empirical antenna array optimization · zsynthesis of “on-the-vehicle” performance optimization...

20
Copyright © 2004-2005 Hutt Systems, Inc. Optimization of the Onboard Performance of Antenna Arrays Using The Empirical Optimization Algorithm as Implemented in the EmpOp™ Program Stephen Jon Blank Michael F. Hutt Hutt Systems, Inc.

Upload: others

Post on 03-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Optimization of the Onboard Performance of

Antenna Arrays Using

The Empirical Optimization Algorithm as Implemented

in the EmpOp™ Program

Stephen Jon BlankMichael F. Hutt

Hutt Systems, Inc.

Page 2: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Empirical Optimization of Antenna Arrays, The EmpOp™ Program

Iterative ‘on-the-vehicle’ performance optimization that accounts for electromagnetic coupling and scattering. Based on ‘in-situ’ measured or computed element pattern data.

Synthesis of optimum element excitations and spacings, including conformal and thinned array configurations.

Numerical optimum search to minimize normed difference between actual pattern and specified desired pattern. Applicable to:

• Minimization of max sidelobe• Minimization of sidelobe power• Shaped beam synthesis• Maximization of scan angle/bandwidth product• Optimization of Sum/Difference patterns

Applicable to adaptive array systems and maximization of SNR.

Page 3: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Antenna Configuration

φ

θ

ap

rp

Antenna Element

Far-Field

φ' = (θ,φ)

r (φ')

Page 4: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

The Antenna Array Problem

Array field pattern:

a = (a1, a2,… aN) = vector of element excitationsr = (r1, r2,… rN) = vector of element locationsh = (h1, h2,… hN) = vector of element ‘in-situ’ field patternsΦ’ = observation angle (θ,Φ)Φ’s = scan angle (θs,Φs)

E φ' a, r,( )1

N

n

hn φ' r,( ) an⋅ ej

2 π⋅

λ⋅ r n⋅ u φ'( ) u φ' s( )−( )

⋅∑=

:=

Page 5: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

The Antenna Array Problem...

Normalized array power patternP(Φ’,a,r) = E(Φ’,a,r) Ẽ(Φ’,a,r)/ E(Φ0’,a,r) Ẽ(Φ0’,a,r)

Performance OptimizationFind min || P(Φ’,v) - PD(Φ’) ||

v

v = (v1, v2 … vN) = vector of variable element excitations and/or element locations.

Page 6: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Array Performance Optimization

Find min || P(Φ’,v) - PD(Φ’) || → v*vv = (v1, v2 … vN) = vector of variable element excitations and/or element locations.

PD(Φ’) = desired array power pattern.

v* = optimum vector of element excitations and/or element locations.

Page 7: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Performance Function Optimization

Find min || P(Φ’,v) - PD(Φ’) || v

The choice of function norm depends on the specific array performance desired.

For minimization of the maximum array pattern sidelobe, the max norm is used, i.e.,

Find min max P(Φ’,v) v Φ’1 < Φ’ < Φ’2

where Φ’1 < Φ’ < Φ’2 defines the sidelobe region in angular space, and PD(Φ’)=0.

Page 8: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Minimize Max Sidelobe

0 60 120 18030

20

10

0

P φ( )

φ 57.3⋅

SLmax=-12.7 dB at φ=66 degrees

Page 9: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Minimize Sidelobe Power

To minimize the power in the sidelobe region:

Find min ∑ P(Φ’,v) v Φ’1 < Φ’ < Φ’2

0 60 120 1800

0.33

0.67

1

E φ'( )

E φt( )

φ' 57.3⋅ φt 57.3⋅,

SLpower=Σ P(fi)

Page 10: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Shaped Beam Synthesis

For min-max shaped beam synthesis, the criterion statement would be:

Find min max | P(Φ’,v) - PD(Φ’) | v Φ’1 < Φ’ < Φ’2

where Φ’1 < Φ’ < Φ’2 defines the region in angular space where it is desired to synthesize the pattern PD(Φ’).

1 0.33 0.33 10

0.33

0.67

11

0

E u( )

csc2 u( )

11− u

Page 11: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Finding Element Excitation From Given Array Pattern Data

0 20 40 60 80 100 120 140 160 18040

36

32

28

24

20

16

12

8

4

00

40−

empopInitial 1⟨ ⟩

empopFinal 1⟨ ⟩

desiredPattern 1⟨ ⟩

1800 empopInitial 0⟨ ⟩

Page 12: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Example 1

Page 13: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Example 2

Page 14: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Example 3

Page 15: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Example 4

Page 16: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Example 5

Page 17: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Sum/Difference Pattern Optimization

Application to monopulse radar performance optimization.

Performance objective example:Determine the optimum array parameters that will ensure that the difference pattern sidelobe level not exceed the sum pattern sidelobe level, as the pattern is scanned ±45°.

Page 18: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Monopulse Array System Block Diagram

. . . . . .

36 Radiating Elements

36 Element-to-Phase Shifter Cables

36 Phase Shifters

36 Phase Shifter-to-Power Divider Cables

18-Way Power Divider 18-Way Power Divider

180° Hybrid Junction

2 Power Divider-to-Hybrid Junction Cables

Sum Port Difference Port

Page 19: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Array Sum and Difference Patterns

100 80 60 40 20 0 20 40 60 80 10040

30

20

10

00

40−

P sum θ( ) P sum θ s( )−

P diff θ( ) P sum θ s( )−

9090−θ

180

π⋅

100 80 60 40 20 0 20 40 60 80 10040

30

20

10

07.105− 10 14−×

40−

P' sum θ( ) P' sum θ s( )−

P' diff θ( ) P' sum θ s( )−

9090−θ

180

π⋅

100 80 60 40 20 0 20 40 60 80 10020

10

0

10

20

30

40

5045.032

20−

R θ( )

R' θ( )

9090−θ

180

π⋅

OptimizedInitial

Ratio

Page 20: Empirical Antenna Array Optimization · zSynthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering

Copyright © 2004-2005 Hutt Systems, Inc.

Applications of EmpOp™

Synthesis of “on-the-vehicle” performance optimization of antenna arrays using EmpOp™ in conjunction with NEC to account for scattering and coupling between the array elements and the nearby structure.

Determination of array excitations from measured pattern data.

Optimization of array performance over a range of scan angles and frequency bandwidth.

Synthesis of optimum element excitations and spacings, including conformal and thinned array configurations.