engineering für die blasformtechnik - 3ds · folie 1 engineering für die blasformtechnik...

18
Dr. Reinold Hagen Stiftung Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen Stiftung, Bonn 2) TREE-Institut Hochschule Bonn-Rhein-Sieg, Sankt Augustin 3) Institut für Mechanik, Otto-von-Guericke-Universität, Magdeburg Patrick Michels 1 Dr. Olaf Bruch 1,2 Bernd Evers-Dietze 2 Esther Ramakers-van Dorp 2 Prof. Dr.-Ing. habil. Holm Altenbach 3 Dr. Reinold Hagen Stiftung Kautexstraße 53 53229 Bonn www.hagen-stiftung.de 3DEXPERIENCE® Conference Darmstadt, 19.-21. November 2019

Upload: others

Post on 18-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 1

ENGINEERING für die Blasformtechnik

Simulation of shrinkage and warpage of extrusion blow molded parts

1) Dr. Reinold Hagen Stiftung, Bonn

2) TREE-Institut Hochschule Bonn-Rhein-Sieg, Sankt Augustin

3) Institut für Mechanik, Otto-von-Guericke-Universität, Magdeburg

Patrick Michels1

Dr. Olaf Bruch1,2

Bernd Evers-Dietze2

Esther Ramakers-van Dorp2

Prof. Dr.-Ing. habil. Holm Altenbach3

Dr. Reinold Hagen Stiftung

Kautexstraße 53 53229 Bonn

www.hagen-stiftung.de

3DEXPERIENCE® Conference

Darmstadt, 19.-21. November 2019

Page 2: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 2

Content

1. Introduction

2. Experimental investigation of the part shrinkage

3. Cooling simulation and shrinkage analysis

4. Results and discussion

5. Summary and outlook

Page 3: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 3

Source: Thielen et al.: Blasformen von Kunststoff-hohlkörpern. Munich : Hanser, 2006 [1]

1. Introduction

1. Parison extrusion

2. Mold closing

3. Inflation

4. Demolding

Packaging

Industrial packaging

Technical parts

Source: www.kautex-group.com/de/ [2]

Page 4: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 4

1. Introduction

o One of the major problems in extrusion blow molding is the prediction of shrinkage and warpage

o Due to increasing quality demands and shorter cycle times, the use of CAE methods is becoming increasingly important

o Even if the current simulation models achieve good results in some cases, the prediction accuracy is still low for some process conditions

o Reasons for this are:

o Strong dependencies on the process conditions

o Missing interfaces between different CAE tools

o Complex time and temperature dependent material behaviour

Source: www.rikutec.de [3]

Objective: Increasing the prediction accuracy of the simulation models through improved material descriptions and improved interoperability between different CAE tools!

Page 5: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 5

2. Experimental investigation of the part shrinkage

Shrinkage Measurement:

1. Measurement: 6 days after production (processing-shrinkage)

2. Measurement: 6 months after production (post-shrinkage)

Test Point Diameter

[mm]

Wall Thickness

[mm]

Cooling

Time [s] Amount

1 60 2 30 4

2 60 2 60 4

3 60 4 60 4

4 60 4 90 4

5 80 2 30 4

6 80 2 60 4

7 80 4 60 4

8 80 4 90 4

Pos.1

Pos.3

Pos.4

Pos.2

Pos.5

Pos.7

Pos.8

Pos.6

Circumference

Measuring points

Fully automated measurement of the part geometry

Comparison with CAD Modell

Page 6: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 6

TP Diameter

[mm]

Thickness

[mm]

Cooling

Time [s]

1 60 2 30

2 60 2 60

3 60 4 60

4 60 4 90

5 80 2 30

6 80 2 60

7 80 4 60

8 80 4 90

o Shrinkage measurements show significant dependencies on the process conditions

o Post shrinkage is very low and therefore negligible

o Shrinkage in circumferential direction is always higher than in axial direction

o This is in agreement with the results of a former research project called RedPro*[4]

* Reduzierung von Prototypen in der Produktion von Blasformkörpern (RedPro)

2. Experimental investigation of the part shrinkage

Anisotropy

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

1 2 3 4 5 6 7 8

shri

nka

ge [

%]

test point

6 days axial 6 months axial 6 days circumferential 6 months circumferential

Page 7: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 7

3. Cooling Simulation and Shrinkage Analysis

Blow Molding Simulation

Cooling Simulation Shrinkage and

Warpage

Wall Thickness

Local Stresses

Local Strains Temperatures

Deformation, Residual Stresses

fu

ll o

r se

qu

en

tial

ly c

ou

ple

d

CFD-Simulation of the cooling

channels

Page 8: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 8

3. Cooling Simulation and Shrinkage Analysis

Heat dissipation in the cooling channels due to forced convection

Heat transfer between mold and ambient air (free convection)

Cooling Simulation in 3-Steps

1. Cooling under form constraint 2. Demolding 3. Cooling under ambient air

Temperature dependent material parameters for density, specific heat capacity and heat conduction according to Kipping [5]

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

Tem

per

atu

re [

°C]

Time [s]

In mold cooling Cooling at ambient air Demolding

Heat transfer part/blowing air

Heat transfer part (inner surface)/ambient air

Heat transfer part/mold

Temperature inner surface Temperature outer surface

Heat transfer part (outer surface)/ambient air

Reheating of the outer surface due to the hotter inner surface

Page 9: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 9

3. Cooling Simulation and Shrinkage Analysis

Temperatures

Step 1: Cooling under form

constraint

Build up of residual stresses

Step 2: Demolding

Free shrinkage

Material Modelling:

• Linear viscoelastic

• Temperature dependent thermal expansion coefficient according to Kipping [5] and Henrichs [6]

Cooling Simulation

Illustration of the general Maxwell-Model

Page 10: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 10

3. Cooling Simulation and Shrinkage Analysis

Circumferential

Extr

usi

on

o Determination of storage modulus via dynamic mechanical analysis (DMA)

o Time-Temperature-Superposition: log(𝛼T) = −𝐶1 𝑇−𝑇ref

𝐶2+ 𝑇−𝑇ref (WLF-Equation)

o Translation (frequency/time) according to Sommer [7]: 𝑓 =1

2π𝑡

o Calibration of the linear viscoelastic general Maxwell Model: 𝐸(𝑡) = 𝐸0 1 − 𝑔𝑗 ∙ 1 − 𝑒−𝑡

𝜏𝑗𝑁𝑗=1

o Temperature dependent thermal expansion coefficient according to Kipping [5] and Henrichs [6]

Page 11: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 11

4. Results and Discussion

o After demolding, the surface temperature was measured at 2 time points

o The first measurement (experimental 1) was carried out 20s after demolding

o The second measurement (experimental 1) was carried out 300s after demolding

o Only 1 part per test point was measured

o TP1 shows the largest deviation

o The biggest uncertainties are the heat transfer coefficients

Page 12: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 12

4. Results and Discussion

o The simulation results of the processing-shrinkage are in good agreement with the experimental results

o However, the results of the post shrinkage deviate significantly

o After 6 months, the shrinkage of TP2 even exceeds the shrinkage of TP4

o In addition, the results are available only at 2 discrete times

o A dynamic measurement immediately after demolding would provide valuable information

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

1 2 3 4

Shri

nka

ge [

%]

Test Point

Experimental axial 6 days

Experimental axial 6 months

Experimental circumferential 6 days

Experimental circumferential 6 months

Simulation 6 days

Simulation 6 months

Page 13: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 13

4. Results and Discussion The VMAP interface standard

Interoperability of Engineering Data within Integrated CAE Workflows

• defined international standard

• integrated import/export and translation tools

• supported by leading software vendors

The VMAP standard and import/export interface tools will provide users with a vendor-neutral methodology of transferring material and engineering data between different CAE software along the whole simulation process chain.

http://vmap.eu.com/

• hybrid modelling of consumer products (Philips) • composite component in aerospace (Convergent) • additive manufacturing (Bosch)

29 Partners from 6 countries The VMAP project will be demonstrated by different manufacturing use cases:

• extrusion blow molding (Rikutec, Hagen Stiftung) • composite light weight vehicles (AUDI, KIT) • injection molding (Bosch)

Page 14: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 14

4. Results and Discussion CAE-Workflow using VMAP

Blow Molding Simulation

Cooling Simulation Shrinkage and

Warpage

Wall Thickness

Local Stresses

Local Strains

Temperatures Deformation, Residual

Stresses

fu

ll o

r se

qu

enti

ally

co

up

led

CFD-Simulation of the cooling

channels

Top-Load-Test

Drop test

Product Simulation

Internal pressure test

Mapping (MpCCI) Own Interface [8]: • Degrees of

stretching • Orientation • Wall thickness

Page 15: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 15

5. Summary and Outlook

o Experimental results show strong dependencies from the process conditions

o Post shrinkage is very low and therefore negligible

o In general, the simulation results are in good agreement with the experimental results

o The results of the cooling simulation still show deviations from the measured values

o Reduced development time through utilization of standard interfaces like VMAP

o Based on the preliminary tests, a new experimental study for the shrinkage determination is planned

o Integration of an orthotropic thermal expansion coefficient is in progress

o Additional Material tests in the frequency (DMA) and time (Creep, Relaxation) domain are planned

o Use of more complex nonlinear viscoelastic-plastic material models like the Parallel Rheological Framework (PRF)

o Application to blow molded parts of complex geometry

Page 16: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 16

Acknowledgement

“VMAP - A new Interface Standard for Integrated Virtual Material Modelling in Manufacturing Industry”

http://vmap.eu.com/

Page 17: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 17

Thank you for your attention!

Page 18: ENGINEERING für die Blasformtechnik - 3DS · Folie 1 ENGINEERING für die Blasformtechnik Simulation of shrinkage and warpage of extrusion blow molded parts 1) Dr. Reinold Hagen

Dr. Reinold Hagen Stiftung

Folie 18

Literature

[1] Thielen, M. ; Hartwig, K. ; Gust, P.: Blasformen von Kunststoffhohlkörpern. Munich: Hanser, 2006

[2] URL: www.kautex-group.com/de/ Access: 20.09.2019

[3] URL: https://www.rikutec.de/geschaeftsfelder/ibc/ Access: 12.11.2019

[4] Geilen, J.: Abschlussbericht Projekt RedPro „Reduzierung von Prototypen in der Produktion von Blasformkörpern“. Bonn-Rhein-Sieg University of Applied Science, 2013

[5] Kipping, A.: Thermomechanische Analyse der Kühlphase beim Extrusionsblasformen von Kunststoffen, PhD Thesis, University of Siegen, Aachen: Shaker, 2004

[6] Henrichs, S.: Untersuchung und Entwicklung neuer Konzepte zur Kühlung von Blasformwerkzeugen, unpublished diploma thesis, University of Siegen, 2004

[7] Sommer, W.: Elastisches Verhalten von Polyvinylchlorid bei statischer und dynamischer Beanspruchung, In: Kolloid-Zeitschrift 167, 2, 1959, pp. 97–131

[8] Michels, P.; Grommes, D.; Oeckerath, A.; Reith, D.; Bruch, O.: An integrative simulation concept for extrusion blow molded plastic bottles, In: Finite Elements in Analysis and Design 164, 2019, pp. 69-78

[9] Michels, P.; Bruch,O.; Evers-Dietze, B.; Ramakers van Dorp, E.; Altenbach, H.: Simulative und experimentelle Bestimmung der Bauteilschwindung von extrusionsblasgeformten Kunststoffhohlkörpern. 14. Magdeburger Maschinenbautage, pp. 198–208, 2019.