enantioselective total synthesis of (+)-salvileucalin b · 01.11.2011  · (+)-salvileucalin b •...

13
Enantioselective Total Synthesis of (+)-Salvileucalin B Leiv, S.; Nani, R. R.; Reisman, S.E. JACS. 2010, ASAP Tropylium Ion Mediated alpha-cyanation of Amines Allen, J. M.; Lambert, T. H. JACS. 2010, ASAP O O O H O O i-Bu 2 N Me H Me BF 4 KCN, MeCN 23 °C, 3 hrs i-Bu 2 N Me CN Me + KBF 4 + H H 81% yield

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Enantioselective Total Synthesis of (+)-Salvileucalin B

    Leiv, S.; Nani, R. R.; Reisman, S.E. JACS. 2010, ASAP

    Tropylium Ion Mediated alpha-cyanation of AminesAllen, J. M.; Lambert, T. H. JACS. 2010, ASAP

    OO

    O

    H

    OO

    i-Bu2NMe

    H

    Me

    BF4–

    KCN, MeCN23 °C, 3 hrs

    i-Bu2NMe

    CN

    Me

    + KBF4

    +

    HH

    81% yield

  • Sarah E. Reisman

    1997 - 2001: B.A. Connecticut College, New London, CT

    2001 - 2006: Ph.D. Yale University (John Wood/Total Synthesis)

    2006 - 2008: NIH Postdoctoral Fellow, Harvard University (Jacobsen, asymmetric catalysis)

    2008 - current: Assistant Professor at Caltech University

    Research Interests

    Natural product synthesis - Emphasis on the development of catalytic asymmetric methods that facilitate the construction of complex molecules.

    Current areas of research - Synthesis of alkaloid natural products, catalytic asymmetric methods for the synthesis of arylated indolines, and the development of catalysts for enantioselective electrophilic chlorination.

  • (+)-Salvileucalin B

    • Isolated in 2008 by Takeya and co-workers from Salvia leucantha

    • Exhibits cytotoxicity again A459 (Human Lung) and HT-29 (Human Colon) cells with IC50 of 5.23 and 1.88 µg/mL

    • Norcaradiene core embedded within a caged polycyclic skeleton

    • Five stereogenic centers, with 3 all carbon quaternary centers

    • First reported enantioselective total synthesis

    • The key step involves a intramolecular copper catalyzed arene cyclopropanation •18 steps longest linear sequence

    OO

    O

    H

    OO

    OO

    O

    H

    OO

    OO

    O

    H

    OO

  • Retrosynthetic Approach to (+)-Salvileucalin B

    OO

    O

    H

    OO

    salvileucalin B

    O

    O

    H

    OO

    IntramolecularArene

    CyclopropanationO

    O

    H

    O

    N2

    CN

    O

    H*R

    O O

    Metal-CatalyzedCycloisomerization

    *R

    O

    TMS

    +OTBS

    +O

    OHC

  • Construction of TriyneO

    H*R

    O O

    O

    *R

    TMSO

    O

    H

    TBSO

    Me2Zn,8 (40 mol %)PhMe, 70 °C;

    3-furaldehyde0 °C to 23 °C 85 % yield

    O

    NH

    Me

    PhOH

    Ph

    8

    TBSO

    OH

    O

    93% ee

    1) NaH, DMF, 23 °C2) 1M HCl, MeOH

    Br

    3) MsCl, Et3N, THF, 23 °C, then LiBr 80% yield, 3 steps

    Br

    O

    O

    LHMDS, LiCl,THF, –78 °C to 23 °C;

    NMe

    O

    TMS

    Me

    OH

    Ph

    then , –78 °C 90% yield

    O

    NMeMe

    PhOH

    TMS

    O

    O> 10: 1 dr

  • Synthesis of (+)-Salvileucalin B

    O

    *R

    TMSO

    O

    H

    1) TBAF, DCM, 23 °C2) RuCp*(Cod)Cl (8 mol %), DCM, 45 °C3) n-Bu4NOH, t-BuOH/H2O, 90 °C 74% yield, 3 steps

    O

    O

    H

    HO2C

    1) (COCl)2, cat. DMF then CH2N2, THF

    2) AgTFA, MeOH, Et3N THF, —30 °C to 23 °C 69% yield, 2 steps

    O

    O

    H

    CO2Me

    Arndt—Eistert homologation

    1) NaCH2CN THF, –78 °C to 23 °C2) (imid)SO2N3, pyr 78% yield, 2 steps

    O

    O

    H

    O

    N2

    CN

    O

    O

    H

    CNO

    Cu(hfacac)2(10 mol %)

    DCM, 120 °Cµwave, 1 min

    65% yield

    O

    F3C CF3

    O

    hexafluoroacetylacetonate

    NaHMDS, –78 °C;then Tf2NPh

    90% yield

    O

    O

    H

    CNOTf

  • Continued Synthesis of (+)-Salvileucalin B

    O

    O

    H

    CNOTf

    DIBALDCM, –40 °C;then aq. AcOH

    O

    O

    H

    OTf

    O

    H

    retro-Claisenrearrangment

    O

    O

    H

    OTf

    O

    H

    DIBALDCM, –40 °C;then aq. AcOH57% yield, 2 steps

    O

    O

    H

    OTf OH

    Pd2(dba)3 (5 mol %)dppf (10 mol %), CO

    DIPEA, THF, 23 °C98% yield

    O

    O

    H

    OO

    CrO3,

    DCM, —35 °C51% yield

    NNH

    Me

    MeO

    O

    H

    OO

    O

    O

    O

    H

    OO

    O

    H1:2 ratio

  • Tristan H. Lambert

    1994 - 1998: B.S. University of Wisconsin at Platteville; Dwight Klaassen

    1998 - 2004: Ph.D. UC-Berkeley and Caltech (David MacMillan/Methodology)

    2004 - 2006: NIH Postdoctoral Fellow, Sloan-Kettering Cancer Center; (Danishefky, total synthesis)

    2006 - current: Assistant Professor at Columbia University

    Research InterestsAromatic Ions - The use of aromatic ions as catalysts/promoters for new synthetic methodologies

    Multicatalysis - The use of catalysis to assemble complex molecules in a single pot.

    Reaction Design - new transition metal catalyzed cycloadditions

  • Iminium Ion in Synthesis

    • Traditional carbonyl-amine condensations are limited in terms of scope

    • Iminium ion formation by amine oxidation typically carried out under harsh conditions (transition metals, DDQ, PhI(OAc)2, or singlet oxygen).

    • Trityl and tropylium ions are known to oxidize amines by hydride abstraction; synthetic utility under explored.

    • Tropylium ion - 6π electron aromatic cation, shelf stable, commercially available

    NRR

    R1

    Nu— N RR

    R1 Nu

    H

    BF4

    i-Bu2NMe

    H

    Me MeCN23 °C, 30 min

    i-Bu2NMe

    Me

    b.p. = 116 °C

    +

    HH

    100% conv.

    BF4

  • Alpha-cyanation of Amines

    i-Bu2NMe

    H

    Me

    BF4–

    KCN, MeCN23 °C, 3 hrs

    i-Bu2NMe

    CN

    Me

    + KBF4

    +

    HH

    81% yield

    KCN added before oxidation

    BF4– KCNHNC

    Not observed

    i-Bu2NMe

    H

    Me

    BF4–

    KCN, MeCN18-crown-623 °C, 3 hrs

    No oxidation observed

    i-Bu2NMe

    H

    Me

    BF4–

    TMSCN, MeCN23 °C, 3 hrs

    No oxidation observed

    Key is low solubility of KCN

    in MeCN

  • Substrate Scope

    R1N

    R2R3

    BF4–

    KCN, MeCN

    R1N

    R2R3

    CN

    N

    Me

    CN

    80 °C, 12 h71% yield

    Me

    MeMe

    N

    N

    H

    H

    CN

    23 °C, 3 h90% yield1 g scale

    N

    i-Bu Me

    Me

    23 °C, 0.25 h73% yield

    CNBn

    N

    Bn

    80 °C, 12 h42% yield

    CN

    Ni-Bu Me

    Me

    120 °C, 12 h78% yield

    5.9:1 regioselectivity

    CN

    Ni-Bu Me

    Me

    120 °C, 12 h77% yield

    > 20:1 regioselectivity

    CN

    O2N

    Ni-Bu Me

    Me

    100 °C, 12 h43% yield

    3.7:1 regioselectivity

    CN

    MeO

  • Proposed Mechanistic Pathway

    N

    R

    RH

    R

    hydridetransfer

    Tp+BF4—

    HH

    N

    R

    R

    R

    N

    R

    RH

    R

    electrontransfer

    N

    i-Bu Me

    Me

    H

    R+

    • electron donor-acceptor complex

    • might explain poor benzylic oxidations

  • One Final Transformation

    NH

    Ph

    Ph

    secondary amine

    BF4–

    120 °C MeCN NPhPh 73% yield

    oxidativeaza-cope

    rearrangement

    Steric ecumbrance by the gem-diphenyl group prevents alkylation of secondary amine