba ⟩Ψ⋅⟩Φ ++

2211 || baba ⟩Φ⋅⟩Ψ ++

)|||||||(|2

143434343 bbaabbaa HHVVVVHH ⟩⟩⟩⟩+⟩⟩⟩⟩

)|||(|| 333321

33 bababa HVVH ⟩⟩+⟩⟩=⟩Ψ+

No four-fold events

Similarly,

)2/1if ( >>−+

=′ FFFF

FF 22

2

)(1

In this way…

50%

probability of 2/)1( 2F−

Experimental Realization

[J.-W. Pan et al., Nature 423, 417 (2003)]

4343 bbaa HVHV

4343 bbaa VHVH

Four-fold contribution from double pairs emission

a1b1 contribution

a2b2 contribution

)|||(|2

1| 333333 bababa VVHH >>+>>=>Φ+

[J.-W. Pan et al., Nature 423, 417 (2003)]

To keep the phase stable,

we use the polarization-spatial entanglement

( )( )( )( )

1 1 2 2

3 3 4 4

i

i

H H V V a b e a b

H H e V V a b a b

φ

φ

+ +

→ + +

-150 -100 -50 0 50 100 1500

1000

2000

3000

4000

5000

6000

7000

Two-

fold

coi

ncid

ence

per

sec

ond

Time delay (µm)

0 500 1000 1500 2000 25000

5000

10000

15000

20000

25000

30000

35000

Two-

fold

coi

ncid

ence

per

5 s

econ

ds

Piezo position (nm)

Experimental Result

0.0

0.1

0.2

0.3

0.4

0.5

|V>|H>

|V>|V>

|H>|V>

|H>|H>

Frac

tion

0.0

0.1

0.2

0.3

0.4

0.5

|V>|H>

|V>|V>

|H>|V>

|H>|H>

Frac

tion

0.0

0.1

0.2

0.3

0.4

0.5

|-45o>|+45o>

|-45o>|-45o>

|+45o>|-45o>

|+45o>|+45o>

Frac

tion

0.0

0.1

0.2

0.3

0.4

0.5

|-45o>|+45o>

|-45o>|-45o>

|+45o>|-45o>

|+45o>|+45o>

Frac

tion

Before purification, F=3/4

After purification, F=13/14

[J.-W. Pan et al., Nature 423, 417 (2003)]

Local filtering (Procrustean protocol)

• The purification protocol is such a waste for the photon pair sources.

• When we have known some information of the state, there is some more efficient method to improve the purity.

• For example, ( ) is non-maximally entangled state, can be converted into the maximally entangled state by subjecting one of the qubits to a generalized measurement filtering process: , . This process is called local filtering. It can only be used in known state and can only improve the entanglement degree.

21/)1100( εεε

++=Φ 1≠ε

2/)1100( +=Φ+

00 ε→ 11 →

[P. Kwiat et al., Nature 409, 1014 (2003)]

• Any inseparable two spin-1/2 system Matrices Can Be Distilled to a Singlet Form with local filtering and entanglement purification

• A quantum system is called inseparable if its density matrix cannot be written as a mixture of product states:

Local filtering

[M. Horodecki, et al., PRL 78, 574 (1997)]

[P. Kwiat et al., Nature 409, 1014 (2003)]

Local Filtering and Hidden Non-locality

• For the state sometimes it can not violate Bell inequality. After the Local Filtering process, the state is changed into the state which can violate the Bell inequality.

)(2

)1(, VHVHHVHV +

−+ΦΦ=

λλρ εελε

)(2

)1(12

2

2

VHVHHVHV +−

+ΦΦ+

++ λεελε

[P. Kwiat et al., Nature 409, 1014 (2003)]

[C. H. Bennett et al., Phys. Rev. A 53, 2046 (1996)][Z. Zhao et al., Phys. Rev. A64, 014301 (2001)][T. Yamamoto et al., Phys. Rev. A64, 012304 (2001)]

Entanglement Concentration---Scheme

( ) ( )( ) ( )

( )

( )43214321

43212

43212

43214321

43432121

43432121

3412

21.2

21.2

90

HVHVVHVH

VHHVHVVH

HVHVVHVH

VHHVHVVH

HVVHHVVH

PBS

R

T

+⎯⎯→⎯

++

+=

+⊗+⎯→⎯

+⊗+=

⊗=

αβ

βα

αβ

βαβα

βαβα

ψψψ

Experiment Realization

[Z. Zhao et al, Phys. Rev. Lett. 90, 207901(2003).][T. Yamamoto et al., Nature 421, 343 (2003)]

Due to the noisy quantum channel

photon loss(1) absorption

(2) decoherence degrading entanglement quality

Difficulties in Long-distance Quantum Communication

Solution to problem (1):

Entanglement swapping ![N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002)]

Solution to problem (2):

Entanglement purification![C. H. Bennett et al., Phys. Rev. Lett. 76, 722 (1996)][D. Deutsch et al., Phys. Rev. Lett. 77, 2818 (1996)]

The Kernel Device for Long Distance Quantum Communication

Quantum repeaters:

[H. Briegel et al., Phys. Rev. Lett. 81, 5932(1998)]

Require• entanglement swapping with high precision• entanglement purification with high precision• quantum memory

A proof-in-principle demonstration of a quantum repeater

[Z. Zhao et al, Phys. Rev. Lett. 90, 207901(2003).]

Results for Repeater

3.807.058.204.083.01

±=±=

SV

4.508.043.205.080.02

±=

±=

SV

4.508.042.204.080.02

±=

±=

SV

Standard Deviation

04.093.004.093.004.096.0 ±−−−−−−±−−−−±−Fidelity

Standard DeviationStandard Deviation

[Z. Zhao et al, Phys. Rev. Lett. 90, 207901(2003).]

Drawback in Former Experiments

• Absence of quantum memory

• Probabilistic entangled photon source

• Probabilistic entanglement purification

• Huge photon loss in fiberFree-space entanglement distribution - we are working on 20km and 500km scale…

• Synchronization of independent lasers- we are working on entanglement swapping…

Quantum memory

[T. Yang et al., PRL 96, 110501 (2006)]

Drawback in Former Experiments

• In multi-stage experiments, the cost of resource is proportional to

NPN/ thus not scalable

• If one knows when the photon pair is created and the entangled pair can be stored as demanded, the total cost is then

PN/

P P2/2 P

Another Solution----Quantum Communication based on Decoherence free Subspace

• For special noise, we can utilize some entanglement subspace to directly implement quantum communication.

• For example, the phase flip error channel: ,

• The Bell state , are immune to the noise:

• We can take and , Each state combined by the two basis can be used for decoherence free communication. The subspace is called decoherence free subspace.

[Q. Zhang et al., PRA 73. 030201(R) (2006)][T.-Y. Chen et al., PRL 96, 150504 (2006)]

00 → 11 φie→

+ψ −ψ

2/)0110(2/)0110(2/)0110( +=+→+ ΦΦ iii eee φ

2/)0110(2/)0110(2/)0110( −=−→− ΦΦ iii eee φ

+Ψ=0 −Ψ=1