elie wind farm interconnection facilities study on the 34.5 kv bus. the turbine b wind turbines have...

76
Elie Wind Farm Interconnection Facilities Study Performed by: Manitoba Hydro System Planning Department Project Leader: David Jacobson, P.Eng. Principal Contributors: Rebecca Brandt, P.Eng (Transgrid Solutions Inc.) Gerry Lane Glenn Evans Brent Jorowski Mike Wonsiak Jeff Laninga May 2006

Upload: duongxuyen

Post on 30-May-2018

212 views

Category:

Documents


0 download

TRANSCRIPT

Elie Wind Farm Interconnection Facilities Study

Performed by:

Manitoba Hydro System Planning Department

Project Leader: David Jacobson, P.Eng.

Principal Contributors: Rebecca Brandt, P.Eng

(Transgrid Solutions Inc.) Gerry Lane Glenn Evans

Brent Jorowski Mike Wonsiak Jeff Laninga

May 2006

ii

Executive Summary An Interconnection Facilities Study (IFS) has been performed to determine the Manitoba Hydro Interconnection Facilities and Interconnection System and Network Upgrades necessary to connect 99 MW of wind generation near the town of Elie, Manitoba from the point designated for the location of the generation facility. Two options for interconnection were considered. Option A: the 99 MW Elie wind farm would tap 230 kV line D12C approximately 30 km from Dorsey and sectionalize the line with a three-breaker ring bus. Option B: the 99 MW Elie wind farm would advance the 30 km Dorsey-Elie section of a planned new 230 kV Dorsey-Portage line. The new Dorsey-Portage line would be tapped at Elie via a single 230 kV breaker, creating a three-terminal line when the remaining Elie-Portage line is built. AC contingency analysis was performed for N-1 and N-2 contingencies during system intact conditions, and N-1 contingencies during critical 230 kV prior outages. There were no N-1 thermal overloads impacted by the Elie wind farm that required further investigation. Therefore no Network Upgrades or Interconnection System Upgrades are required. The Manitoba Hydro Transmission System Interconnection Requirements (TSIR) [1] state that the Generator must provide reactive supply that is able to control the voltage level at the Elie 230 kV bus by adjusting the Machine’s power factor between a minimum of 0.95 overexcited and 0.95 underexcited at the generator intermediate bus with a minimum response time of 15 seconds. The Turbine A wind turbines would need additional VAR support in the form of 3x10 MVAr switched capacitors plus an 8 MVAr STATCOM on the 34.5 kV bus. The Turbine B wind turbines have a reactive supply range from 0.9 lagging to 0.95 leading and do not require any additional equipment. In order for the wind turbines to remain connected during transient undervoltages, a wind turbine with fault ride-through capability must be installed. Both the Turbine A turbine and Turbine B turbine (with Turbine B Low Voltage Ride-through option II) have adequate fault ride-through capability. It should be noted that a 230-34.5 kV transformer with a minimum 7.5% impedance is needed to ensure the voltage at the generator buses remain above 0.15 pu during a solid Elie 230 kV fault in order to ride through the fault. In order to remain connected during the worst-case transient overvoltages and undervoltages, to meet the Manitoba Hydro transient undervoltage criteria, and also to ensure acceptable steady state operating voltages at the generator bus, the Turbine A turbines must install a 230-34.5 kV transformer with an on-load tap changer (OLTC), capable of controlling the 34.5 kV bus voltage to 1.0 pu + 0.02 pu for Option A and to 0.97 + 0.02 pu for Option B. The Turbine B turbines are able to ride through the worst-case transient overvoltages and undervoltages without any extra equipment. During critical 230 kV outages, the generator has opted for curtailment rather than paying for additional line upgrades. For Option A, this could result in wind farm curtailment for a prior outage of 230 kV line G37C or D54C when no Brandon generation is on-line to

iii

prevent potential overloading of 230 kV line D12C following the loss of line D54C or G37C respectively. Otherwise, Brandon generation could be increased to off-load line D12C in this situation. The Turbine A turbines and the Turbine B turbines do not require any curtailment of wind farm power output for transient stability reasons. The overfrequency and underfrequency capabilities of the Turbine A and Turbine B wind turbines meet the Manitoba Hydro connection standards. A detailed cost estimate of the Manitoba Hydro Interconnection Facilities necessary to connect a 99 MW Elie wind farm via Option A and Option B were calculated. These total costs were estimated to be $13,009,000 for Option A and $12,681,500 for Option B. A detailed project schedule was also created, with a preliminary estimated time to in-service date of 2.5 years after the IOA has been finalized. The final project schedule will be inserted into Appendix D when completed.

iv

Table of Contents

Executive Summary ii Table of Contents iv 1.0 Introduction 1 1.1 Background Information 1 1.2 Objectives 1 1.3 MH Technical Requirements for Generator Interconnection 1 2.0 Interconnection System and Network Upgrades 2 2.1 Steady State Analysis 3 2.1.1 Study Power Flow Models 3 2.1.2 Contingencies 4 2.2 Planning Criteria – Transmission Line Overloads 5 2.3 Mitigation for Reliability Limitations 5 2.3.1 System Intact: N-1 Contingencies 5 2.3.2 System Intact: N-2 Contingencies 6 2.3.2.1 Brandon to Victoria 110 kV line BE3 6 2.3.3 Critical 230 kV Prior Outages: N-1 Contingencies 6 2.3.4 Steady State Voltage Violations 6 2.4 Summary of Equipment Upgrades and Associated Costs 7 3.0 Constrained Interface Analysis 8 4.0 Wind Turbine Models 9 4.1 Turbine A 1.65 MW 60 Hz 9 4.2 Turbine B 1.5 MW 60 Hz 9 4.3 Important Note Regarding Transformer Impedance 10 5.0 Frequency, Voltage and Reactive Power Requirements 11 5.1 Turbine Overfrequency/Underfrequency Ride-Through Capability 11 5.1.1 Turbine A 11 5.1.2 Turbine B 11 5.2 Turbine Overvoltage/Undervoltage Ride-Through Capability 12 5.2.1 Turbine A 12 5.2.2 Turbine B 13 5.3 Reactive Power Requirements 14 5.3.1 Turbine A 14 5.3.2 Turbine B 14 6.0 Stability Investigation 15 6.1.1 Study Stability Models 15 6.1.2 Disturbances 15

v

6.2 Underfrequency Ride-Through Test 16 6.2.1 Turbine A 16 6.2.2 Turbine B 16 6.3 Overvoltage Ride-Through Test 16 6.3.1 Turbine A 16 6.3.2 Turbine B 17 6.4 Undervoltage Ride-Through Test 17 6.4.1 Turbine A 18 6.4.2 Turbine B 18 6.5 System Intact with Local N-1 Contingencies 18 6.5.1.1 Turbine A 19 6.5.1.2 Turbine B 19 6.6 System Intact with Local N-2 Contingencies 19 6.7 Critical 230 kV Prior Outages with Local N-1 Contingencies 19 6.7.1 Turbine A 20 6.7.2 Turbine B 20 7.0 Wind Farm Voltage Control Equipment and Special Protection Schemes 21 7.1 Turbine A 21 7.2 Turbine B 21 8.0 Voltage Quality Analysis 22 8.1 Introduction 22 8.2 Study Criteria 23 8.3 Procedure for Assessment of Voltage Quality 24 8.3.1 Voltage Flicker during Continuous Operation 24 8.3.2 Voltage Flicker during Switching Operations 25 8.3.3 Voltage Fluctuations 26 8.4 Turbine A 26 8.5 Turbine B 26 9.0 Elie kV Fault Levels 27 10.0 Manitoba Hydro Interconnection Facilities Cost Estimates 28 11.0 References 30 Appendices Appendix A: Cost Estimate Assumptions Appendix B: MH Interconnection Facilities Single Line Diagram Appendix C: Reference to MH Transmission System Interconnection Requirements as

determined by Interconnection Studies Appendix D: Project Schedule Appendix E: Stability Plots Appendix F: ACCC Results – Thermal Overloads Impacted with OTDF > 2% Appendix G: Post-Disturbance Powerflow Diagram

1

1.0 Introduction 1.1 Background Information This report documents the results of an Interconnection Facility Study for a 99 MW Elie wind farm, located approximately 30 km west along 230 kV line D12C from the Dorsey 230 kV station. The Manitoba Hydro Interconnection Facilities will be determined for a wind farm size of 99 MW. The preliminary estimated time to in-service date is 2.5 years after the IOA has been finalized. The final project schedule will be inserted into Appendix D when completed. Two options for interconnection were considered. Option A: the 99 MW Elie wind farm would tap 230 kV line D12C approximately 30 km from Dorsey and sectionalize the line with a three-breaker ring bus. A direct connection to the new Elie 230 kV station bus will be made via a 1.0 km 230 kV line. Option B: the 99 MW Elie wind farm would advance the 30 km Dorsey-Elie section of the planned 230 kV Dorsey-Portage line. The planned Dorsey-Portage line would be tapped at Elie via a single 230 kV breaker, creating a three-terminal line. Appendix B provides single line diagrams of the major Manitoba Hydro Interconnection Facilities required to connect the wind farm via both options. Manitoba Hydro Interconnection Facilities cost estimates for both options are provided in Section 11.0. The assumptions behind the cost estimates are provided in Appendix A. 1.2 Objectives The Interconnection Facilities Study objectives are to:

• address the system reliability limitations • determine a good faith cost estimate of all the interconnection facilities • determine a good faith construction schedule estimate • determine special protection requirements (e.g. breaker fail, generator cross trip) • determine communication requirements • satisfy any requirements of the Regional Transmission Authority

1.3 MH Technical Requirements for Generator Interconnection Please refer to Appendix C for additional technical requirements not discussed in the body of the report.

2

2.0 Interconnection System and Network Upgrades There are two types of Interconnection Services available:

1. Energy Resource Interconnection Service (ERIS) As stated in the Manitoba Hydro Open Access Interconnection Tariff (OAIT), “ERIS allows the Generator to connect the Facility to the System and be eligible to deliver the Facility’s output using the existing firm or non-firm capacity of the Transmission System on an “as available” basis. ERIS does not in and of itself convey any right to deliver electricity to any specific customer or Point of Delivery.” ERIS requires Interconnection Facilities and Interconnection System Upgrades, but not Network Upgrades.

2. Network Resource Interconnection Service (NRIS) As stated in the Manitoba Hydro Open Access Interconnection Tariff (OAIT), “NRIS allows the Generator’s Facility to be designated as a Network Resource, up to the Facility’s full output, on the same basis as existing Network Resources interconnected to Manitoba Hydro’s System. NRIS in and of itself does not convey any right to deliver electricity to any specific customer or Point of Delivery.” NRIS requires Interconnection Facilities, Interconnection System Upgrades and Network Upgrades.

Interconnection System Upgrades are the minimum necessary upgrades required to interconnect to the MH system and meet reliability criteria. A redispatch to the nearest existing Manitoba Hydro network resource is used as a test for Interconnection System Upgrades. For Elie, the nearest MH network resource is Dorsey. Where a facility is overloaded, dynamic line rating equipment could be installed to allow the operators to send a timely MW curtailment level to the plant. Network Upgrades are the upgrades required when the Manitoba Hydro Transmission System is studied at peak load, and other load levels deemed appropriate by Manitoba Hydro, under a variety of severely stressed conditions, to determine whether, with the Facility at full output, the aggregate of generation in Manitoba can be delivered to the aggregate load on the transmission system, consistent with Manitoba Hydro’s reliability criteria and procedures. In other words, it is necessary to be able to redispatch to all generators and load without requiring pre-contingency curtailment or violating post-contingency voltage and loading criteria. A generation crosstrip scheme may be considered as an alternative to new lines or reconductoring if the special protection system (SPS) is made fully redundant and the crosstrip amount is less than Manitoba Hydro’s operating reserves. Interconnection System Upgrades and Network Upgrades are separately identified. The Generator has requested that the 99 MW wind farm be considered a Manitoba Hydro network resource. As a network resource, the impacts of scheduling to generation within Manitoba were evaluated.

3

2.1 Steady State Analysis 2.1.1 Study Power Flow Models Steady state post-disturbance analysis was performed using the following 2004 series MAPP base case loadflows: A. 2009 summer peak – Existing firm generation plus queued generation at Pine Falls (5

MW), Great Falls (4 MW), Brandon (122 MW), and Kelsey (33 MW). B. 2014 summer peak – Existing firm generation plus queued generation noted above

plus Wuskwatim (200 MW) and associated transmission (Birchtree-Wuskwatim, Wuskwatim-Herblet Lake, Herblet Lake-Ralls Is., Dauphin-Neepawa).

Sensitivity analysis to Manitoba Hydro Export (MHEX) and North Dakota Export (NDEX) was performed. Four combinations of MHEX and NDEX were studied for both of the above 2009 and 2014 base cases: a. MHEX = 2175, NDEX = 1950 b. MHEX = 2175, NDEX = 300 c. MHEX = -900, NDEX = 1950 d. MHEX = -900, NDEX = 300 Sensitivity analysis to Brandon and Selkirk generation, as well as Lena wind generation, was also performed for the worst cases. The generation level in the MHEX 2175 MW summer peak cases were adjusted to the maximum accredited level less 55 MW to meet Manitoba’s regulating reserve requirements. MH is delivering firm and non-firm power sales on the tie lines as well as the MAPP reserve obligation. According to the position of Pembina Hills in the MH generator interconnection queue, the following future generation was included in the analysis;

• Brandon – 122 MW • Pine Falls – 6 MW • Kelsey – 33 MW • St. Leon Wind – 99 MW • Pembina Hills Wind – 99 MW

Table 1 summarizes the output from each generator in the maximum generation case at maximum Manitoba-US export of 2175 MW, and also at the maximum Manitoba-US import of 900 MW. The associated transmission upgrades for the queued generation are included in the analysis.

4

Table 1: Maximum Accredited Capability of MH Generation

Generation Plant Accredited Value (MW)

PSS/E summer peak (MW) – 2175 export

PSS/E summer peak (MW) - 900 import

Limestone 1348.7 1321 483 Long Spruce 1030.6 1013 371 Kettle 1233.1 1180.5 419 Jenpeg 168 139.8 139.8 Kelsey 237.6 237.6 + 33 215 Grand Rapids 480.0 480.0 118.2 Pine Falls 89.6 89.6 + 6 55.6 McArthur Falls 56.5 56.5 34.0 Great Falls 131.6 131.6 75.7 Seven Sisters 165.4 165.4 81.0 Slave Falls 68.0 68.0 33.0 Pointe du Bois 78.8 78.8 51.6 Brandon 386.5 386.5 + 122 0.0 Selkirk 145 45.0 0.0 St. Leon Wind To be determined! 99 99 Pembina Hills Wind*

To be determined! 99 99

Total 5644.4 5752.3 2274.9 *Pembina Hills Network Upgrades on lines CB1, CB42 and BE3 are assumed to be going in to service. 2.1.2 Contingencies The following contingencies were studied using PSS/E activity ACCC (AC contingency analysis): System Intact: • N-1 contingencies for all transmission lines and transformers 110 kV and above

within Manitoba including tie lines. • N-2 contingencies for all 110 kV and above double-circuit outages in Manitoba and

breaker fail outages approximately two buses back from the Elie station (i.e. at Dorsey, Glenboro and Letellier)

Prior Outages (including D12C Dorsey-Elie, D12C Elie-Cornwallis, D14S, S53G, S60L, Y51L, G37C, D12C, D54C, C28R): • N-1 contingencies for all transmission lines and transformers 110 kV and above

within Manitoba including tie lines. System Intact analysis was assessed with Pembina Hills wind generation scheduled to each of the following sinks:

1. Grand Rapids generation (AGC plant) 2. Dorsey DC generation (AGC plant)

5

Prior Outage analysis was assessed with Pembina Hills wind generation scheduled to the following sink:

1. Dorsey DC generation (AGC plant) Facilities identified in the post-disturbance analysis were flagged if loading exceeded 100% and the system intact power flow or contingency power flow resulted in a power transfer distribution factor (PTDF) or an outage transfer distribution factor (OTDF) greater than 2%, respectively. Branch loadings were monitored using Rate A for normal conditions and Rate C following a contingency. Bus voltages lower than 0.90 pu were flagged. Mitigation is required for overloads in which the wind generation has a PTDF greater than or equal to 5% or an OTDF greater than or equal to 3% [8]-[12]. 2.2 Planning Criteria – Transmission Line Overloads Manitoba Hydro thermal loading criteria does not allow short-term overload for single contingency (category B) events. A short-term overload of up to 115% may be allowed for multiple contingency events (Category C such as double circuit common tower outages) on a case-by-case basis. If a short-term overload rating is applied, it is necessary to be able to reduce the loading to within the steady state thermal rating within 30 minutes of the overload occurrence. If the overloaded segment of a transmission line is station equipment rather than the line conductor, the overload capability for that piece of equipment will be individually assessed. Transformers are considered to have a 30-minute 119% Rate A summer overload rating. 2.3 Mitigation for Reliability Limitations Several thermal overloads were identified through AC contingency analysis that required detailed investigation. N-1 and N-2 contingencies were studied for system intact conditions. N-1 contingencies were also studied for critical 230 kV prior outages. The following sections provide details on the worst-case overloads for which the wind generator ODTF is 3% or greater. These overloads require mitigation. For information purposes, please refer to Appendix F for a list of all thermal overloads with PTDFs and OTDFs greater than or equal to 2%. Voltage violation impacts of 1% or greater are also listed. 2.3.1 System Intact: N-1 Contingencies There are no impacted overloads for which the Generator is responsible to provide mitigation for either connection Options A or B.

6

2.3.2 System Intact: N-2 Contingencies 2.3.2.1 Brandon to Victoria 110 kV line BE3

Loading (%Rate C) Contingency No Wind 99 MW Wind

PTDF (%)

Year MHEX NDEX Sink

BE1+BE2 118.8 121.8 3.8 2009 wp 1513 381 Grd Rpds There is currently a ground survey planned for summer 2006 to assess the thermal rating of line BE3. Appropriate mitigation action will be taken once the assessment is complete. For now, the BE3 overloads are being accepted. There are also plans to upgrade line BE3 to an approximate rating of 120.8 MVA summer and 157.8 MVA winter, which will be sufficient to mitigate these overloads. 2.3.3 Critical 230 kV Prior Outages: N-1 Contingencies For overloads that are impacted by the wind generation during prior outage conditions, the Generator has requested to be curtailed as necessary to prevent the overload from occurring, rather than implementing line/equipment upgrades. Critical 230 kV outages studied included lines D14S from Dorsey to St. Leon, S53G from St. Leon to Glenboro, S60L from St. Leon to Letellier, Y51L from Laverendrye to Letellier, G37C from Glenboro to Cornwallis, D12C from Dorsey to Elie, D12C from Elie to Cornwallis, D54C from Dorsey to Neepawa to Cornwallis, and C28R from Cornwallis to Reston. For a complete list of prior outage overloads impacted by a minimum of 2%, please refer to Appendix F. Table 2 lists the worst-case prior outage contingency overloads that have a minimum PTDF of 2%.

Table 2. Year 2009 Prior Outage (PO) Worst-Case Overloads. Overloaded Contingency Rating C MHEX NDEX PO Overload (%)

Element (MVA) Base 0 99 Dsy PTDF D12C D54C 283.6 -500 LOW G37C 107.9 110.6 7.2 D12C G37C 283.6 -500 LOW D54C 107.9 110.6 7.2

There is one increase to an existing overload for Connection Option A only. The impact is to the section of 230 kV line D12C from Elie wind to Portage South. The overload is a base case issue that occurs during low Brandon generation and at low NDEX during a prior outage of 230 kV line G37C or D54C. An increase in Brandon generation or decrease in Elie wind generation could be used to off-load line D12C. 2.3.4 Steady State Voltage Violations There were no steady state voltage violation impacts greater than 1% during system intact conditions.

7

2.4 Summary of Equipment Upgrades and Associated Costs The Elie 99 MW wind connection does not require any Network Upgrades or Interconnection System Upgrades.

8

3.0 Constrained Interface Analysis The Elie IES [5] performed constrained interface analysis for up to 99 MW of wind generation at Elie and demonstrated that there were no impacts greater than 3%. Therefore, additional studies are not required for the IFS.

9

4.0 Wind Turbine Models Two types of wind turbine models were tested during transient stability analysis: 1) Turbine A 1.65 MW, 60 Hz, with additional reactive power support in the form of:

- 4x10 MVAr, 34.5 kV switched capacitors - 3x10 MVAr, 34.5 kV switched capacitors, plus 1x8 MVAr D-STATCOM

2) Turbine B, 1.5 MW, 60 HZ, doubly-fed induction generator 4.1 Turbine A 1.65 MW 60 Hz The Turbine A wind turbines are the fixed-speed type consisting of a directly grid-coupled single cage induction generator. They come equipped with 49 MVAr of power factor correction capacitors located at the 600 V generator bus. The generator absorbs 42.1 MVAr at rated output. In PSS/E, the wind farm is represented as one aggregate generator, operating at 600 V. The aggregate generator is stepped up to 34.5 kV via a 108 MVA transformer of 5.56% impedance. The 10 MVAr switched capacitors are modeled at the 34.5 kV bus. The 34.5 kV collector system is stepped up to the 230 kV connection voltage via a 100/133/167 MVA transformer of 8.5% impedance. For Option A, a 1.0 km 230 kV transmission line connects the Elie wind farm to the new 230 kV Elie bus tapping D12C. For Option B, a 30 km 230 kV transmission line connects the Elie wind farm to the Dorsey 230 kV bus. An IPLAN is used to add the wind farm to the PSS/E large system model. Detailed PSS/E user models representing Turbine A are used to perform the stability analysis. The 8 MVAr STATCOM model data was provided by American Superconductor, and used the PSS/E library model CDSMS1. 4.2 Turbine B 60 Hz The Turbine B wind turbines are the variable-speed type consisting of a doubly-fed wound rotor induction generator. They are capable of fast voltage control over a power factor operation range of 0.95 overexcited to 0.9 underexcited. In PSS/E, the wind farm is represented as one aggregate generator, operating at 575 V. The aggregate generator is stepped up to 34.5 kV via a 115.5 MVA transformer of 5.0% impedance. The 34.5 kV collector system is stepped up to the 230 kV connection voltage via a 100/133/167 MVA transformer of 8.5% impedance. For Option A, a 1.0 km 230 kV transmission line connects the Elie wind farm to the new 230 kV Elie bus tapping D12C. For Option B, a 30 km 230 kV transmission line connects the Elie wind farm to the Dorsey 230 kV bus.

10

An IPLAN is used to add the wind farm to the PSS/E large system model. Detailed PSS/E user models representing Turbine B are used to perform the stability analysis. 4.3 Important Note regarding Transformer Impedance It should be noted that the 230-34.5 kV transformer was modeled with an impedance of 8.5% on a 100 MVA base. The impedance between the low voltage wind generator buses and the high voltage interconnection point plays an important role in the actual voltages seen at the low voltage wind generator buses, which in turn is the input to many protections. It is possible that if the impedance between the two points is significantly lower than or higher than what was modeled, overvoltages and/or undervoltages as seen at the generator bus will be more extreme, possibly causing the wind turbines to trip out when not expected, or for local voltage stability concerns to arise. If a 230-34.5 kV transformer with an impedance outside of the 7.5% to 9.5% range is planned to be used, it may be necessary to re-run several of the worst stability cases to ensure that the wind farm will still meet all of the Manitoba Hydro connection requirements in terms of riding through disturbances and respecting the transient undervoltage criteria. Update: The generator has indicated the actual 230-34.5 kV transformer impedance will be closer to 12% on a 100 MVA base (or 8.5% on a 70 MVA base). The worst-case system intact transient stability cases were re-run. The effect of a larger transformer impedance is a slightly less damped response to fault recovery and slightly higher transient overvoltages. For the D12C tap Option A connection, these system intact cases with the higher transformer impedance are not acceptable. The wind farm will trip due to overvoltage for loss of D602F with DC reduction (nbz fault), and local voltage collapse occurred for a three-phase fault on the Dorsey-Elie section of D12C. Therefore, the higher transformer impedance would require 2x8 MVAr STATCOMs and 2x10 MVAr switched capacitors instead of 1x8 MVAr STATCOM and 3x10 MVAr switched capacitors as discussed in the report. Prior outage curtailments could also be impacted, however this will be analyzed at a later date during Operating Studies. For the radial Dorsey-Elie Option B connection, these system intact cases with the higher transformer impedance are acceptable and require no additional facilities. Prior outage curtailments could be impacted, however this will be analyzed at a later date during Operating Studies.

11

5.0 Frequency, Voltage and Reactive Power Requirements Section 5 describes the turbine capabilities in comparison with the MH interconnection requirements. The next Section 6 will demonstrate these capabilities through transient stability simulations. 5.1 Turbine Overfrequency / Underfrequency Ride-Through Capability A typical generator connected to the MH network should stay connected if the frequency remains within the limits given in Table 4.

Table 4. MH Frequency Ride-Through Requirements. Time Underfrequenc

y Overfreqency

Continuous 60.0-59.0 Hz 60.0-61.5 Hz 10 minutes 59.0-58.7 Hz 61.5-62.0 Hz 30 seconds 58.7-57.5 Hz 62.0-63.5 Hz

5.1.1 Turbine A The wind turbine has the capability to operate between 57 Hz and 62 Hz continuously. The wind turbine has adequate underfrequency ride-through capability. The MH Transmission System Interconnection Requirements document [1] states that the Generation Facility is to remain connected if the frequency is in the range of 62.0-63.5 Hz for 30 seconds. MH has agreed that the overfrequency capability of 62 Hz continuous will be adequate for connecting to the MH transmission grid. 5.1.2 Turbine B The Turbine B frequency ride-through capability is summarized in Table 5.

Table 5. Turbine B Frequency Ride-Through Capability Time Underfrequenc

y Overfreqency

Continuous 60.0-57.5 Hz 60.0-61.5 Hz 30 seconds 61.5-62.5 Hz 10 seconds 56.5-57.5 Hz

The wind turbine has adequate underfrequency ride-through capability. The MH Transmission System Interconnection Requirements document [1] states that the Generation Facility is to remain connected if the frequency is in the range of 62.0-63.5 Hz for 30 seconds. MH has agreed that the overfrequency capability of up to 62.5 Hz for 30 seconds will be adequate for connecting to the MH transmission grid.

12

5.2 Turbine Overvoltage / Undervoltage Ride-Through Capability Table 6 summarizes the overvoltage and undervoltage requirements at the Elie 230 kV bus during local and remote disturbances. The worst undervoltage cases occur during 230 kV faults near the Elie station. The worst system overvoltage cases typically occur when large amounts of power from the HVdc system are lost (e.g. trip of Manitoba-USA 500 kV line followed by an HVdc reduction, or a permanent or temporary block of a bipole).

Table 6. MH Over- and Undervoltage Requirements at the POI. Overvoltage (pu) Undervoltage (pu) Continuous 1.10 Continuous 0.90 2 sec 1.10-1.22 2 sec 0.70-0.90 200 ms 1.22 0.5 sec 0.70 267 ms 0.0-0.50 100 ms 0.0

Figure 1 below graphically represents the MH voltage criteria. The MH transient undervoltage criteria requires that all system transient voltages remain above 0.7 pu after fault clearing.

Voltage Criteria for 110 kV or Above Interconnection Point

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120 140 160 180 200

Cycles

Volta

ge (p

u)

Undervoltage Overvoltage

Fig. 1. Voltage Requirements for Interconnection to Elie 230 kV bus.

5.2.1 Turbine A The Turbine A wind turbine can operate continuously between 90% and 110% voltage [2]. It has the capability to operate up to 115% voltage for 5 seconds. The wind turbine will trip off within 100 ms if the voltage at the wind turbine 600 V bus exceeds 115% [2].

13

The wind turbine will remain connected as long as the voltage does not drop below 70% for more than 2.5 seconds or 15% for more than 0.7 seconds. Within 5 seconds the voltage should recover to a minimum of 90%. The overvoltage ride-through capability of the wind turbine does not meet Manitoba Hydro’s overvoltage criteria. A voltage control scheme would be required to ensure the voltage on the wind turbine’s 600 V bus does not exceed 1.14 pu allowing a 0.01 pu voltage trip margin. This voltage control scheme will be described in section 7.0 of the report. The undervoltage ride-through capability of the turbine meets Manitoba Hydro’s undervoltage criteria. 5.2.2 Turbine B The Turbine B wind turbine can operate continuously between 90% and 110% voltage. It has the capability to operate up to 115% for 1.0 second, and between 115% and 130% for 100 ms. With the Turbine B Low Voltage Ride Through (LVRT) option II, for line-to-ground or three-phase-to-ground faults, the wind turbine will remain connected as long as the voltage does not drop below 70% for more than 1.0 second or 15% for more than 0.625 seconds. Within 3 seconds the voltage should recover to a minimum of 90%. For line-to-line faults, the wind turbine will remain connected as long as the voltage does not drop below 70% for more than 1.0 second or 15% for more than 0.2 seconds. Within 0.2 seconds the voltage should recover to a minimum of 70%, and within 3 seconds to a minimum of 90%. The overvoltage ride-through capability of the wind turbine does not appear to meet Manitoba Hydro’s overvoltage criteria. However, due to the fast voltage control capability of the doubly-fed induction generator, the Turbine B wind turbine controls actually aid in reducing the worst-case overvoltage at the Elie 230 kV bus and at the Turbine B 575 V generator bus, thus the Turbine B wind turbine is able to ride through the worst-case overvoltage. This voltage control capability will be demonstrated in section 6.0 of the report. For line-to-ground and three-phase-to-ground faults, the undervoltage ride-through capability of the turbine (LVRT option II) meets Manitoba Hydro’s undervoltage criteria. For line-to-line faults, the undervoltage ride-through capability is acceptable when considering normal clearing times, however the turbine will trip out for slow-clearing stuck breaker (NERC Category C) faults. MH has agreed to accept the reduced line-to-line fault ride-through capability for this particular case because the wind farm would only trip due to a low-probability NERC Category C fault. Transient stability simulations indicated no adverse system impacts due to a wind farm trip in this scenario.

14

5.3 Reactive Power Requirements The Manitoba Hydro Transmission System Interconnection Requirements document [1] states that any Generation Facility greater than 10 MW comprised of induction type generators (such as may be connected to wind turbines) provide reactive supply that is able to control the voltage level by adjusting the machine’s power factor between a minimum of 0.95 overexcited and 0.95 underexcited as measured at the Generator intermediate bus. The power factor requirements could be larger depending on transient stability analysis. 5.3.1 Turbine A The Turbine A wind turbines come equipped with 49 MVAr power factor correction capacitors installed on the 600 V generator bus. At rated output, the wind farm will absorb 42.1 MVAr. Additional VAR support will need to be installed to provide the leading power factor requirement. The Turbine A turbines will need to be installed with 3x10 MVAr switched capacitors, plus an 8 MVAr STATCOM. The details of the additional VAR support and associated voltage control scheme will be discussed in upcoming sections 6 and 7. 5.3.2 Turbine B The Turbine B wind turbines consist of doubly-fed induction generators, which have inherent fast reactive power control capability ranging from 0.95 overexicted to 0.9 underexcited. The Turbine B turbines meet the Manitoba Hydro reactive power requirements.

15

6.0 Stability Investigation Relevant stability plots are included in Appendix E. The IFS was originally performed assuming Connection Option A. Worst transient stability cases were re-run for Connection Option B and are discussed in the upcoming sections. 6.1.1 Study Stability Models The two base case system models used in the transient stability analysis were based on updated 2004 series MAPP stability models, and included:

A. 2009 summer off-peak system intact with maximum MH-US transfer: MHEX=2175, NDEX=1950

B. 2009 summer peak system intact with maximum generation in Manitoba Dorsey DC was the sink for the 99 MW Elie wind farm. 6.1.2 Disturbances The following NERC category B (single component) and C (multiple components) disturbances were tested to determine the impact of the Elie generator on the Manitoba-US transfer capability, using the 2009 summer off-peak stability model (case A above):

I. ag1 fault – 4-cycle SLF 345 kV fault at Leland Olds on Ft. Thompson line. Stuck breaker. Clear faulted line at 11 cycles.

II. ei2 fault – permanent bipole fault on the CU DC line. Both Coal Creek units tripped at 0.28 seconds.

III. mqs fault – SLG fault at Sherco unit #3 with breaker fail 8N28. Trip Sherco unit #3. IV. nbz fault – 4-cycle 3-phase 500 kV fault on at Chisago on Forbes line 601. Cross-

trip D602F. V. mat fault – Loss of D602F with DC reduction.

The following NERC category B (single component) and C (multiple components) disturbances were tested to determine the impact of the Elie generator on the transfer capability within Manitoba, using the 2009 summer peak stability model (case B above):

I. System intact, 3-phase normal clearing faults on lines D12C Dorsey-Elie, D12C Elie-Cornwallis, D14S, S53G, S60L, Y51L, G37C, D54C, and C28R.

II. System intact, single line-to-ground stuck breaker (slow clearing) faults (determined from ACCC analysis as candidate for stability analysis).

III. Prior outage, 3-phase normal clearing faults (determined from ACCC analysis as candidate for stability analysis).

IV. mbs fault – Loss of Manitoba HVDC bipole loaded at 1882 MW at Dorsey. No cross-trip of Manitoba-Ontario tie lines.

16

6.2 System Underfrequency Ride-Through Test The ‘mbs’ fault (loss of Manitoba HVDC bipole, no cross-trip of Manitoba-Ontario tie lines) is the disturbance used to test the underfrequency ride-through capability of the wind turbines, as well as to observe the impact of the wind farm on system frequency. The transient frequency is to remain above 59.3 Hz, without any reduction in wind output. Please refer to figures in Appendix E-1. 6.2.1 Turbine A The Turbine A wind farm remained connected throughout the disturbance. There were no significant impacts of the wind farm on the system transient frequency, and no reduction in wind output was observed. The Turbine A turbine meets MH underfrequency criteria. 6.2.2 Turbine B The Turbine B wind farm remained connected throughout the disturbance. There were no significant impacts of the wind farm on the system transient frequency, and no reduction in wind output was observed. The Turbine B turbine meets MH underfrequency criteria. 6.3 System Overvoltage Ride-Through Test The ‘nbz’ fault (4-cycle 3-phase 500 kV fault on at Chisago on Forbes line 601. Cross-trip D602F with DC reduction) is the disturbance used to test the overvoltage ride-through capability of the wind turbines. To test for the worst-case scenario, the pre-disturbance intermediate bus voltages were set to as high as was reasonable for the particular cases. Because of the proximity of the Elie wind farm to Dorsey station, overvoltages as high as 1.22 pu are possible at the 230 kV bus. Please refer to figures in Appendix E-2. 6.3.1 Turbine A The Elie wind farm was first set to have 34.5 kV 4x10 MVAr capacitors and all 49 MVAr PFCs in-service as a worst-case scenario. The 230-34.5 kV transformer was modeled with an OLTC controlling the 34.5 kV pre-disturbance bus voltage. Connection Option A: The Turbine A wind farm tripped out during the disturbance as voltage at the generator 600 V bus exceeded 115% if the pre-disturbance 34.5 kV bus voltage was greater than 1.01 pu. The Turbine A turbines do not meet the MH transient overvoltage criteria. Mitigation in the form of an on-load tap changer voltage control scheme on the 34.5-230 kV transformer would be required to keep the Turbine A wind farm on-line during this disturbance. If the pre-disturbance 34.5 kV bus voltage is controlled to a maximum of 1.0 pu, the Turbine A turbines remain connected.

17

Next, the Elie wind farm was set to have 34.5 kV 3x10 MVAr capacitors and all 49 MVAr PFCs in-service as well as an 8 MVAr D-STATCOM on the 34.5 kV bus. The 230-34.5 kV transformer was modeled with an OLTC controlling the 34.5 kV bus voltage. The Turbine A wind farm remained connected throughout the disturbance if the pre-disturbance 34.5 kV bus voltage was controlled to a maximum of 1.02 pu. Mitigation in the form of an on-load tap changer voltage control scheme on the 34.5-230 kV transformer would be required to keep the Turbine A wind farm on-line during this disturbance. If the steady state 34.5 kV bus voltage is controlled to a maximum of 1.02 pu, the Turbine A turbines remain connected if an 8 MVAr STATCOM is installed. Connection Option B: Similar tests were performed for Connection Option B. Due to the weaker radial connection to Dorsey combined with the voltage-square effect of the capacitors, the overvoltage at the wind generator bus was found to be slightly worse. In this case, the Turbine A wind farm remained connected throughout the disturbance if the pre-disturbance 34.5 kV bus voltage was controlled to a maximum of 0.99 pu. Mitigation in the form of an on-load tap changer voltage control scheme on the 34.5-230 kV transformer would be required to keep the Turbine A wind farm on-line during this disturbance. If the steady state 34.5 kV bus voltage is controlled to a maximum of 0.99 pu, the Turbine A turbines remain connected if an 8 MVAr STATCOM is installed.

6.3.2 Turbine B The Turbine B wind farm voltage control scheme was set to control the 230 kV POI voltage to 1.06 pu as a worst-case scenario. The Turbine B wind farm remained connected throughout the disturbance for both Connection Options A and B. The fast voltage controls of the doubly-fed induction generator aided in slightly reducing the overvoltage seen at the Elie 230 kV bus when compared to the case without the wind farm. The Turbine B turbines meet the MH transient overvoltage criteria. 6.4 Undervoltage Ride-Through Test All of the close-in three-phase and single line-to-ground faults can be regarded as undervoltage ride-through tests. It should be noted that the 230-34.5 kV transformer impedance is important is determining the voltage on the generator bus due to a nearby system fault. This transformer was modeled with 8.5% impedance on a 100 MVA base.

18

6.4.1 Turbine A The Turbine A wind farm was observed to ride through all close-in faults. A three-phase fault on the Elie 230 kV bus resulted in a voltage of 0.205 pu for 83 ms at the 600 V generator bus. A stuck breaker single line-to-ground fault resulted in a voltage of 0.65 pu for 267 ms at the 600 V generator bus. Both faults are within the turbine’s capability. The Turbine A turbines meet the MH undervoltage ride-through criteria. 6.4.2 Turbine B The Turbine B wind farm was observed to ride through all close-in three-phase and single line-to-ground faults. A three-phase fault on the Elie 230 kV bus resulted in a voltage of 0.167 pu for 83 ms at the 575 V generator bus. A stuck breaker single line-to-ground fault resulted in a voltage of 0.74 pu for 267 ms at the 575 V generator bus. Both faults are within the turbine’s capability. The Turbine B turbines have a stricter undervoltage criteria of 15% for 200 ms for line-to-line faults, after which the voltage must immediately jump back to 0.7 pu. The wind farm can ride through a normal clearing line-to-line fault (83 ms), but a stuck breaker line-to-line fault (267 ms) will result in the wind farm tripping out. With a two-breaker ring bus at Elie, any stuck breaker scenario will result in loss of the wind farm anyways. Transient stability simulations indicated no significant adverse system impacts due to a wind farm trip in this scenario. The Turbine B turbines meet the MH undervoltage ride-through criteria for this particular wind site. 6.5 System Intact with Local N-1 Contingencies For Connection Option A, the worst-case local line fault scenario for the Elie wind farm is a normal clearing three-phase fault on line D12C between Dorsey and Elie. The fault clearing leaves the wind farm with a much weaker connection to the grid because the line to Dorsey has been lost. For Connection Option B, any fault on the Dorsey-Elie-Portage line will result in loss of the wind farm. Until the remainder of line Dorsey-Elie-Portage is constructed between Elie-Portage, the Elie wind farm is radially connected to Dorsey. Once the line is completed, the next worst-case disturbance would be a fault at Portage with loss of either Dorsey-Portage or Portage-Cornwallis sections of line D12C, however this still leaves Elie connected to the strong Dorsey bus, unlike Connection Option A. Please refer to figures in Appendix E-3.

19

6.5.1.1 Turbine A The Turbine A wind farm tested additional VAR support in the form of 4x10 MVAr capacitors on the 34.5 kV bus. None of the 10 MVAr switched capacitors were in-service for this test. Connection Option A: The Turbine A wind farm caused poorly damped voltage oscillations after fault-clearing if the pre-disturbance 34.5 kV bus voltage was less than 0.97 pu. Mitigation in the form of an on-load tap changer voltage control scheme on the 34.5-230 kV transformer would be required to keep the Turbine A wind farm from violating the minimum 5% damping criteria. If the steady state 34.5 kV bus voltage is controlled to a minimum of 0.98 pu, the Turbine A turbines do not cause undamped voltage oscillations. Connection Option B: The Turbine A wind farm was tested with the pre-disturbance 34.5 kV bus voltage at 0.95 pu. No problems were observed. 6.5.1.2 Turbine B For Connection Options A and B, the Turbine B wind farm remained connected throughout all of the studied disturbances. The fast voltage controls of the doubly-fed induction provided sufficient VAR support such that no local voltage collapse or high local overvoltages were observed. The Turbine B turbine provides acceptable transient stability performance and does not result in local voltage collapse or wind farm overvoltage tripping. 6.6 System Intact with Local N-2 Contingencies Any local Elie 230 kV breaker failure results in a similar situation: loss of line D12C and the 99 MW Elie wind farm. No significant adverse system impacts were observed during this disturbance. A few relay margins were impacted in the range of 1-2%, but remained well within acceptable limits. 6.7 Critical 230 kV Prior Outages with local N-1 Contingencies The generator has expressed a preference to be curtailed during prior outage conditions if necessary rather than installing extra wind farm equipment or paying for line upgrades. Please refer to figures in Appendices E-4 and E-5.

20

6.7.1 Turbine A Combinations of critical 230 kV prior outages and local area three-phase line faults with normal 5-cycle clearing times were tested. The 230 kV prior outages applied to stability cases included lines D12C Dorsey-Elie, D12C Elie-Cornwallis, G37C, and D54C. The worst three-phase faults cases included lines D12C Dorsey-Elie, D12C Elie-Cornwallis, G37C, and D54C. Connection Option A: For the 4x10 MVAr switched capacitor option, if the steady state 34.5 kV bus voltage is controlled to a minimum of 0.98 pu (i.e. 0.99 pu + 0.01 pu) as discussed earlier in Section 6.5.1.1, the Turbine A turbines do not cause undamped voltage oscillations. However this would require a tap-changer control range of 0.99 pu + 0.01 pu, which is too narrow. Instead, the Turbine A wind farm would need 3x10 MVAr switched capacitors plus the 8 MVAr D-STATCOM together with an OLTC with a wider control range of 1.0 pu + 0.02 pu. This will prevent overvoltage tripping and undamped voltage oscillations. With this option, no prior outage curtailment is required for transient stability reasons. Connection Option B: Several prior outage cases were tested. No problems were observed. 6.7.2 Turbine B The same worst-case prior outages and three-phase faults were tested with the Turbine B turbines. The Turbine B wind farm provided an acceptable response in all cases. The Turbine B wind farm does not require any prior outage curtailment for transient stability reasons.

21

7.0 Wind Farm Voltage Control Equipment and Special Protection Schemes The following section summarizes the requirements for each type of wind farm based on the results of the transient stability simulations. 7.1 Turbine A The Turbine A wind turbines would need to install additional capacitive VAR support to meet the 0.95 leading power factor requirement: 3x10 MVAr switched capacitors and an 8 MVAr D-STATCOM must be installed on the 34.5 kV bus. The voltage control scheme for the switched capacitors and STATCOM should be capable of both power factor and voltage control modes of operation. To meet the overvoltage ride-through criteria, to prevent undamped voltage oscillations, and to ensure acceptable steady state operating voltages at the generator buses, the 230-34.5 kV transformer must be equipped with an on-load tap changer. The transformer impedance was modeled to be 8.5%. For Connection Option A, the OLTC is recommended to control the pre-disturbance 34.5 kV bus voltage to 1.0 pu (+/-2.0%). Anything out of this range could result in the wind farm tripping out on overvoltage or producing local undamped voltage oscillations. For Connection Option B, the OLTC is recommended to control the pre-disturbance 34.5 kV bus voltage to 0.97 pu (+/-2.0%). Anything above 0.99 pu could result in the wind farm tripping out on overvoltage for the nbz fault. No undamped voltage oscillations were observed. For Connection Option A only, wind farm curtailment could also be required for 230 kV prior outages of lines G37C or D54C avoid potential thermal overloads on 230 kV line D12C following the loss of line D54C or G37C, respectively. 7.2 Turbine B The Turbine B wind turbines do not require any additional equipment or special protection schemes. They must be equipped with the Turbine B Low Voltage Ride Through (LVRT) option II in order to meet fault ride-through requirements. The Turbine B wind farm will have the capability to control the voltage or VAR flow of the wind farm. For Connection Option A only, wind farm curtailment could also be required for 230 kV prior outages of lines G37C or D54C avoid potential thermal overloads on 230 kV line D12C following the loss of line D54C or G37C, respectively.

22

8.0 Voltage Quality Analysis 8.1 Introduction There are several types of fluctuations that can affect the voltage quality due to wind power. 1) Tower shadow effect (periodic, f ≈ 1-2 Hz) 2) Wind turbulence (stochastic, average frequency f < 0.1 Hz) 3) Switching of windmills (single events per hour) These phenomena, as well as others such as wind vertical gradients, contribute to voltage fluctuations or flicker. The tower shadow effect is caused by the wind turbine blades periodically passing the wind mill tower three times a cycle for three-blade turbines. This results in a dip in the mechanical torque at each passing, which is transferred to the generator shaft and subsequently seen as a dip in the output voltage. Voltage fluctuations caused by wind turbulence are due to the stochastic as well as the gusty impact of the wind on the turbine. Windmill switching gives rise to voltage dips in the grid each time it happens and can occur several times per hour. Flicker is defined as an impression of unsteadiness of visual sensation induced by light stimulus whose luminance or spectral distribution fluctuates with time. This may be caused by voltage variations. Applying a flicker meter, a ten-minute time-series of measured or simulated voltage variations can be transformed into a short-term flicker value, Pst. A Pst of 1.0 corresponds to the ‘threshold of flicker irritation’ for rectangular voltage changes. The long-term value, Plt corresponds to a period of 2 hours, calculated from a sequence of Pst values: (1) Flicker may be caused both by the continuous and switching operations, such as start-ups, of a wind turbine. The emission of flicker from a wind turbine during continuous operation is adequately described by its flicker coefficient. The flicker coefficient is a normalized measure of the flicker emission from a wind turbine.

3/112

1

3,

12 ⎟⎟⎠

⎞⎜⎜⎝

⎛= ∑

=i

istlt

PP

23

Measurements show that the flicker coefficient for a given turbine is a function of the wind speed at hub-height of the wind turbine and the network impedance phase angle of the electric network. It has been shown that the long-term flicker emission (Plt) from a wind turbine during continuous operation is equal to the short-term flicker emission (Pst). The procedure for assessing flicker emission due to switching operations assumes that each wind turbine is characterized by a flicker step factor kf(ψf), being a normalized measure of the flicker emission due to a single worst-case switching operation. The start-up of a wind turbine may cause a sudden reduction of the voltage followed by a voltage recovery after a few seconds. Wind turbines are characterized by a voltage change factor ku(ψf), and this may be used to calculate the expected voltage dip. 8.2 Study Criteria Flicker planning levels are used by Manitoba Hydro for planning purposes and are useful for evaluating the cumulative impact of all fluctuating loads connected to the system. The levels are specified by the utility based on field measurement, historical experience and industry practice. Table 7 lists the flicker limits used for planning new or evaluating existing installations:

Table 7: Flicker Limits.

Industry standards state that the flicker levels shall be at or below the planning levels, 99% of the time, with a minimum assessment period of 1 week.

Also, starting multiple motors may appear to generate periodic fluctuations on the electrical system when each individual motor is started several times within a given time period. To limit the potential of a flicker problem, Manitoba Hydro requires that individual loads or sources do not introduce fluctuations, at their point of interconnection, above the limits given in Table 7. The purpose of these limits is to ensure that cumulative system flicker levels never exceed the threshold of irritation (i.e. Pst=1.0). Dynamic voltage fluctuations are usually caused by motor starting, however, loss of a wind turbine due to excessive wind can cause a brief voltage fluctuation. Dynamic voltage restrictions that are being used by MH are based on IEC Standard 1000-3-7 table 8. The restrictions are repeated in Table 8.

System Voltage (Us) Pst Plt

Us > 35 kV 0.8 0.6

24

Table 8: Dynamic voltage fluctuation limits (System Voltage 35 kV and greater)

Voltage Change Permissible Number of Dynamic Events <2.0% 10 per hour 2.0 – 2.4 % Twice per hour 2.5 – 2.9 % Once per hour 3.0 – 3.4 % Once every two hours 3.5 – 3.9 % Once every four hours 4.0 – 4.9 % Once per day > 5% Not allowed

8.3 Procedure for Assessment of Voltage Quality

The following procedure is based on IEC 61400-21, “Measurement and Assessment of Power Quality Characteristics of grid Connected Wind Turbines”.

8.3.1 Voltage Flicker During Continuous Operation The 99th percentile flicker emission from a single wind turbine during continuous operation is estimated by applying equation 2 below: (2) where

is the flicker coefficient of the wind turbine for the given network impedance phase angle, kψ at the PCC, and for the given annual average wind speed, aν at hub-height of the wind turbine at the site;

Sn is the rated apparent power of the wind turbine; Sk is the short-circuit apparent power at the PCC. In the case where more then one wind turbine is connected to the PCC, the flicker emission can be estimated from equation 3 below: (3) where is the flicker coefficient of the individual wind turbine; Sn,i is the rated apparent power of the individual wind turbine; Nwt is the number of wind turbines connected to the PCC.

k

nakltst S

ScPP ⋅== ),( νψ

),( akc νψ

∑=

⋅⋅=∑=∑wtN

iinaki

kltst Sc

SPP

1

2, )),((1 νψ

),( akic νψ

25

Equation 3 assumes that the maximum power levels between wind turbines are uncorrelated. Under special conditions, however, wind turbines in a farm may ‘synchronize’, causing power fluctuations to coincide. Equation 3 would then underestimate the flicker emission. 8.3.2 Voltage Flicker During Switching Operations The flicker emission due to switching operations of a single wind turbine shall be estimated by applying equations 4 and 5 below.

(4)

(5) where )( kfk ψ is the flicker step factor of the wind turbine for the

given kψ at the PCC. In the case where more than one wind turbine is connected to the PCC, the flicker emission from the sum of them can be estimated from equation 6 and 7 below. (6) (7) where N10,i and N120,i are the number of switching operations of the individual wind

turbines within a 10 min and 2 h period; kf,i ( kψ ) is the flicker step factor of the individual wind turbine; Sn,i is the rated power of the individual wind turbine.

k

nkfst S

SkNP ⋅⋅⋅= )(18 31.10 ψ

k

nkflt S

SkNP ⋅⋅⋅= )(8 31.120 ψ

∑=

⋅⋅⋅=∑wtN

iinkifi

kst SkN

SP

1

31.2.3,,,10 )))(((18 ψ

∑=

⋅⋅⋅=∑wtN

iinkifi

klt SkN

SP

1

31.2.3,,,120 )))(((8 ψ

26

8.3.3 Voltage Fluctuations The relative voltage change due to a switching operation of a single wind turbine is estimated by applying equation 8 below. (8) where d is the relative voltage change in %; ku )( kψ is the voltage change factor of the wind turbine for the kψ given at

the PCC. In cases where more than one wind turbine is connected to the PCC, it is not likely that even two of them will perform switching operations at the same time. Therefore, no summation effects need to be taken into account to assess the relative voltage change of a wind turbine installation according to the IEC standard. 8.4 Turbine A The St. Leon IES [4] provided voltage flicker for the NEG MICON NM72C/1500 turbines according to IEC 61400-21 for continuous and switching operations. It is assumed that the Turbine A turbines will have very similar IEC 61400-21 data. Based on these calculations, flicker is not expected to be a problem at the Elie wind farm location. 8.5 Turbine B Similar IEC 61400-21 calculations were performed for the Turbine B turbines and flicker is also not expected to be a problem at the Elie wind farm location. All flicker calculations were within the Manitoba Hydro flicker standards.

k

nku S

Skd ⋅⋅= )(100 ψ

27

9.0 Elie 230 kV Fault Levels The addition of the Elie wind farm will not raise fault levels in the surrounding are beyond the capabilities of any local circuit breakers [6]. The fault levels at the Elie 230 kV Point of Interconnection for the ultimate horizon year (not including Elie wind generation contribution) are provided in Table 9 [7].

Table 9. Elie 230 kV Fault Levels. Fault Level Ultimate Single line-to-ground fault 3205 MVA / 8.1 kA 3-phase fault 4330 MVA / 10.9 kA

28

10.0 Manitoba Hydro Interconnection Facilities Cost Estimate

29

30

11.0 References [1] Manitoba Hydro Transmission System Interconnection Requirements, Revision 0, December 2003, http://www.hydro.mb.ca/business_customer/tariffsummary.shtml. [2] St. Leon Wind Farm – Manitoba Hydro Turbine Controller Voltage and Frequency Verification Test, Factory Acceptance Test Report, NEG Micon Control Systems, February 2004. [3] “St. Leon Wind Farm Interconnection Facilities Study”, Manitoba Hydro, System Planning Department, March 2004. [4] “St. Leon Wind Farm Interconnection Evaluation Study”, Manitoba Hydro, System Planning Department, August 2003. [5] “Elie Wind Farm Interconnection Evaluation Study”, Manitoba Hydro, System Planning Department, February 2004. [6] “The Manitoba Hydro Horizon Fault Levels Anticipated at the Proposed Pembina Hills, New Haven, Elie and Lena Wind Farm Points of Delivery”, Manitoba Hydro, System Planning Department, M.R. Wonsiak, June 14, 2005. [7] “The Impact of Increased Short Circuit Fault Levels on Local Circuit Breakers with the Addition of Wind Farm Generation – Supplement to the Pembina Hills, New Haven, Elie and Lena IFS Study”, Manitoba Hydro, System Planning Department, M.R. Wonsiak, June 14, 2005. [8] “Pembina Hills Wind Farm Interconnection Facilities Study”, Manitoba Hydro, System Planning Department, November 2005.

31

Appendix A:

Cost Estimate Assumptions

Date 2004-10-08

Subject: Class 2 Estimate for Dorsey Station 230kV Line Addition

Background:

This project is for the addition of a new 230kV line between Dorsey Station and Portage

South Station. In service date is October 31, 2013.

Class 2 Scope of Work:

- Install one 230kV circuit breaker with an associated maintenance disconnect.

- Install one 230kV MOD with an associated ground switch.

- Install one set of 230kV PTs and one single phase synchronizing PT.

- Install one set of 230kV CTs.

- Install three 230kV post insulator supports.

- Install Control and Protection equipment in the existing control building

- No overtime hours have been entered for any work groups.

- Electrical Const. will install and wire all major equipment and panels, and assist

other work group as needed.

- Suburban Overhead Construction will install all bus work, disconnects, and

terminate the new line as required.

- Civil Const. will install all foundations and grounding below grade as required.

- System Support (Protection) will test all relays and panels.

- Dorsey Site Staff will assist with switching and with operational and energization

commissioning.

- Commissioning will be responsible for all acceptance test write ups, operational

and energization procedures.

- Insulation testing will test PTs, CTs and breakers on site.

- Apparatus maintenance shop will complete the shop tests on the CTs and PTs.

- No interest and escalation is added into the estimate at this time.

32

Appendix B:

MH Interconnection Facilities Single Line Diagram

33

Appendix C:

Reference to MH Facility Interconnection Requirements as determined by

Interconnection Studies

34

Please refer to the MH document titled “Transmission System Interconnection Requirements” for details regarding the technical requirements for connecting Generation Faculties to the MH Interconnected Transmission System. Section 3 of the document, “Generator Interconnection Requirements”, defines the requirements applicable for generators applying to connect to the 66 kV, 115 kV, 138 kV, 230 kV and 500 kV nominal voltage levels on the MH Interconnected Transmission System. Section 3 states that some of the requirements are to be defined/determined by the Interconnection Studies. Table C.1 below makes reference to only these requirements, and provides information for those requirements that were to be determined by Interconnection Studies. All remaining requirements not to be determined by the Interconnection Studies are defined in the MH document.

Table C.1. Interconnection Requirements to be determined by Interconnection Studies. No. Item Requirement 3.1 Connection Location and Voltage

Level As discussed in IES Section 1 and IFS Section 1.

3.2 Operating Constraints As discussed in IES & IFS. 3.3 Reactive Power Requirements As discussed in IFS Section 5. 3.4 Voltage Variations As discussed in IFS Section 5. 3.5 Frequency Variations As discussed in IFS Section 5. 3.6 Inertia Constant (H) Stability studies demonstrated the ability

of the generator unit to remain connected for typical fault-clearing times assuming the fault ride-through is provided.

3.7 Generator Controls 3.8.1 Voltage Regulation Voltage regulation is required.

Turbine A turbines: must be provided with minimum 3x10 switched capacitors having a voltage response time of 15 sec, and an 8 MVAr STATCOM Turbine B turbines: have inherent voltage regulation that meets the MH requirements.

3.10 SPS or RAS Not required. 3.11 Black Start Capability Not required. 3.13 Protective Equipment and Relaying

System Requirements The Generator will be required to install breaker failure protection on the 230 kV breaker.

3.14 Communications Redundant communications are required at the 230 kV voltage level.

3.16 Supervisory Control and Data Acquisition (SCADA)

The following signals are needed by the SCADA system: 230 kV breaker and disconnect status All 34.5 kV breaker statuses

35

Status of 34.5 kV capacitor banks (if applicable, i.e. Turbine A turbines) MW MVAR MWh (hourly and monthly) 230 kV bus voltage 34.5 kV bus voltage Voltage regulator setpoint and status

3.17 Disturbance Monitoring A TFR is required at the generator end of the line.

3.19 Short Circuit Levels As discussed in IES Section 6.0 & IFS Section 9.0

3.20 Grounding To be performed once the IOA is signed. 3.26 Isolation It is preferred to have a safety ground

switch, however if not provided MH will use temporary grounding to facilitate line maintenance.

36

Appendix D:

Project Schedule The project schedules will be added for both Options A and B once they are finalized.

37

Appendix E:

Stability Plots All Turbine A responses are shown with the 230-34.5 kV OLTC (1.0 pu + 0.02 pu), 3x10 MVAr switched capacitors, and an 8 MVAr STATOM on the 34.5 kV bus. All stability plots are based on connection Option A. Underfrequency Ride-Through Test (Section 6.2): mbs fault Figure E-1a Base case & Turbine A – 0x10 MVAr (0.98 tap) Figure E-1b Base case & Turbine B – 230 kV voltage setpoint 1.045 pu Overvoltage Ride-Through Test (Section 6.3): nbz fault Figure E-2a Base case & Turbine A – 3x10 MVAr (1.02 tap) Figure E-2b Base case & Turbine B – 230 kV voltage setpoint 1.06 pu Undervoltage Ride-Through Test (Section 6.4): 3PF D12C, System intact Figure E-3a Base case & Turbine A – 0x10 MVAr (0.98 tap) Figure E-3b Base case & Turbine B – 230 kV voltage setpoint 1.045 pu Prior Outage D12C Dorsey-Elie, 3PF G37C (Section 6.6): Example of one of the worst cases Figure E-4a Base case & Turbine A – 0x10 MVAr (0.98 tap) Figure E-4b Base case & Turbine A – 3x10 MVAr (1.02 tap) Figure E-4c Base case & Turbine B– 230 kV voltage setpoint 1.045 pu Prior Outage G37C, 3PF D12C Dorsey-Elie (Section 6.6): Example of one of the worst cases Figure E-5a Base case & Turbine A – 0x10 MVAr (0.98 tap) Figure E-5b Base case & Turbine A – 3x10 MVAr (1.02 tap) Figure E-5c Base case & Turbine B– 230 kV voltage setpoint 1.045 pu

CHNL# 1116: [FREQ-ELIE 230KV]

FILE: ...\bin\i00-sp09aa.7z5V0V0-mbs.out

0.01000

-0.0100

CHNL# 1116: [FREQ-ELIE 230KV]

FILE: ...\bin\jd0-sp09aa.7z5V0V0-mbs.out

0.01000

-0.0100

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:05TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

FREQ - ELIE 230 KV

CHNL# 1113: [P-ELIE WIND]

FILE: ...\bin\i00-sp09aa.7z5V0V0-mbs.out

130.00

70.000

CHNL# 1113: [P-ELIE WIND]

FILE: ...\bin\jd0-sp09aa.7z5V0V0-mbs.out

130.00

70.000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:06TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

POWER - ELIE WIND

rbrandt
Turbine A Power
rbrandt
59.4 Hz
rbrandt
Elie Frequency
rbrandt
rbrandt
Fig E-1a
rbrandt
Fig E-1a

CHNL# 1116: [FREQ-ELIE 230KV]

FILE: ...\bin\i00-sp09aa.7z5V0V0-mbs.out

0.01000

-0.0100

CHNL# 1116: [FREQ-ELIE 230KV]

FILE: ...\bin\jg0-sp09aa.7z5V0V0-mbs.out

0.01000

-0.0100

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:21TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

FREQ - ELIE 230 KV

CHNL# 1113: [P-ELIE WIND]

FILE: ...\bin\i00-sp09aa.7z5V0V0-mbs.out

130.00

70.000

CHNL# 1113: [P-ELIE WIND]

FILE: ...\bin\jg0-sp09aa.7z5V0V0-mbs.out

130.00

70.000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:22TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

POWER - ELIE WIND

rbrandt
Turbine B Power
rbrandt
Fig E-1b
rbrandt
59.4 Hz
rbrandt
Fig E-1b
rbrandt
Elie Frequency
rbrandt

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd3-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

F00-SO09AA.UZPV0V0.SAV;;;SYSTEM INTACT :

ND=1963,MH=2176,MW=1219,OHMH=-196,OHMP=0,EWTW=-210,BD=0

MON, NOV 28 2005 10:08TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd3-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

F00-SO09AA.UZPV0V0.SAV;;;SYSTEM INTACT :

ND=1963,MH=2176,MW=1219,OHMH=-196,OHMP=0,EWTW=-210,BD=0

MON, NOV 28 2005 10:09TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Wind generator bus voltage
rbrandt
rbrandt
Fig E-2a
rbrandt
rbrandt
Fig E-2a
rbrandt
1.15 pu
rbrandt
with Turbine A
rbrandt
rbrandt
Base case

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jg4-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

F00-SO09AA.UZPV0V0.SAV;;;SYSTEM INTACT :

ND=1963,MH=2176,MW=1219,OHMH=-196,OHMP=0,EWTW=-210,BD=0

MON, OCT 24 2005 11:27TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jg4-so09aa.uzpV0V0-nbz.out

1.3000

0.80000

F00-SO09AA.UZPV0V0.SAV;;;SYSTEM INTACT :

ND=1963,MH=2176,MW=1219,OHMH=-196,OHMP=0,EWTW=-210,BD=0

MON, OCT 24 2005 11:27TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Base case
rbrandt
Fig E-2b
rbrandt
Wind generator bus voltage
rbrandt
with Turbine B
rbrandt
1.30 pu
rbrandt
rbrandt
rbrandt
Fig E-2b
rbrandt

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd0-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:14TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd0-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:14TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
rbrandt
rbrandt
Fig E-3a
rbrandt
with Turbine A
rbrandt
rbrandt
0.7 pu
rbrandt
Base case
rbrandt
Fig E-3a
rbrandt
Wind generator bus voltage

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jg0-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:34TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jg0-sp09aa.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:34TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Base case
rbrandt
with Turbine B
rbrandt
Wind generator bus voltage
rbrandt
Fig E-3b
rbrandt
rbrandt
rbrandt
rbrandt
0.7 pu
rbrandt
Fig E-3b

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd0-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:19TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd0-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:19TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Fig E-4a
rbrandt
rbrandt
with Turbine A
rbrandt
Fig E-4a
rbrandt
0.7 pu
rbrandt
Wind generator bus voltage
rbrandt
rbrandt
rbrandt
Base case

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd3-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:41TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd3-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:41TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Fig E-4b
rbrandt
rbrandt
rbrandt
rbrandt
Wind generator bus voltage
rbrandt
Base case
rbrandt
0.7 pu
rbrandt
with Turbine A
rbrandt
Fig E-4b

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jg0-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:40TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jg0-sp09de.7z5V0V0-e7z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:40TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
with Turbine A
rbrandt
Base case
rbrandt
rbrandt
Fig E-4c
rbrandt
rbrandt
rbrandt
0.7 pu
rbrandt
Fig E-4c
rbrandt
Wind generator bus voltage

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd0-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:45TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd0-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:45TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
rbrandt
rbrandt
0.7 pu
rbrandt
rbrandt
Base case
rbrandt
Fig E-5a
rbrandt
Fig E-5a
rbrandt
with Turbine A
rbrandt
Wind generator bus voltage

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jd3-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:48TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jd3-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, NOV 28 2005 10:48TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
Base case
rbrandt
rbrandt
rbrandt
0.7 pu
rbrandt
with Turbine A
rbrandt
rbrandt
Wind generator bus voltage
rbrandt
Fig E-5b
rbrandt
Fig E-5b

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1109: [V-ELIE 230KV]

FILE: ...\bin\jg0-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:45TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - ELIE 230KV

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\i00-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

CHNL# 1115: [V-ELIE WIND GEN]

FILE: ...\bin\jg0-sp09gc.7z5V0V0-e1z.out

1.2000

0.20000

F00-SP09AA.7Z5V0V0.SAV;SUMMER;PK LD;SYSTEM INTACT

ND=321,MH=2175,MW=191,OHMH=-196,OHMP=0,EWTW=-209,BD=0

MON, OCT 24 2005 11:45TIME (SECONDS)

POWER

TECHNOLOGIES

INC.R

0.00.50000

1.00001.5000

2.00002.5000

3.00003.5000

4.00004.5000

5.0000

VOLTAGE - WIND GEN BUS

rbrandt
with Turbine B
rbrandt
Base case
rbrandt
rbrandt
Fig E-5c
rbrandt
rbrandt
rbrandt
0.7 pu
rbrandt
Fig E-5c
rbrandt
Wind generator bus voltage

38

Appendix F:

ACCC Results - Thermal Overloads with OTDF > 2%

F-1 2009 System Intact, Summer Peak, all power flows F-2 2014 System Intact, Summer Peak, all power flows F-3 2009 & 2014 System Intact, Winter Peak, MHEX 1560 MW, Low NDEX F-4 2009 Prior Outages, MHEX 2175 MW, Low NDEX F-5 2009 Prior Outages, MHEX 2175 MW, High NDEX F-6 2009 Prior Outages, MHEX –900 MW, Low NDEX F-7 2009 Prior Outages, MHEX –900 MW, High NDEX F-8 2014 Prior Outages, MHEX 2175 MW, Low NDEX F-9 2014 Prior Outages, MHEX 2175 MW, High NDEX F-10 2014 Prior Outages, MHEX –900 MW, Low NDEX F-11 2014 Prior Outages, MHEX –900 MW, High NDEX

Year 2009Summer Peak

Steady State AnalysisSystem Intact

N-1, N-2 Contingencies

ACCC Results

Worst-case overload

Single Overloaded Lines Line Line Rating NO WIND NO WIND NO WIND NO WINDContingency C [MVA] BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%)MH-010 67519 BRANDON7 110 67720*BRANE 7 110 3 BE3 81.2 102.1 102.7 106.3 3.4 106.6 107.1 110.9 3.5 100.8 101.3 105.2 3.6 104.5 105.1 108.8 3.5 * 81 CB1 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 none none none none none none 105.7 106.2 107.3 3.3 114.0 114.5 115.1 2.2 * 83 CB42 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 none none none none none none 105.4 106.0 107.1 3.5 113.8 114.3 114.8 2.0 *162 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 none none none none none none 105.7 106.2 107.3 3.3 114.0 114.5 115.1 2.2 *163 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 none none none none none none 105.4 106.0 107.1 3.5 113.8 114.3 114.8 2.0 * 1 D602F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none 215.0 213.9 215.4 0.8 * 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.9 135.5 139.9 3.8 none 181.9 none * 109 MR11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none 185.6 * 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 145.0 143.1 146.7 3.2 207.0 205.1 207.5 1.0 * 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.5 135.0 139.5 3.8 183.7 181.3 none * 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.6 135.2 139.6 3.8 183.9 181.4 none * 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.3 135.9 140.3 3.8 none none none * 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.9 139.4 143.8 3.6 187.8 185.3 188.8 1.9 * 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.7 135.3 139.7 3.8 184.0 181.7 none * 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.8 135.4 139.7 3.6 none 181.7 none * 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.2 3.8 none none none * 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.0 134.6 139.0 3.8 183.2 180.8 none * 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.3 135.9 140.3 3.8 none none none * 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 158.1 155.0 160.6 4.8 199.3 196.4 200.3 1.9 * 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.1 135.7 140.1 3.8 none none none * 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.4 139.0 145.4 7.6 187.3 184.9 189.3 3.8 * 20 F27P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.3 138.9 143.1 3.4 none none none * 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.4 139.0 142.9 2.9 187.7 185.3 188.1 0.8 * 26 G9F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 142.4 140.0 143.9 2.9 187.8 185.5 188.2 0.8 * 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 142.2 139.8 144.0 3.4 187.7 185.4 188.2 1.0 * 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 151.3 148.9 153.5 4.2 194.7 192.4 195.5 1.5 * 3 A4D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 142.8 140.4 146.4 6.9 188.4 186.1 190.0 3.0 * 39 P18H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 142.9 140.5 144.7 3.4 188.0 185.8 188.6 1.1 * 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 148.5 145.9 151.2 5.1 192.0 189.7 193.0 1.9 * 40 P19W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 143.2 140.8 145.2 3.8 188.7 186.5 189.4 1.3 * 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 144.0 141.6 145.3 2.5 187.7 185.4 188.1 0.8 * 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 144.5 142.1 146.4 3.6 187.0 184.8 none * 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.3 134.9 138.7 2.7 183.2 180.8 184.1 1.7 * 49 R50M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.0 138.6 142.9 3.6 none none none * 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.0 138.6 none none none none * 50 R7B 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none 184.8 * 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.4 110.3 112.5 2.1 177.3 176.3 177.1 -0.4 * 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 149.9 147.7 151.7 3.4 190.8 188.7 192.4 3.0 * 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 143.2 140.6 143.5 0.6 188.4 185.8 none * 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 145.7 143.2 147.5 3.4 187.2 184.9 187.8 1.1 * 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none 206.7 204.6 207.0 0.6 * 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 129.6 127.0 129.2 -0.8 172.9 170.2 171.0 -3.6 * 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.3 134.9 139.2 3.6 183.8 181.4 185.1 2.5 * 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 105.2 107.5 103.5 4.4 none none none 106.1 103.9 107.9 3.4 153.7 151.4 155.4 3.2 * 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.2 3.8 184.1 181.7 185.5 2.7 * 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none 184.4 182.1 none * 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.3 134.9 139.2 3.6 183.8 181.4 185.1 2.5 * 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.0 134.6 138.9 3.6 183.5 181.1 185.0 2.9 * 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.2 3.8 184.4 181.9 185.3 1.7 * 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 136.9 134.5 138.8 3.6 183.0 180.6 183.9 1.7 * 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.1 3.6 184.4 182.0 185.3 1.7 * 84 CN9 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.1 138.6 143.3 4.2 none none none * 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.3 138.8 143.2 3.6 none none none * 9 D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 156.6 158.0 164.0 14.1 197.0 198.3 202.4 10.3 * 99 HS15 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.1 135.7 140.0 3.6 184.4 none none *162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.2 3.8 184.4 181.9 185.3 1.7 *163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 135.8 140.2 3.8 184.4 182.0 185.3 1.7 *164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 136.9 134.5 138.8 3.6 183.0 180.7 183.9 1.7 *165 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.1 138.7 143.0 3.6 none none none *166 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.5 139.1 143.5 3.8 none none none *B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 121.6 119.2 123.4 3.4 169.6 167.4 170.2 1.1 *BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 139.6 137.2 141.6 3.8 185.8 183.5 187.0 2.3 *G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.0 135.6 140.0 3.8 184.3 181.9 185.4 2.1 *MH-003 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 141.8 139.4 143.9 4.0 188.1 185.7 188.9 1.5 *MH-004 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 136.7 134.3 138.6 3.6 183.8 181.5 185.0 2.3 *MH-005 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 143.5 141.6 145.2 3.2 206.0 204.1 206.5 1.0 *MH-007 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 162.6 159.4 167.4 9.1 201.7 198.7 204.1 4.6 *MH-008 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 157.5 154.4 160.0 4.8 198.4 195.4 199.3 1.7 *MH-010 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.2 134.9 139.2 3.8 183.7 181.4 185.1 2.7 *MH-011 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 105.1 107.4 103.5 4.4 none none none 106.1 103.8 107.8 3.2 153.7 151.4 155.4 3.2 *MH-012 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.6 135.1 139.7 4.0 182.9 180.4 184.4 2.9 *MH-013 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 134.8 132.4 136.6 3.4 181.2 179.0 183.1 3.6 *MH-014 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 140.8 138.3 142.8 3.8 none none none *MH-015 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 147.0 144.4 149.1 4.0 191.9 189.4 192.7 1.5 *MH-016 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 142.6 140.1 144.6 3.8 188.5 186.0 189.4 1.7 *MH-017 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.3 135.9 140.3 3.8 none none none *MH-018 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none 140.3 none none none *MH-020 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.9 126.5 130.7 3.4 175.2 172.9 176.9 3.2 *MH-026 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.2 134.8 139.2 3.8 183.4 181.1 none *MH-032 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 135.4 133.0 137.4 3.8 181.5 179.2 183.5 3.8 *MH-038 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.4 135.0 139.4 3.8 183.6 181.3 none *

* Mitigation for Network Upgrades by Pembina Hills North IFS sufficient to take care of this overload.

99 MW WIND 99 MW WIND 99 MW WIND 99 MW WINDNDEX = 320 NDEX = 1959 NDEX = 320 NDEX = 1913

Overload [%]MHEX = 2715 MHEX = 2715 MHEX = -900 MHEX = -900

F-1 F-1.xls Page 1 of 1

Year 2014Summer Peak

Steady State AnalysisSystem Intact

N-1, N-2 Contingencies

ACCC Results

Worst-case overload

Single Overloaded Lines Line Line Rating NO WIND NO WIND NO WIND NO WINDContingency C [MVA] BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%) 1 D602F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none 208.9 207.8 210.4 2.9 * 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.2 124.0 128.8 6.9 163.0 161.7 166.5 6.7 * 11 D14S 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none 103.7 104.6 100.7 1.7 none none none none none none * 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 135.6 134.6 138.4 5.3 185.5 184.5 188.3 5.3 * 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.8 123.5 128.3 6.7 162.5 161.2 166.0 6.7 * 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.9 123.6 128.4 6.7 162.6 161.4 166.2 6.9 * 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.5 124.2 129.0 6.7 none none none * 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.5 127.1 132.1 6.9 165.8 164.5 169.4 6.9 * 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.9 123.6 128.4 6.7 162.7 161.4 166.2 6.7 * 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.0 123.7 128.5 6.7 162.7 161.4 166.2 6.7 * 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.4 124.1 129.0 6.9 none none none * 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.4 123.1 128.0 6.9 162.2 160.9 165.7 6.7 * 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.5 124.2 129.0 6.7 none none none * 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 136.5 141.4 6.1 172.5 170.9 175.7 6.1 * 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.2 123.9 128.7 6.7 162.9 161.7 166.5 6.9 * 19 F10M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.7 127.4 131.9 6.1 166.2 165.0 169.5 6.3 * 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 123.9 122.6 none 161.3 160.0 166.5 9.9 * 21 G1A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.8 123.5 129.1 8.2 162.4 161.1 166.7 8.2 * 22 G2A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.8 123.5 129.1 8.2 162.4 161.1 166.7 8.2 * 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 129.9 128.6 132.7 5.3 167.6 166.3 170.3 5.1 * 25 G8P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.4 124.1 128.9 6.7 163.1 161.8 166.5 6.5 * 27A H75P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.0 126.8 131.5 6.7 165.7 164.4 169.1 6.5 * 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.2 136.8 141.9 7.0 175.5 174.3 179.1 6.9 * 38 M39V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.0 126.8 131.3 6.3 165.7 164.4 none * 39A N_V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.0 126.7 none 165.5 164.2 none * 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 131.6 130.3 135.4 7.2 168.5 167.1 172.2 7.0 * 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.3 127.0 131.5 6.1 165.8 164.6 none * 42 P58C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.3 124.1 128.9 6.9 163.1 161.8 166.5 6.5 * 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 129.5 128.2 133.1 6.9 167.1 165.9 170.6 6.7 * 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.2 123.9 128.5 6.3 162.6 161.4 165.9 6.3 * 48 R49R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.4 124.2 129.0 6.9 none none none * 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.1 126.8 none none none none * 50 R7B 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 130.2 128.9 133.3 5.9 167.8 166.5 170.8 5.7 * 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 101.0 101.6 none 113.6 113.0 115.6 3.8 164.2 163.6 166.1 3.6 * 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 139.7 138.5 142.9 6.1 173.0 171.9 176.2 6.1 * 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 130.5 129.2 133.4 5.5 167.6 166.3 170.5 5.5 * 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 130.3 129.0 133.8 6.7 167.8 166.5 171.3 6.7 * 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 131.3 132.4 128.2 2.1 128.9 127.7 132.2 6.3 183.0 181.9 186.3 6.3 * 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.6 123.3 127.1 4.8 161.8 160.5 164.2 4.6 * 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.7 123.4 128.3 6.9 162.6 161.3 166.1 6.7 * 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 120.0 121.3 116.4 2.5 none none 100.9 136.3 135.1 139.8 6.7 * 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.9 123.6 128.6 7.0 162.4 161.2 166.0 6.9 * 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.3 124.0 128.9 6.9 162.7 161.4 166.3 6.9 * 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.7 123.4 128.3 6.9 162.6 161.3 166.1 6.7 * 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.5 123.2 128.0 6.7 162.3 161.1 165.8 6.7 * 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.3 124.1 128.9 6.9 162.8 161.5 166.2 6.5 * 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.1 122.8 127.6 6.7 161.3 160.1 164.8 6.7 * 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.4 124.1 128.9 6.7 162.8 161.5 166.2 6.5 * 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.1 126.8 131.7 6.9 none none none * 9A P_C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 140.3 140.3 147.1 12.9 173.0 173.1 179.8 12.9 * 9B D_1P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 129.7 none none 166.7 none none * 9C D_2P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 129.6 127.2 132.4 5.3 166.6 none 169.4 * 9D D_3P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 161.8 none * 9E D_4P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 129.8 134.9 none 166.8 171.8 * 9F D_5P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 133.6 138.7 none 170.3 175.3 *162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.3 124.1 128.9 6.9 162.8 161.5 166.2 6.5 *163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.4 124.1 128.9 6.7 162.8 161.5 166.2 6.5 *164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.1 122.8 127.6 6.7 161.3 160.0 164.8 6.7 *B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 106.8 108.1 103.4 2.5 108.4 107.1 112.0 6.9 148.1 146.9 151.2 5.9 *BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 126.7 125.5 130.3 6.9 164.3 163.1 167.9 6.9 *G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.9 123.7 128.5 6.9 162.5 161.2 166.1 6.9 *G16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 132.5 131.2 136.1 6.9 170.0 168.7 173.5 6.7 *MH-003 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 127.9 126.6 131.5 6.9 165.6 164.3 169.1 6.7 *MH-004 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 123.8 122.6 127.3 6.7 162.2 161.0 165.7 6.7 *MH-005 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none 106.5 107.5 103.7 1.9 none none none none none none *MH-005 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 134.1 133.2 136.9 5.3 184.4 183.3 187.1 5.1 *MH-006 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.5 124.3 129.1 6.9 none none none *MH-007 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none 100.1 none none none none none none none *MH-007 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 134.9 133.3 141.9 13.3 169.4 167.8 176.3 13.1 *MH-008 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 138.0 136.4 141.1 5.9 172.2 170.5 175.3 5.9 *MH-010 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.7 123.4 128.2 6.7 162.5 161.3 166.0 6.7 *MH-011 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 119.9 121.2 116.3 2.5 none none 100.9 136.4 135.1 139.9 6.7 *MH-012 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 123.6 122.2 127.3 7.0 160.6 159.3 164.3 7.0 *MH-013 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 122.6 121.3 126.1 6.7 160.6 159.4 164.1 6.7 *MH-015 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 132.4 131.0 136.2 7.2 168.9 167.5 172.6 7.0 *MH-016 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 128.7 127.5 132.3 6.9 166.1 164.8 169.7 6.9 *MH-017 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.2 123.9 128.8 6.9 162.9 161.7 166.4 6.7 *MH-018 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.5 124.2 129.0 6.7 none none none *MH-020 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.8 114.6 119.3 6.7 153.9 152.6 157.3 6.5 *MH-026 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.3 123.0 127.8 6.7 162.1 160.9 165.6 6.7 *MH-032 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 122.9 121.6 126.5 6.9 160.8 159.5 164.3 6.7 *MH-038 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 124.5 123.2 128.0 6.7 162.3 161.0 165.8 6.7 *

* Mitigation for Network Upgrades by Pembina Hills North IFS sufficient to take care of this overload.

99 MW WIND 99 MW WIND 99 MW WIND 99 MW WINDNDEX = 320 NDEX = 1959 NDEX = 320 NDEX = 1913

Overload [%]MHEX = 2715 MHEX = 2715 MHEX = -900 MHEX = -900

F-2 F-2.xls 1 of 1

Years 2009, 2014Winter Peak

Steady State AnalysisSystem Intact

N-1, N-2 Contingencies

ACCC Results

Worst-case overload

Single Overloaded Lines Line Line Rating NO WIND NO WINDContingency C [MVA] BASE DRSY GR RPD PTDF (%) BASE DRSY GR RPD PTDF (%)MH-010 67519 BRANDON7 110 67720*BRANE 7 110 3 BE3 124.8 118.8 119.2 121.8 3.8 106.4 106.6 108.0 2.0 * 109 MR11 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 137.8 139.1 137.4 0.6 none none none * 110 NM10 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 112.9 114.1 112.1 0.6 none none none * 4 A6V 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 none none 102.8 none none none * 45 R29H 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 103.2 104.5 108.3 2.4 none none none * 52 S60L 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 none none 100.6 none none none * 53 V38R 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 none 100.5 101.1 none none none * 7 C28R 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 114.9 116.4 123.0 3.7 none none none * 75 BK41 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 110.3 111.5 113.8 1.6 none none none * 84 CN9 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 109.8 110.2 114.3 2.1 none none none * CNW-001 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 114.0 115.5 121.8 3.6 none none none * CNW-002 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 115.9 117.3 123.7 3.6 none none none * RST-001 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 118.9 120.3 126.3 3.4 none none none * RST-002 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 102.9 104.4 110.4 3.5 none none none *180 RAVL BK 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 100.8 101.7 100.6 0.4 none none none *MH-011 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 110.5 111.6 114.0 1.6 none none none *MH-014 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 109.8 110.2 114.3 2.1 none none none *MH-019 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 45.7 128.3 129.9 135.7 3.4 none none none *

* Mitigation for Network Upgrades by Pembina Hills North IFS sufficient to take care of this overload.

Overload [%]Year 2009 Year 2014

MHEX = 1513 MHEX = 1570

99 MW WIND 99 MW WINDNDEX = 381 NDEX = 286

F-3 F-3.xls 1 of 1

Year 2009Summer Peak

Steady State AnalysisPrior Outage

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.8 103.0 4.2 none none none none none none none none none 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 149.8 151.2 2.7 none none none none none none none none none 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 101.4 103.6 4.2 none none none none none none none none none 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 101.2 103.4 4.2 none none none none none none none none none 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.2 102.4 4.2 none none none none none none none none none 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.8 103.0 4.2 none none none none none none none none none 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 101.0 103.2 4.2 none none none none none none none none none 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.5 102.7 4.2 none none none none none none none none none 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 102.2 104.4 4.2 none none none none none none none none none 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.3 102.5 4.2 none none none none none none none none none 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 102.2 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.9 103.1 4.2 none none none none none none none none none 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 103.6 105.9 4.4 none none none none none none none none none 21 G1A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.8 103.0 4.2 none none none none none none none none none 22 G2A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.8 103.0 4.2 none none none none none none none none none 29 K21W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 102.2 none none none none none none none none none 3 A4D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.9 103.2 4.4 none none none none none none none none none 30 K22W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 102.2 none none none none none none none none none 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 160.5 162.1 3.0 none none none none none none none none none none none none none none none 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 102.3 none none none none none none none none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.9 103.1 4.2 none none none none none none none none none 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 112.2 114.1 3.6 111.6 112.9 2.5 none none 135.0 none none none 109.2 121.2 109.3 22.8 106.7 109.6 5.5 108.7 111.3 4.9 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 101.0 103.3 4.4 none none none none none none none none none 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.7 103.0 4.4 none none none none none none none none none 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.9 103.1 4.2 none none none none none none none none none 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 101.3 103.5 4.2 none none none none none none none none none 99 HS15 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 102.2 none none none none none none none none none 9A D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 103.2 none none none none none none none none none165 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 103.6 105.7 4.0 none none none none none none none none none166 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 104.9 107.1 4.2 none none none none none none none none none200 WHSL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 105.1 107.2 4.0 none none none none none none none none none201 WHSL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 105.1 107.2 4.0 none none none none none none none none noneB78SSTL 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 113.3 115.2 3.6 none none none none none none none none none none none none none none noneB78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 120.1 122.3 4.2 none none none none none none none none noneBASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 100.7 none none none none none none none none none

LOW NDEX LOW NDEX

PO D14S PO S53G PO S60L PO Y51L PO G37CMHEX = 1996 MHEX = 2015

PO D12CMHEX = 2173LOW NDEX

Overload [%]

MHEX = 2015 MHEX = 1869 MHEX = 2013LOW NDEX LOW NDEX LOW NDEX

PO D54CMHEX = 2175LOW NDEX

PO C28RMHEX = 2175LOW NDEX

F-4 F-4.xls 1 of 1

Year 2009Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

MH-010 67519 BRANDON7 110 67720*BRANE 7 110 3 BE3 81.2 107.3 107.9 0.5 106.8 107.4 0.5 109.8 110.4 0.5 105.8 106.3 0.4 109.7 110.5 0.7 107.4 110.2 107.4 2.3 106.6 107.3 0.6 112.1 113.0 0.7 109 MR11 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 38.1 115.4 117.0 0.6 113.9 115.7 0.7 122.2 123.7 0.6 111.2 112.7 0.6 121.1 123.2 0.8 115.4 122.6 115.4 2.8 113.5 115.4 0.7 116.4 118.0 0.6 110 NM10 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 38.1 106.6 108.1 0.6 105.2 106.8 0.6 113.0 114.4 0.5 102.6 104.0 0.5 111.8 113.8 0.8 106.5 113.3 106.5 2.6 104.8 106.5 0.7 107.0 108.4 0.5 75 BK41 67519*BRANDON7 110 67521 NEPWA 7 110 1 BN5 38.1 none none none none none none none none 104.1 105.9 0.7 none 101.9 none none none 100.3 102.0 0.7

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = 1996 MHEX = 2015 MHEX = 2015 MHEX = 1869 MHEX = 2013 MHEX = 2173 MHEX = 2175 MHEX = 2175LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX

F-5 F-5.xls 1 of 1

Year 2009Summer Peak

Steady StatePrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

81 CB1 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 101.9 102.5 none none 102.6 103.1 0.7 101.2 101.7 0.7 none none none 100.3 none none none 109.1 109.8 1.0 82 CB3 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 125.3 126.0 119.7 120.5 1.1 126.1 126.8 1.0 124.4 125.0 0.8 107.8 108.7 1.3 119.2 123.5 119.2 6.0 119.4 120.2 1.1 134.5 135.4 1.3162 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 101.9 102.5 none none 102.6 103.1 0.7 101.2 101.7 0.7 none none none 100.3 none none none 109.1 109.8 1.0164 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 125.3 126.0 119.7 120.5 1.1 126.1 126.8 1.0 124.4 125.0 0.8 107.8 108.7 1.3 119.2 123.5 119.2 6.0 119.4 120.2 1.1 134.5 135.4 1.3 81 CB1 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 106.2 106.8 101.4 103.0 3.3 106.9 107.4 1.0 105.4 106.0 1.2 none none 101.0 104.5 101.0 7.1 101.1 102.2 2.2 113.7 114.4 1.4 83 CB42 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 106.0 106.6 101.2 102.8 3.3 106.7 107.2 1.0 105.2 105.7 1.0 none none 100.8 104.3 100.8 7.1 100.9 102.0 2.2 113.5 114.2 1.4162 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 106.2 106.8 101.4 102.5 2.2 106.9 107.4 1.0 105.4 106.0 1.2 none none 101.0 104.5 101.0 7.1 101.1 102.2 2.2 113.7 114.4 1.4163 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 106.0 106.6 101.2 102.3 2.2 106.7 107.2 1.0 105.2 105.7 1.0 none none 100.8 104.3 100.8 7.1 100.9 102.0 2.2 113.5 114.2 1.4 15 D54C 67503 DORSEY 4 230 67574*PORTSOU4 230 1 D12C 283.6 none none none none none none none none 107.9 110.4 7.2 none none none none none none none 24 G37C 67503 DORSEY 4 230 67574*PORTSOU4 230 1 D12C 283.6 none none none none none none none none none none none none none 107.9 110.4 7.2 none none 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.9 141.1 108.4 107.2 -2.3 149.3 147.0 -4.4 134.0 131.8 -4.2 none none 156.0 143.7 156.0 0.0 156.5 153.4 -5.9 127.9 125.3 -4.9 109 MR11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none none none none none 125.6 122.9 -5.1 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 112.8 111.7 -2.1 175.2 173.8 -2.7 139.7 138.5 -2.3 none none none 149.5 none none none 136.7 134.6 -4.0 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.3 140.5 107.7 106.6 -2.1 148.8 146.6 -4.2 133.4 131.1 -4.4 none none 155.6 143.3 155.6 0.0 156.1 153.0 -5.9 127.5 124.9 -4.9 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.4 140.6 107.9 106.8 -2.1 149.0 146.7 -4.4 133.5 131.3 -4.2 none none 155.7 143.4 155.8 0.2 156.2 153.1 -5.9 127.6 125.0 -4.9 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.4 141.5 108.9 107.8 -2.1 none none 134.6 132.4 -4.2 none none none none none none none none none 12 D15Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.5 141.6 none none none none none none none none none none none none none none none 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.9 145.0 none none 152.9 150.6 -4.4 138.5 136.3 -4.2 none none 161.3 148.4 161.3 0.0 161.5 158.3 -6.1 131.8 129.2 -4.9 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.7 140.9 108.4 107.3 -2.1 149.2 146.9 -4.4 134.1 131.8 -4.4 none none 155.8 143.5 155.8 0.0 156.3 153.2 -5.9 127.8 125.2 -4.9 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.6 140.8 108.2 107.0 -2.3 149.2 146.9 -4.4 133.8 131.6 -4.2 none none 156.0 143.6 156.0 0.0 156.4 153.3 -5.9 127.8 125.2 -4.9 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.1 141.3 108.6 107.5 -2.1 149.5 147.3 -4.2 134.4 132.1 -4.4 none none none 144.0 none none 153.7 128.2 125.7 -4.8 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 141.5 139.7 107.0 105.9 -2.1 148.4 146.2 -4.2 132.6 130.4 -4.2 none none 155.3 143.0 155.3 0.0 155.8 152.6 -6.1 127.1 124.5 -4.9 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.3 141.5 108.8 107.7 -2.1 none none 134.6 132.3 -4.4 none none none none none none none none 125.8 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 160.2 157.6 122.7 121.1 -3.0 167.0 164.0 -5.7 154.2 151.2 -5.7 none none 194.4 175.2 194.4 0.0 none none 147.1 143.6 -6.7 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 109.1 108.0 -2.1 none none 134.9 132.7 -4.2 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.0 141.2 108.3 107.2 -2.1 149.4 147.2 -4.2 134.0 131.8 -4.2 none none none none none none none 128.2 125.6 -4.9 159 R1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.7 135.4 -4.4 none none none none none none none none none 16 D55Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.5 141.6 none none none none none none none none none none none none none none none 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.6 144.7 none none 152.5 150.2 -4.4 138.2 135.9 -4.4 none none 160.8 147.9 160.8 0.0 161.1 157.7 -6.5 131.1 128.5 -4.9 20 F27P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.4 144.5 none none 152.4 150.1 -4.4 138.0 135.8 -4.2 none none 160.0 147.5 160.0 0.0 160.3 157.2 -5.9 none none 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.6 144.7 none none 152.5 150.3 -4.2 138.2 135.9 -4.4 none none 160.2 147.8 160.2 0.0 160.6 157.5 -5.9 130.7 128.2 -4.8 26 G9F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.4 145.5 none none 153.5 151.2 -4.4 139.1 136.8 -4.4 none none 161.6 149.0 161.6 0.0 161.9 158.8 -5.9 131.1 128.5 -4.9 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.4 145.4 112.1 none 153.3 151.0 -4.4 139.0 136.8 -4.2 none none 161.1 148.7 161.2 0.2 161.5 158.3 -6.1 130.9 128.3 -4.9 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 157.6 155.7 121.0 119.8 -2.3 161.7 159.4 -4.4 150.1 147.9 -4.2 none none 171.0 158.3 171.0 0.0 171.2 168.1 -5.9 137.8 135.3 -4.8 3 A4D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.7 145.7 112.3 111.1 -2.3 153.8 151.5 -4.4 139.5 137.2 -4.4 none none 162.6 149.6 162.7 0.2 162.8 159.7 -5.9 131.8 129.2 -4.9 31 L20D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 152.6 150.4 -4.2 none none none none none none none none none none none 39 P18H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 148.0 146.1 112.5 111.4 -2.1 153.9 151.7 -4.2 139.7 137.5 -4.2 none none 162.1 149.5 162.1 0.0 162.3 159.2 -5.9 131.3 128.7 -4.9 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 152.5 150.4 115.3 114.0 -2.5 159.1 156.7 -4.6 144.8 142.5 -4.4 none none 171.4 157.8 171.5 0.2 171.1 167.8 -6.3 135.9 133.3 -4.9 40 P19W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 148.9 146.9 113.7 112.5 -2.3 154.2 152.0 -4.2 140.7 138.4 -4.4 none none 161.7 149.3 161.8 0.2 162.1 158.9 -6.1 132.1 129.5 -4.9 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 148.8 146.9 112.9 111.7 -2.3 154.9 152.6 -4.4 140.5 138.3 -4.2 none none 164.1 151.2 164.1 0.0 164.2 161.0 -6.1 131.7 129.1 -4.9 42 P58C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 135.1 132.9 -4.2 none none none none none none none none none 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 149.3 147.4 113.3 112.2 -2.1 155.4 153.1 -4.4 141.2 138.9 -4.4 none none 164.6 151.8 164.6 0.0 164.7 161.6 -5.9 131.2 128.6 -4.9 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.2 141.3 none none 148.6 146.3 -4.4 134.4 132.1 -4.4 none none 155.2 142.4 155.3 0.2 155.8 152.5 -6.3 none none 49 R50M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.9 145.1 112.2 111.1 -2.1 none 149.9 138.2 136.0 -4.2 none none 158.9 none 158.9 none none 130.9 128.3 -4.9 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 137.8 135.5 -4.4 none none 160.4 147.4 160.4 0.0 160.7 157.5 -6.1 128.3 125.7 -4.9 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 113.7 112.5 none none 108.6 107.4 -2.3 108.9 107.7 -2.3 none none 122.8 116.7 122.8 0.0 123.0 121.3 -3.2 106.3 105.1 -2.3 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 173.8 172.7 106.1 105.0 -2.1 none none 144.2 none none none 165.7 153.9 165.7 0.0 166.1 163.2 -5.5 140.3 137.9 -4.6 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 148.0 145.9 112.8 111.6 -2.3 153.9 151.5 -4.6 139.9 137.5 -4.6 none none 164.5 150.7 164.5 0.0 164.5 161.1 -6.5 133.6 130.9 -5.1 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 150.3 148.3 113.9 112.7 -2.3 156.5 154.3 -4.2 142.3 140.1 -4.2 none none 166.1 153.2 166.1 0.0 166.1 163.0 -5.9 131.7 129.1 -4.9 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 146.4 145.1 112.0 110.9 -2.1 none none none none none none 157.1 none 157.2 157.6 154.8 -5.3 none none 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 136.6 134.6 105.3 104.1 -2.3 141.2 138.8 -4.6 127.1 124.7 -4.6 none none 146.4 132.3 146.4 0.0 147.1 143.6 -6.7 none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.7 140.9 108.9 107.8 -2.1 148.7 146.4 -4.4 134.0 131.7 -4.4 none none 154.6 142.4 154.6 0.0 155.3 152.1 -6.1 127.2 124.6 -4.9 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 112.6 110.8 none none 120.1 117.9 -4.2 101.4 100.4 -1.9 none none 115.3 106.0 115.3 0.0 117.7 114.7 -5.7 none none 76 BN5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none 144.3 none none none 128.2 125.6 -4.9 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.6 141.7 none none 149.5 147.2 -4.4 134.9 132.6 -4.4 none none none 143.9 none none none 128.0 125.3 -5.1 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 133.0 none none none none none none none 128.4 125.7 -5.1 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.8 140.9 108.9 107.8 -2.1 148.7 146.4 -4.4 134.0 131.8 -4.2 none none 154.6 142.5 154.7 0.2 155.3 152.1 -6.1 127.2 124.6 -4.9 8 D11Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.5 141.6 none none none none none none none none none none none none none none none 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 142.4 140.6 108.7 107.6 -2.1 148.4 146.1 -4.4 133.7 131.4 -4.4 none none 154.2 142.1 154.3 0.2 154.9 151.8 -5.9 126.9 124.3 -4.9 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 144.0 142.1 109.6 108.5 -2.1 149.6 147.3 -4.4 135.1 132.8 -4.4 none none 155.9 143.4 155.9 0.0 156.4 153.3 -5.9 127.6 125.0 -4.9 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.0 141.1 108.9 107.7 -2.3 148.5 146.2 -4.4 134.0 131.7 -4.4 none none 154.4 141.8 154.5 0.2 154.9 151.8 -5.9 125.8 123.2 -4.9 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 144.0 142.1 109.6 108.5 -2.1 149.6 147.3 -4.4 135.1 132.8 -4.4 none none 155.9 143.4 155.9 0.0 156.4 153.3 -5.9 127.6 125.0 -4.9 84 CN9 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 152.2 149.9 -4.4 137.7 135.4 -4.4 none none 161.0 147.8 161.0 0.0 161.2 158.0 -6.1 131.1 128.4 -5.1 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 152.3 150.0 -4.4 137.8 135.6 -4.2 none none 160.6 147.7 160.6 0.0 160.8 157.6 -6.1 131.2 128.6 -4.9 9 D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 158.4 160.3 120.4 122.5 4.0 165.6 166.9 2.5 152.1 154.2 4.0 none none none 160.1 none 193.7 194.8 2.1 145.4 146.8 2.7 99 HS15 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.4 141.6 109.1 108.0 -2.1 149.5 147.2 -4.4 134.7 132.5 -4.2 none none 156.0 143.6 156.0 0.0 156.5 153.4 -5.9 none none 9A D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 149.4 none 115.8 none 154.7 none 142.2 none none none none none none 175.3 none 132.3 9B D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 158.5 none 120.5 none 165.6 none 152.2 none none none none none none 193.8 none 145.5 9C D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 163.3 none 125.6 none 168.9 none 157.4 none none none 160.1 161.1 none 196.5 none 148.7151A YM31 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 135.2 133.0 -4.2 none none none none none none none none none162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 144.0 142.1 109.6 108.5 -2.1 149.6 147.3 -4.4 135.1 132.8 -4.4 none none 155.9 143.4 155.9 0.0 156.4 153.3 -5.9 127.6 125.0 -4.9163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 144.0 142.1 109.6 108.5 -2.1 149.6 147.3 -4.4 135.1 132.8 -4.4 none none 155.9 143.4 155.9 0.0 156.4 153.3 -5.9 127.6 125.0 -4.9164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.0 141.1 108.9 107.7 -2.3 148.5 146.2 -4.4 134.0 131.7 -4.4 none none 154.4 141.8 154.4 0.0 154.9 151.8 -5.9 125.8 123.2 -4.9165 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.2 145.3 112.4 111.3 -2.1 152.2 150.0 -4.2 138.4 136.2 -4.2 none none 158.9 none 158.9 none 156.3 131.0 128.5 -4.8166 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.7 145.8 113.0 111.8 -2.3 152.6 150.4 -4.2 139.0 136.8 -4.2 none none 159.3 147.0 159.3 0.0 159.8 156.7 -5.9 131.5 128.9 -4.9180 RAVL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 158.9 none 159.0 none 156.2 128.0 125.2 -5.3B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 111.9 110.1 118.8 117.7 -2.1 124.1 121.9 -4.2 114.9 112.7 -4.2 none none 141.8 129.6 141.8 0.0 142.1 139.1 -5.7 112.2 109.7 -4.8BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 145.0 143.1 110.5 109.4 -2.1 150.9 148.6 -4.4 136.4 134.2 -4.2 none none 157.7 145.3 157.7 0.0 158.1 155.0 -5.9 129.6 127.0 -4.9G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.8 141.8 109.2 108.0 -2.3 149.6 147.3 -4.4 134.9 132.7 -4.2 none none 156.0 143.3 156.0 0.0 156.3 153.2 -5.9 127.9 125.3 -4.9G12 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 108.9 none none none none none none none 145.0 none 157.9 154.7 -6.1 none none

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = -900 MHEX = -885 MHEX = -890 MHEX = -810 MHEX = -890 MHEX = -900 MHEX = -900 MHEX = -900LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX

F-6 F-6.xls 1 of 1

Year 2009Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

82 CB3 67519 BRANDON7 110 67617*CORNW1 7 110 1 CB1 166.9 113.8 114.4 1.0 109.2 109.8 1.0 112.6 113.2 1.0 113.7 114.2 0.8 none none 109.0 111.8 109.5 4.7 108.5 109.1 1.0 119.8 121.0 2.0164 CORN BK 67519 BRANDON7 110 67617*CORNW1 7 110 1 CB1 166.9 113.8 114.4 1.0 109.2 109.8 1.0 112.6 113.2 1.0 113.7 114.2 0.8 none none 109.0 111.8 109.5 4.7 108.5 109.1 1.0 119.8 121.0 2.0 81 CB1 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 111.7 112.2 0.7 107.1 107.7 0.8 110.0 110.6 0.8 111.1 111.6 0.7 none none 106.9 109.5 108.5 3.6 106.4 107.0 0.8 118.3 117.9 -0.6 82 CB3 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 137.1 137.7 0.8 131.4 132.2 1.1 135.6 136.3 1.0 136.9 137.5 0.8 113.0 114.0 1.4 131.3 134.6 131.9 4.6 130.6 131.4 1.1 144.2 145.7 2.1162 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 111.7 112.2 0.7 107.1 107.7 0.8 110.0 110.6 0.8 111.1 111.6 0.7 none none 106.9 109.5 108.5 3.6 106.4 107.0 0.8 118.3 117.9 -0.6164 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 137.1 137.7 0.8 131.4 132.2 1.1 135.6 136.3 1.0 136.9 137.5 0.8 113.0 114.0 1.4 131.3 134.6 131.9 4.6 130.6 131.4 1.1 144.2 145.7 2.1 81 CB1 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 116.4 116.9 1.0 111.7 112.3 1.2 114.6 115.2 1.2 115.7 116.3 1.2 none none 111.4 114.0 110.7 5.3 110.8 111.5 1.4 120.9 122.8 3.9 83 CB42 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 116.1 116.7 1.2 111.4 112.1 1.4 114.4 114.9 1.0 115.5 116.0 1.0 none none 111.1 113.8 110.4 5.5 110.6 111.2 1.2 120.6 122.5 3.9162 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 116.4 116.9 1.0 111.7 112.3 1.2 114.6 115.2 1.2 115.7 116.3 1.2 none none 111.4 114.0 110.7 5.3 110.8 111.5 1.4 120.9 122.8 3.9163 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 116.1 116.7 1.2 111.4 112.1 1.4 114.4 114.9 1.0 115.5 116.0 1.0 none none 111.1 113.8 110.4 5.5 110.6 111.2 1.2 120.6 122.5 3.9 15 D54C 67503 DORSEY 4 230 67574*PORTSOU4 230 1 D12C 283.6 none none none none none none none none 100.7 103.4 7.7 none none none none none none none 24 G37C 67503 DORSEY 4 230 67574*PORTSOU4 230 1 D12C 283.6 none none none none none none none none none none none none none 100.8 103.5 7.7 none none 1 D602F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 255.6 254.1 -2.9 222.0 220.1 -3.6 217.3 214.4 -5.5 252.8 251.5 -2.5 none none 220.4 210.1 220.4 0.0 222.5 220.7 -3.4 207.5 205.1 -4.6 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.6 202.7 -3.6 175.2 none 190.2 188.0 -4.2 200.3 198.2 -4.0 none none none 184.3 none none 194.6 none none 109 MR11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none 184.8 none none none 168.5 165.8 -5.1 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 180.2 179.1 -2.1 237.0 235.7 -2.5 248.0 246.8 -2.3 none none 215.2 205.1 215.3 0.2 216.3 213.8 -4.8 195.3 193.1 -4.2 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 203.8 201.9 -3.6 174.6 173.3 -2.5 189.8 187.5 -4.4 199.6 197.5 -4.0 none none 196.0 183.8 196.0 0.0 197.3 194.2 -5.9 171.8 169.2 -4.9 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.0 202.1 -3.6 174.7 173.5 -2.3 189.9 187.7 -4.2 199.8 197.7 -4.0 none none 196.1 184.0 196.1 0.0 197.4 194.3 -5.9 none none 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.2 203.3 -3.6 none none none none 200.9 198.8 -4.0 none none none none none none none none none 12 D15Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.1 none none none none none none none none none none none none none none none none 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.5 191.4 -4.0 204.4 202.3 -4.0 none none 200.8 188.6 200.8 0.0 202.0 198.9 -5.9 175.1 172.5 -4.9 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.5 202.6 -3.6 none none 190.1 188.0 -4.0 200.3 198.2 -4.0 none none 196.2 184.1 196.3 0.2 197.6 194.5 -5.9 171.8 169.2 -4.9 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.4 202.5 -3.6 175.0 173.8 -2.3 190.1 187.9 -4.2 200.1 198.0 -4.0 none none none 184.2 none none 194.5 none none 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.0 203.0 -3.8 none none none none 200.6 198.5 -4.0 none none none none none none none none none 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 203.1 201.2 -3.6 173.8 172.6 -2.3 189.3 187.2 -4.0 198.8 196.8 -3.8 none none 195.6 183.5 195.6 0.0 196.9 193.7 -6.1 171.5 168.9 -4.9 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.1 203.2 -3.6 none none none none 200.8 198.7 -4.0 none none none none none none none none none 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 216.4 213.9 -4.8 184.3 182.7 -3.0 203.7 200.9 -5.3 213.4 210.7 -5.1 none none 222.7 205.5 222.8 0.2 none none 184.6 181.1 -6.7 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 201.2 199.1 -4.0 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.8 202.9 -3.6 175.1 173.9 -2.3 none none 200.2 198.1 -4.0 none none none none none none none none none 16 D55Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.1 none none none none none none none none none none none none none none none none 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.1 190.9 -4.2 none none none none 199.8 188.0 199.8 0.0 201.0 197.9 -5.9 none none 20 F27P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none 190.9 none none none none none 187.3 none none none none none 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 208.4 206.6 -3.4 none none 193.4 191.3 -4.0 204.3 202.3 -3.8 none none 200.1 188.4 200.1 0.0 201.3 198.3 -5.7 none none 26 G9F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.9 191.8 -4.0 204.2 202.2 -3.8 none none 200.2 188.6 200.2 0.0 201.4 198.4 -5.7 none none 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.8 191.7 -4.0 204.1 202.1 -3.8 none none 199.9 188.4 199.9 0.0 201.1 198.2 -5.5 none none 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 216.6 214.8 -3.4 183.8 182.8 -1.9 199.8 197.8 -3.8 212.6 210.6 -3.8 none none 207.3 195.6 207.3 0.0 208.4 205.4 -5.7 178.9 176.3 -4.9 3 A4D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 208.7 206.8 -3.6 none none 194.4 192.3 -4.0 204.7 202.6 -4.0 none none 201.1 189.3 201.1 0.0 202.3 199.3 -5.7 none none 39 P18H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 208.6 206.7 -3.6 none none 194.1 192.0 -4.0 204.5 202.5 -3.8 none none 200.4 188.8 200.4 0.0 201.6 198.6 -5.7 none none 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 211.5 209.6 -3.6 none none 197.7 195.6 -4.0 207.8 205.7 -4.0 none none 206.7 194.4 206.7 0.0 207.6 204.5 -5.9 175.7 173.1 -4.9 40 P19W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 210.0 208.2 -3.4 none 177.6 194.7 192.7 -3.8 205.8 203.8 -3.8 none none 200.7 189.2 200.7 0.0 201.9 199.0 -5.5 174.9 172.3 -4.9 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.7 191.7 -3.8 none 201.8 none none 200.3 188.7 200.3 0.0 201.5 198.5 -5.7 none none 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.1 191.0 -4.0 none none none none 199.5 188.0 199.5 0.0 200.7 197.7 -5.7 171.4 168.9 -4.8 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.7 202.7 -3.8 none 174.2 189.2 187.0 -4.2 200.1 197.9 -4.2 none none 194.9 182.3 194.9 0.0 196.4 193.2 -6.1 none none 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none none none 200.8 none 170.2 167.6 -4.9 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 180.9 179.9 -1.9 none none 176.6 175.4 -2.3 182.8 181.9 -1.7 none none 183.9 178.2 183.9 0.0 184.8 183.4 -2.7 170.0 168.7 -2.5 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 234.3 233.0 -2.5 174.1 173.0 -2.1 none none none none none none 201.5 190.1 201.5 0.0 202.7 199.8 -5.5 179.5 177.1 -4.6 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 208.7 206.7 -3.8 none none 193.9 191.6 -4.4 204.6 202.4 -4.2 none none 202.5 189.4 202.5 0.0 203.6 200.3 -6.3 176.0 173.3 -5.1 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 193.3 191.2 -4.0 none none none none 199.9 188.3 199.9 0.0 201.1 198.1 -5.7 171.2 168.6 -4.9 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 254.8 253.6 -2.3 none none none none none none none none 214.9 204.2 214.9 0.0 216.5 213.8 -5.1 193.7 191.3 -4.6 6 B70H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 176.5 none none none none none none none none none none none none 170.8 168.2 -4.9 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 194.4 192.3 -4.0 169.2 167.8 -2.7 179.6 177.2 -4.6 188.9 186.6 -4.4 none none 182.0 168.7 182.1 0.2 184.0 180.6 -6.5 none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.7 202.8 -3.6 none none 189.8 187.6 -4.2 200.3 198.2 -4.0 none none 195.2 183.4 195.2 0.0 196.7 193.6 -5.9 171.3 168.7 -4.9 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 175.4 173.7 -3.2 154.4 153.2 -2.3 161.1 158.9 -4.2 none none none none 157.1 146.6 157.1 0.0 160.1 157.1 -5.7 142.3 139.8 -4.8 76 BN5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 197.0 184.8 197.1 0.2 none 195.4 171.5 168.9 -4.9 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.1 203.2 -3.6 none none 190.1 187.9 -4.2 200.7 198.5 -4.2 none none 196.4 183.9 196.4 0.0 197.9 194.6 -6.3 171.4 168.8 -4.9 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.5 203.5 -3.8 none none 190.4 188.2 -4.2 201.0 198.9 -4.0 none none none 184.2 none none 194.9 171.7 169.1 -4.9 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.7 202.8 -3.6 none none 189.8 187.6 -4.2 200.3 198.2 -4.0 none none 195.2 183.4 195.2 0.0 196.7 193.6 -5.9 none 168.8 8 D11Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.1 none none none none none none none none none none none none none none none none 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 204.5 202.4 -4.0 none none 189.5 187.3 -4.2 200.0 197.9 -4.0 none none 194.8 183.1 194.8 0.0 196.4 193.4 -5.7 171.1 168.5 -4.9 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.0 204.1 -3.6 175.7 174.6 -2.1 190.5 188.4 -4.0 201.3 199.3 -3.8 none none 196.1 184.0 196.1 0.0 197.4 194.4 -5.7 171.1 168.5 -4.9 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.0 203.1 -3.6 174.8 173.6 -2.3 189.3 187.2 -4.0 200.1 198.0 -4.0 none none 194.3 182.1 194.3 0.0 195.6 192.6 -5.7 169.0 166.4 -4.9 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.0 204.1 -3.6 175.7 174.6 -2.1 190.5 188.4 -4.0 201.3 199.3 -3.8 none none 196.1 184.0 196.1 0.0 197.4 194.4 -5.7 171.1 168.5 -4.9 84 CN9 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 200.1 187.5 200.2 0.2 201.3 198.2 -5.9 none none 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 200.1 187.8 200.1 0.0 201.3 198.3 -5.7 none none 9 D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 213.9 215.6 3.2 182.9 none 201.5 203.0 2.9 210.8 212.4 3.0 none none none 199.7 none 222.4 222.9 1.0 181.9 182.9 1.9 99 HS15 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.3 203.4 -3.6 none none none none 201.0 198.9 -4.0 none none 196.4 184.3 196.5 0.2 197.8 194.7 -5.9 none none 9A D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none 177.5 none 191.2 none none none none none none none none 205.5 none 169.2 9B D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 214.1 none 182.8 none 201.6 none 210.8 none none none none none none 222.4 none 181.9 9C D12C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 217.8 none none none 204.3 none 214.5 none none none 199.7 200.5 none 223.6 none 184.4162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.0 204.1 -3.6 175.7 174.6 -2.1 190.5 188.4 -4.0 201.3 199.3 -3.8 none none 196.1 184.0 196.1 0.0 197.4 194.4 -5.7 171.1 168.5 -4.9163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 206.0 204.1 -3.6 175.7 174.6 -2.1 190.5 188.4 -4.0 201.3 199.3 -3.8 none none 196.1 184.0 196.1 0.0 197.4 194.4 -5.7 171.1 168.5 -4.9164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.0 203.1 -3.6 174.8 173.6 -2.3 189.3 187.2 -4.0 200.1 198.0 -4.0 none none 194.3 182.1 194.3 0.0 195.6 192.6 -5.7 169.0 166.4 -4.9166 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 206.8 none none none none none none none none none none none none none none none180 RAVL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none none none none none 171.0 168.2 -5.3B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 176.1 174.4 -3.2 183.8 183.2 -1.1 167.7 165.6 -4.0 183.5 181.6 -3.6 none none 182.6 171.6 182.7 0.2 184.0 181.2 -5.3 158.5 156.0 -4.8BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 207.0 205.1 -3.6 176.7 175.4 -2.5 191.8 189.7 -4.0 202.8 200.7 -4.0 none none 198.0 186.0 198.1 0.2 199.3 196.4 -5.5 173.4 170.8 -4.9G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 205.8 203.9 -3.6 175.4 174.1 -2.5 190.5 188.4 -4.0 201.1 199.2 -3.6 none none 196.1 184.0 196.1 0.0 197.4 194.5 -5.5 171.6 169.1 -4.8G12 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 176.3 175.2 -2.1 none none none none none none 197.6 none 197.6 198.9 none none none 1 D602F 67822*LEWINDH1 230 63379 RUGBY 4 230 1 G82R 429.4 none none 103.9 103.0 -3.9 102.7 102.8 0.4 104.6 104.7 0.4 none none 103.7 103.0 103.7 0.0 104.2 104.7 2.2 103.3 103.1 -0.9 1 D602F 67523*GLENBOR4 230 67822 LEWINDH1 230 1 G82R 429.4 101.4 101.2 -0.9 105.3 104.5 -3.5 104.4 104.5 0.4 106.2 106.3 0.4 none none 105.4 104.7 105.3 -0.4 105.9 106.4 2.2 105.0 104.8 -0.9 82 CB3 67524 CORNWLS4 230 67617*CORNW1 7 110 1 Corn Bk1 176.0 111.5 112.2 1.2 106.7 107.4 1.2 110.5 111.1 1.1 111.5 112.1 1.1 none none 106.5 109.7 106.8 5.7 106.3 107.1 1.4 117.6 118.6 1.8164 CORN BK 67524 CORNWLS4 230 67617*CORNW1 7 110 1 Corn Bk1 176.0 111.5 112.2 1.2 106.7 107.4 1.2 110.5 111.1 1.1 111.5 112.1 1.1 none none 106.5 109.7 106.8 5.7 106.3 107.1 1.4 117.6 118.6 1.8 82 CB3 67524 CORNWLS4 230 67618*CORNW427 110 1 Corn Bk2 176.0 110.9 111.5 1.1 106.1 106.7 1.1 109.9 110.4 0.9 110.8 111.4 1.1 none none 105.9 109.0 106.2 5.5 105.7 106.5 1.4 116.9 117.9 1.8164 CORN BK 67524 CORNWLS4 230 67618*CORNW427 110 1 Corn Bk2 176.0 110.9 111.5 1.1 106.1 106.7 1.1 109.9 110.4 0.9 110.8 111.4 1.1 none none 105.9 109.0 106.2 5.5 105.7 106.5 1.4 116.9 117.9 1.8 81 CB1 67524 CORNWLS4 230 67619*CORNW3 7 110 1 Corn Bk3 250.0 none none none none none none none none none none none none none none none 100.9 102.5 4.0 83 CB42 67524 CORNWLS4 230 67619*CORNW3 7 110 1 Corn Bk3 250.0 none none none none none none none none none none none none none none none 100.7 102.3 4.0162 CORN BK 67524 CORNWLS4 230 67619*CORNW3 7 110 1 Corn Bk3 250.0 none none none none none none none none none none none none none none none 100.9 102.5 4.0163 CORN BK 67524 CORNWLS4 230 67619*CORNW3 7 110 1 Corn Bk3 250.0 none none none none none none none none none none none none none none none 100.7 102.3 4.0

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = -900 MHEX = -885 MHEX = -890 MHEX = -810 MHEX = -890 MHEX = -900 MHEX = -900 MHEX = -900HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX

F-7 F-7.xls 1 of 1

Year 2014Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.9 116.1 2.3 none none none none none none none none none 11 D14S 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 103.2 106.6 103.2 6.5 none none 101.7 102.8 2.1 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 159.6 160.4 1.5 none none none none none none none none none 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.5 116.8 2.5 none none none none none none none none none 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.3 116.6 2.5 none none none none none none none none none 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.6 115.8 2.3 none none none none none none none none none 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.2 116.5 2.5 none none none none none none none none none 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.4 116.7 2.5 none none none none none none none none none 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.7 116.0 2.5 none none none none none none none none none 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 116.1 117.4 2.5 none none none none none none none none none 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.6 115.9 2.5 none none none none none none none none none 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 106.3 108.0 3.2 none none none none none none none none none 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.4 115.7 2.5 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.3 116.6 2.5 none none none none none none none none none 19 F10M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 109.7 111.0 2.5 none none none none none none none none none 2 A3R 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 101.5 102.7 2.3 none none none none 122.0 none none none 104.5 103.1 104.4 -0.2 none none none none 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 123.3 none none none none none none none none none 21 G1A 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 116.5 117.8 2.5 none none none none none none none none none 22 G2A 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 116.5 117.8 2.5 none none none none none none none none none 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 107.4 108.7 2.5 none none none none none none none none none 26 G9F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.7 113.0 2.5 none none none none none none none none none 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.7 113.0 2.5 none none none none none none none none none 27A H75P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.1 112.4 2.5 none none none none none none none none none 28 J30P 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 101.1 102.3 2.3 none none none none none none none none none 29 K21W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.1 115.4 2.5 none none none none none none none none none 3 A4D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 118.0 119.3 2.5 none none none none none none none none none 30 K22W 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.1 115.4 2.5 none none none none none none none none none 38 M39V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 110.6 111.9 2.5 none none none none none none none none none 39A N_V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 108.6 109.9 2.5 none none none none none none none none none 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 110.3 111.7 2.7 none none none none none none none none none 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 109.4 110.7 2.5 none none none none none none none none none 42 P58C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.2 115.4 2.3 none none none none none none none none none 43 R23R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.6 115.8 2.3 none none none none none none none none none 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 110.4 111.7 2.5 none none none none none none none none none 45A R__S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.2 115.5 2.5 none none none none none none none none none 49 R50M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 117.1 118.4 2.5 none none none none none none none none none 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 110.6 111.9 2.5 none none none none none none none none none 50 R7B 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 108.0 109.3 2.5 none none none none none none none none none 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 100.6 101.3 1.3 none none 100.9 103.0 100.8 4.0 none none none 100.6 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 107.9 109.2 2.5 none none none none none none none none none 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 109.6 110.9 2.5 none none none none none none none none none 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 170.3 171.2 1.7 109.3 110.0 1.3 none none none none none none 126.8 134.3 126.7 14.3 123.2 124.6 2.7 128.5 129.8 2.5 6 B70H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.1 112.4 2.5 none none none none none none none none none 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.0 112.3 2.5 none none none none none none none none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.2 116.4 2.3 none none none none none none none none none 75 BK41 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 122.8 123.9 2.1 none none none none none none none none 130.2 none 130.1 none none 118.8 120.2 2.7 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 113.7 114.4 1.3 none none 146.6 147.9 2.5 none none none 125.3 none 122.1 123.8 3.2 none none 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 116.1 117.4 2.5 none none none none none none none none none 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.7 117.0 2.5 none none none none none none none none none 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.2 116.4 2.3 none none none none none none none none none 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.5 116.8 2.5 none none none none none none none none none 84 CN9 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 114.8 116.1 2.5 none none none none none none none none none 9A P_C 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 111.1 111.1 0.0 none none none none none none none none none 9B D_1P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.6 none none none none none none none none none none 9C D_2P 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none 100.3 none none none none none 9C D_2P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.7 none none none none none none none none none none 9D D_3P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 116.3 none none none none none none none none none 9E D_4P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none 111.6 none none none none none none none none none 9F D_5P 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none none 106.4 none none none none none none none none none165 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.0 116.2 2.3 none none none none none none none none none166 DSY BK5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 115.5 116.8 2.5 none none none none none none none none none180 RAVL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 111.7 113.0 2.5 none none none none none none none none none200 WHSL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 118.5 119.8 2.5 none none none none none none none none none201 WHSL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 118.5 119.8 2.5 none none none none none none none none noneB78SSTL 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 105.6 none 105.6 none none none noneB78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 127.6 128.8 2.3 none none none none 136.7 137.9 2.3 none none none 110.7 none 100.6 102.3 3.2 104.4 105.9 2.9BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 112.8 114.1 2.5 none none none none none none none none noneG16 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 106.9 108.2 2.5 none none none none none none none none noneG8 67523 GLENBOR4 230 67524*CORNWLS4 230 1 G37C 188.4 none none none none none none 110.0 111.2 2.3 none none none none none none none none none

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = 1996 MHEX = 2015 MHEX = 2015 MHEX = 1869 MHEX = 2013 MHEX = 2173 MHEX = 2175 MHEX = 2175LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX

F-8 F-8.xls 1 of 1

Year 2014Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

NONE NONE NONE

LOW NDEX LOW NDEX LOW NDEX LOW NDEXLOW NDEX LOW NDEX LOW NDEX LOW NDEXMHEX = 2013 MHEX = 2173 MHEX = 2175 MHEX = 2175MHEX = 1996 MHEX = 2015 MHEX = 2015 MHEX = 1869

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

F-9 F-9.xls 1 of 1

Year 2014Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

81 CB1 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 100.2 100.5 0.4 none none 100.7 100.9 0.3 none none none none none none none none none none 100.2 82 CB3 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 123.0 123.4 0.6 119.6 120.0 0.6 123.6 123.9 0.4 121.8 122.2 0.6 109.3 109.7 0.6 118.1 122.6 118.1 6.3 119.1 119.6 0.7 122.8 123.3 0.7162 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 100.2 100.5 0.4 none none 100.7 100.9 0.3 none none none none none none none none none none 100.2164 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 123.0 123.4 0.6 119.6 120.0 0.6 123.6 123.9 0.4 121.8 122.2 0.6 109.3 109.7 0.6 118.1 122.6 118.1 6.3 119.1 119.6 0.7 122.8 123.3 0.7 81 CB1 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 104.4 104.7 0.6 101.5 101.8 0.6 104.9 105.2 0.6 103.4 103.7 0.6 none none 100.1 104.1 100.1 8.1 100.9 101.3 0.8 104.1 104.5 0.8 83 CB42 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 104.2 104.5 0.6 101.3 101.6 0.6 104.7 105.0 0.6 103.2 103.5 0.6 none none none 103.8 none 100.7 101.1 0.8 103.9 104.2 0.6162 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 104.4 104.7 0.6 101.5 101.8 0.6 104.9 105.2 0.6 103.4 103.7 0.6 none none 100.1 104.1 100.1 8.1 100.9 101.3 0.8 104.1 104.5 0.8163 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 104.2 104.5 0.6 101.3 101.6 0.6 104.7 105.0 0.6 103.2 103.5 0.6 none none none 103.8 none 100.7 101.1 0.8 103.9 104.2 0.6 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.0 132.9 -2.1 111.2 110.5 -1.3 139.7 138.5 -2.3 122.6 121.4 -2.3 none none 138.9 123.2 139.0 0.2 136.8 135.1 -3.2 123.7 122.3 -2.7 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 115.4 114.8 -1.1 173.1 172.6 -1.0 136.7 136.0 -1.3 none none 145.5 133.8 145.6 0.2 144.1 142.8 -2.5 134.3 133.2 -2.1 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.4 132.3 -2.1 110.5 109.9 -1.1 139.2 138.0 -2.3 122.0 120.7 -2.5 none none 138.5 122.7 138.6 0.2 136.3 134.6 -3.2 123.2 121.8 -2.7 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.6 132.5 -2.1 110.7 110.0 -1.3 139.4 138.1 -2.5 122.1 120.9 -2.3 none none 138.6 122.8 138.7 0.2 136.5 134.8 -3.2 123.3 121.9 -2.7 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.3 133.2 -2.1 111.4 110.8 -1.1 none none 122.9 121.7 -2.3 none none none 123.4 none 137.0 135.3 -3.2 123.9 122.5 -2.7 12 D15Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.5 133.3 -2.3 none none none none none none none none none none none none none none none 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 137.2 136.1 -2.1 none none 142.5 141.3 -2.3 126.3 125.1 -2.3 none none 143.2 126.4 143.3 0.2 140.6 138.8 -3.4 126.9 125.4 -2.9 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.6 132.5 -2.1 111.0 110.3 -1.3 139.4 138.2 -2.3 122.4 121.2 -2.3 none none 138.5 122.8 138.6 0.2 136.4 134.7 -3.2 123.3 121.9 -2.7 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.7 132.6 -2.1 110.7 110.1 -1.1 139.4 138.2 -2.3 122.2 121.0 -2.3 none none 138.7 122.9 138.8 0.2 136.6 134.9 -3.2 123.4 122.0 -2.7 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.2 133.1 -2.1 111.3 110.6 -1.3 139.8 138.6 -2.3 122.8 121.6 -2.3 none none none 123.4 none 137.0 135.3 -3.2 123.9 122.4 -2.9 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 132.9 131.8 -2.1 109.8 109.2 -1.1 138.9 137.7 -2.3 121.4 120.1 -2.5 none none 138.3 122.4 138.4 0.2 136.1 134.4 -3.2 122.9 121.5 -2.7 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.3 133.2 -2.1 111.4 110.8 -1.1 none none 123.0 121.7 -2.5 none none none 123.4 none none none 123.9 122.5 -2.7 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 144.4 142.9 -2.9 119.5 118.6 -1.7 150.1 148.5 -3.0 135.6 134.0 -3.0 none none 165.1 136.2 165.2 0.2 none none 137.3 135.4 -3.6 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.6 133.6 -1.9 111.6 111.0 -1.1 none none 123.1 121.9 -2.3 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.9 132.8 -2.1 110.7 110.1 -1.1 139.5 138.3 -2.3 122.2 121.0 -2.3 none none 139.0 123.1 139.1 0.2 136.8 135.1 -3.2 123.6 122.2 -2.7 16 D55Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.5 133.3 -2.3 none none none none none none none none none none none none none none none 19 F10M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 137.5 136.4 -2.1 none none 142.8 141.6 -2.3 126.6 125.4 -2.3 none none 143.0 126.7 143.1 0.2 139.9 138.2 -3.2 127.1 125.7 -2.7 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.6 132.5 -2.1 111.9 111.2 -1.3 138.3 137.1 -2.3 122.2 120.9 -2.5 none none 137.0 121.6 137.0 0.0 135.4 133.7 -3.2 122.8 121.4 -2.7 20 F27P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none none none 137.1 135.4 -3.2 none none 21 G1A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.4 133.3 -2.1 none none 139.2 138.0 -2.3 122.9 121.7 -2.3 none none 137.7 122.6 137.8 0.2 136.2 134.5 -3.2 123.6 122.2 -2.7 22 G2A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.4 133.3 -2.1 none none 139.2 138.0 -2.3 122.9 121.7 -2.3 none none 137.7 122.6 137.8 0.2 136.2 134.5 -3.2 123.6 122.2 -2.7 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.5 137.4 -2.1 114.9 114.3 -1.1 143.9 142.7 -2.3 127.7 126.5 -2.3 none none 144.7 128.0 144.8 0.2 141.2 139.4 -3.4 127.9 126.5 -2.7 25 G8P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 139.8 138.6 -2.3 123.7 122.5 -2.3 none none 138.3 123.2 138.4 0.2 136.5 134.8 -3.2 none none 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 141.6 none 141.6 none none none none 27A H75P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 137.0 none none none 142.2 141.0 -2.3 126.0 124.8 -2.3 none none 142.1 126.0 142.2 0.2 139.7 138.0 -3.2 none none 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 147.6 146.5 -2.1 121.9 121.3 -1.1 151.4 150.2 -2.3 137.7 136.5 -2.3 none none 153.7 136.4 153.8 0.2 149.3 147.7 -3.0 134.9 133.5 -2.7 31 L20D 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 114.5 113.9 -1.1 143.7 142.5 -2.3 none none none none none none none none none none none 38 M39V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 137.0 none none none 142.2 141.0 -2.3 126.0 124.7 -2.5 none none 142.1 126.0 142.2 0.2 none none 126.5 125.1 -2.7 39A N_V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 142.1 140.9 -2.3 125.9 124.7 -2.3 none none 142.5 126.0 142.5 0.0 136.2 134.5 -3.2 127.2 125.7 -2.9 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 139.6 138.5 -2.1 115.9 115.2 -1.3 145.3 144.0 -2.5 129.3 128.0 -2.5 none none 148.9 129.7 149.0 0.2 144.5 142.7 -3.4 129.3 127.8 -2.9 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 137.1 136.1 -1.9 none none 142.5 141.2 -2.5 126.2 125.0 -2.3 none none 142.9 126.3 142.9 0.0 140.6 138.9 -3.2 none none 42 P58C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.5 133.4 -2.1 111.9 111.2 -1.3 139.8 138.6 -2.3 123.1 121.9 -2.3 none none 138.7 123.2 138.8 0.2 136.8 135.1 -3.2 123.9 122.5 -2.7 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.2 137.1 -2.1 114.8 114.1 -1.3 143.6 142.4 -2.3 127.4 126.2 -2.3 none none 144.1 127.6 144.2 0.2 142.7 141.0 -3.2 none none 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.6 133.5 -2.1 none none 139.6 138.3 -2.5 123.3 122.1 -2.3 none none 138.6 123.0 138.6 0.0 136.1 134.3 -3.4 none none 48 R49R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.2 133.2 -1.9 111.4 110.7 -1.3 none none none none none none none 123.4 none 137.0 135.3 -3.2 123.9 122.5 -2.7 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 142.2 none 126.0 124.8 -2.3 none none 142.7 126.1 142.8 0.2 140.9 139.1 -3.4 none none 50 R7B 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.7 137.6 -2.1 115.0 114.4 -1.1 144.2 142.9 -2.5 128.0 126.7 -2.5 none none 145.4 128.3 145.4 0.0 143.8 142.0 -3.4 126.3 124.8 -2.9 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 116.2 115.6 -1.1 none none 111.5 110.8 -1.3 110.8 110.3 -1.0 none none 121.7 112.9 121.8 0.2 120.0 119.2 -1.5 112.9 112.2 -1.3 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 171.3 170.7 -1.1 108.7 108.1 -1.1 none none none none none none 150.6 137.6 150.6 0.0 148.9 147.4 -2.9 138.0 136.7 -2.5 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.8 137.7 -2.1 none 114.5 144.4 143.1 -2.5 128.2 127.0 -2.3 none none 146.6 128.6 146.7 0.2 146.4 144.7 -3.2 127.3 125.9 -2.7 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.9 137.8 -2.1 115.3 114.7 -1.1 144.3 143.1 -2.3 128.2 126.9 -2.5 none none 145.3 128.4 145.3 0.0 144.0 142.3 -3.2 none none 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 143.8 143.1 -1.3 115.0 114.3 -1.3 none none none none none none none 126.9 none none 137.7 127.4 126.1 -2.5 6 B70H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 141.8 none 141.9 139.8 138.1 -3.2 none none 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.9 132.7 -2.3 111.6 111.0 -1.1 138.9 137.6 -2.5 122.6 121.4 -2.3 none none 138.8 122.4 138.9 0.2 137.0 135.1 -3.6 none none 70 WL43 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 133.8 none none none none 123.6 122.4 -2.3 none none 139.1 none 139.2 none none none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.1 133.0 -2.1 111.7 111.0 -1.3 139.2 138.0 -2.3 122.6 121.4 -2.3 none none 137.6 122.6 137.7 0.2 135.8 134.1 -3.2 123.1 121.6 -2.9 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 108.9 107.9 -1.9 none none 114.0 112.9 -2.1 none none none none 101.7 none 101.8 103.9 102.3 -3.0 none none 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.2 133.1 -2.1 111.9 111.2 -1.3 139.3 138.1 -2.3 122.8 121.6 -2.3 none none 138.5 122.8 138.6 0.2 136.4 134.6 -3.4 123.3 121.8 -2.9 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.5 133.4 -2.1 none none 139.6 138.3 -2.5 123.2 121.9 -2.5 none none 138.9 123.1 139.0 0.2 136.7 135.0 -3.2 123.6 122.2 -2.7 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.1 133.0 -2.1 none none 139.2 138.0 -2.3 122.6 121.4 -2.3 none none 137.6 122.6 137.7 0.2 135.8 134.1 -3.2 123.1 121.7 -2.7 8 D11Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.5 133.3 -2.3 none none none none none none none none none none none none none none none 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.8 132.8 -1.9 111.5 110.8 -1.3 139.0 137.8 -2.3 122.3 121.1 -2.3 none none 137.2 122.3 137.3 0.2 135.4 133.8 -3.0 122.8 121.4 -2.7 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.7 133.7 -1.9 112.5 111.8 -1.3 139.7 138.5 -2.3 123.5 122.2 -2.5 none none 138.6 123.2 138.7 0.2 136.4 134.7 -3.2 123.5 122.1 -2.7 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.7 132.7 -1.9 111.8 111.1 -1.3 138.6 137.3 -2.5 122.3 121.1 -2.3 none none 137.1 121.9 137.2 0.2 134.9 133.2 -3.2 122.1 120.6 -2.9 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.7 133.7 -1.9 none none 139.7 138.5 -2.3 123.5 122.3 -2.3 none none 138.6 123.2 138.7 0.2 136.4 134.7 -3.2 123.6 122.1 -2.9 84 CN9 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 142.0 none 142.0 139.4 137.7 -3.2 none none 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 125.9 none none none 142.8 126.0 142.8 0.0 140.2 138.5 -3.2 126.5 125.1 -2.7 9A P_C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 145.7 145.7 0.0 121.4 121.4 0.0 151.7 151.7 0.0 137.6 137.6 0.0 none none none 140.4 none 165.2 165.2 0.0 139.2 139.2 0.0 9B D_1P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.1 none none none 143.5 none 127.5 none none none none none none 142.9 none 128.2 none 9C D_2P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 138.0 136.1 -3.6 none none 143.4 141.3 -4.0 127.4 125.2 -4.2 none none 139.0 129.2 139.1 0.2 142.7 139.7 -5.7 128.0 125.5 -4.8 9D D_3P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none none none 143.6 none none none none 9E D_4P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 138.1 none 114.9 none 143.5 none 127.6 none none none 133.6 none none 143.0 none 128.2 9F D_5P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 143.2 none 119.7 none 147.0 none 132.9 none none none none none none 146.2 none 131.8151A YM31 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 112.0 111.3 -1.3 none none 123.5 122.3 -2.3 none none none none none none none none none162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.7 133.7 -1.9 112.5 111.8 -1.3 139.7 138.5 -2.3 123.5 122.2 -2.5 none none 138.6 123.2 138.7 0.2 136.4 134.7 -3.2 123.5 122.1 -2.7163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.7 133.7 -1.9 none none 139.7 138.5 -2.3 123.5 122.3 -2.3 none none 138.6 123.2 138.7 0.2 136.4 134.7 -3.2 123.5 122.1 -2.7164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 133.7 132.7 -1.9 111.8 111.1 -1.3 138.6 137.3 -2.5 122.3 121.1 -2.3 none none 137.1 121.9 137.2 0.2 134.9 133.2 -3.2 122.1 120.6 -2.9180 RAVL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 142.0 125.8 142.1 0.2 140.3 138.5 -3.4 127.5 126.0 -2.9B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 104.4 103.3 -2.1 120.6 120.0 -1.1 113.9 112.7 -2.3 none none none none 124.9 106.7 125.0 0.2 122.0 120.3 -3.2 107.0 105.6 -2.7BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 135.9 134.9 -1.9 113.2 112.6 -1.1 141.0 139.8 -2.3 124.8 123.6 -2.3 none none 140.3 124.7 140.4 0.2 138.2 136.5 -3.2 125.1 123.7 -2.7G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 134.3 133.2 -2.1 111.9 111.2 -1.3 139.4 138.2 -2.3 122.9 121.7 -2.3 none none 138.4 122.8 138.4 0.0 136.0 134.3 -3.2 123.4 121.9 -2.9G16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 141.8 140.7 -2.1 117.5 117.6 0.2 146.3 145.1 -2.3 131.2 130.0 -2.3 none none 147.1 130.6 147.2 0.2 143.9 142.1 -3.4 130.0 128.6 -2.7

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = -900 MHEX = -885 MHEX = -890 MHEX = -810 MHEX = -890 MHEX = -900 MHEX = -900 MHEX = -900LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX LOW NDEX

F-10 F-10.xls 1 of 1

Year 2014Summer Peak

Steady State AnalysisPrior Outages

N-1 Contingencies

ACCC Results

Worst case overload

Contingency Overloaded Lines Line Name Line Rating NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%) NO WIND 99 MW WIND PTDF (%)C [MVA] BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY BASE DRSY DRSY BASE DRSY BASE DRSY

82 CB3 67519 BRANDON7 110 67617*CORNW1 7 110 1 CB1 166.9 110.2 110.5 0.5 106.8 107.1 0.5 109.1 109.3 0.3 109.7 110.0 0.5 none none 106.1 109.2 106.1 5.2 106.4 106.8 0.7 109.7 110.1 0.7164 CORN BK 67519 BRANDON7 110 67617*CORNW1 7 110 1 CB1 166.9 110.2 110.5 0.5 106.8 107.1 0.5 109.1 109.3 0.3 109.7 110.0 0.5 none none 106.1 108.6 106.1 4.2 106.4 106.8 0.7 109.7 110.1 0.7 81 CB1 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 108.3 108.6 0.4 104.9 105.2 0.4 107.2 107.5 0.4 107.9 108.1 0.3 none none 104.2 106.8 104.2 3.6 104.4 104.8 0.6 107.7 108.1 0.6 82 CB3 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 132.7 133.0 0.4 128.6 129.0 0.6 131.3 131.7 0.6 132.1 132.4 0.4 113.5 114.0 0.7 127.7 131.5 127.7 5.3 128.1 128.6 0.7 132.2 132.6 0.6162 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 108.3 108.6 0.4 104.9 105.2 0.4 107.2 107.5 0.4 107.9 108.1 0.3 none none 104.2 106.8 104.2 3.6 104.4 104.8 0.6 107.7 108.1 0.6164 CORN BK 67519 BRANDON7 110 67618*CORNW427 110 1 CB3 137.8 132.7 133.0 0.4 128.6 129.0 0.6 131.3 131.7 0.6 132.1 132.4 0.4 113.5 114.0 0.7 127.7 130.8 127.7 4.3 128.1 128.6 0.7 132.2 132.6 0.6 81 CB1 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 112.8 113.1 0.6 109.3 109.7 0.8 111.7 112.0 0.6 112.3 112.6 0.6 none none 108.5 111.3 108.5 5.7 108.8 109.1 0.6 112.2 112.6 0.8 83 CB42 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 112.5 112.9 0.8 109.1 109.4 0.6 111.5 111.8 0.6 112.1 112.4 0.6 none none 108.3 111.0 108.3 5.5 108.5 108.9 0.8 112.0 112.3 0.6162 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 112.8 113.1 0.6 109.3 109.7 0.8 111.7 112.0 0.6 112.3 112.6 0.6 none none 108.5 111.3 108.5 5.7 108.8 109.1 0.6 112.2 112.6 0.8163 CORN BK 67519 BRANDON7 110 67619*CORNW3 7 110 1 CB42 201.6 112.5 112.9 0.8 109.1 109.4 0.6 111.5 111.8 0.6 112.1 112.4 0.6 none none 108.3 111.0 108.3 5.5 108.5 108.9 0.8 112.0 112.3 0.6 1 D602F 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 227.4 226.9 -1.0 211.7 210.6 -2.1 251.4 250.5 -1.7 none none 210.9 none 211.3 211.5 none 207.0 205.8 -2.3 108 MM30 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.7 182.8 -1.7 162.0 161.4 -1.1 173.3 172.1 -2.3 177.7 176.5 -2.3 none none 171.7 160.4 171.8 0.2 171.2 169.5 -3.2 160.8 159.4 -2.7 11 D14S 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 167.7 167.1 -1.1 222.8 222.2 -1.1 224.5 223.7 -1.5 none none 190.7 183.1 190.8 0.2 190.1 188.8 -2.5 183.4 182.3 -2.1 111 PA1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.1 182.2 -1.7 161.3 160.7 -1.1 172.9 171.7 -2.3 177.0 175.8 -2.3 none none 171.3 159.9 171.4 0.2 170.8 169.1 -3.2 160.3 158.9 -2.7 112 PA2 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.3 182.3 -1.9 161.5 160.9 -1.1 173.0 171.8 -2.3 177.2 176.0 -2.3 none none 171.4 160.0 171.5 0.2 170.9 169.2 -3.2 160.4 159.0 -2.7 119 RL1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.0 183.0 -1.9 162.3 161.7 -1.1 none none 178.0 176.8 -2.3 none none none none none none none none none 122 RP16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 175.3 163.2 175.4 0.2 174.5 172.8 -3.2 none none 123 RS51 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.3 182.4 -1.7 161.9 161.2 -1.3 173.0 171.8 -2.3 177.4 176.2 -2.3 none none 171.3 160.0 171.4 0.2 170.8 169.2 -3.0 160.4 159.1 -2.5 139 TR5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.3 182.4 -1.7 161.6 160.9 -1.3 173.0 171.8 -2.3 177.3 176.1 -2.3 none none 171.5 160.1 171.6 0.2 171.0 169.3 -3.2 160.5 159.1 -2.7 144 VJ50 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.9 182.9 -1.9 162.2 161.5 -1.3 none none 177.8 176.6 -2.3 none none none 160.6 none none none none none 146 VT63 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 182.6 181.7 -1.7 160.7 160.0 -1.3 172.6 171.4 -2.3 176.4 175.2 -2.3 none none 171.1 159.6 171.2 0.2 170.5 168.9 -3.0 160.0 158.6 -2.7 149 XV39 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.9 183.0 -1.7 162.3 161.6 -1.3 none none 178.0 176.8 -2.3 none none none none none none none none none 15 D54C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 190.2 188.9 -2.5 169.1 168.2 -1.7 181.1 179.5 -3.0 185.7 184.1 -3.0 none none 190.2 169.6 190.3 0.2 none none 170.1 168.2 -3.6 153 YV5 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none 162.5 161.8 -1.3 none none 178.1 176.9 -2.3 none none none none none none none none none 154 YX47 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.6 182.7 -1.7 161.6 160.9 -1.3 173.1 171.9 -2.3 177.3 176.1 -2.3 none none none 160.4 none none none 160.7 159.3 -2.7 19 F10M 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 187.0 186.0 -1.9 none none 176.3 175.1 -2.3 181.4 180.2 -2.3 none none 175.6 163.7 175.7 0.2 174.1 172.5 -3.0 164.0 162.7 -2.5 2 A3R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 182.8 181.9 -1.7 none none 171.7 170.4 -2.5 176.6 175.4 -2.3 none none 169.0 158.4 169.1 0.2 169.4 167.7 -3.2 159.6 158.2 -2.7 21 G1A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.9 182.9 -1.9 none none 172.7 171.5 -2.3 177.8 176.6 -2.3 none none 170.3 159.6 170.3 0.0 170.5 168.8 -3.2 160.6 159.2 -2.7 22 G2A 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.9 182.9 -1.9 none none 172.7 171.5 -2.3 177.8 176.6 -2.3 none none 170.3 159.6 170.3 0.0 170.5 168.8 -3.2 160.6 159.2 -2.7 23 G31V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 188.0 187.1 -1.7 165.9 165.2 -1.3 177.5 176.3 -2.3 182.6 181.4 -2.3 none none 177.4 165.1 177.4 0.0 175.4 173.8 -3.0 164.9 163.5 -2.7 25 G8P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 173.4 172.2 -2.3 178.7 177.5 -2.3 none none 171.0 160.4 171.1 0.2 170.8 169.2 -3.0 none none 27 H59C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 174.2 none 174.3 none none none none 27A H75P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none 180.9 179.7 -2.3 none none 174.8 163.1 174.8 0.0 174.0 172.3 -3.2 none none 28 J30P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 198.0 197.0 -1.9 174.8 174.1 -1.3 184.7 183.5 -2.3 192.3 191.1 -2.3 none none 186.1 173.2 186.2 0.2 183.4 181.7 -3.2 171.5 170.1 -2.7 38 M39V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 175.8 174.6 -2.3 180.9 179.7 -2.3 none none 174.8 163.2 174.9 0.2 none none 163.5 162.1 -2.7 39A N_V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 174.7 162.9 174.8 0.2 170.6 168.9 -3.2 163.6 162.2 -2.7 4 A6V 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 188.4 187.4 -1.9 none none 178.1 176.8 -2.5 183.2 181.9 -2.5 none none 179.9 165.9 179.9 0.0 177.9 176.2 -3.2 165.6 164.1 -2.9 41 P52E 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none 175.9 174.7 -2.3 181.0 179.7 -2.5 none none 175.3 163.3 175.3 0.0 174.7 173.0 -3.2 none none 42 P58C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.1 183.2 -1.7 none none 173.4 172.2 -2.3 178.1 176.9 -2.3 none none 171.5 160.4 171.5 0.0 171.2 169.6 -3.0 none none 44 R25Y 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 187.8 186.8 -1.9 165.8 165.1 -1.3 177.1 175.9 -2.3 182.3 181.0 -2.5 none none 176.7 164.6 176.8 0.2 176.8 175.2 -3.0 none none 45 R29H 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.0 183.0 -1.9 none none 173.0 171.7 -2.5 178.0 176.8 -2.3 none none 170.9 159.9 170.9 0.0 170.0 168.2 -3.4 none none 5 B69R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 174.8 none 174.9 174.7 173.0 -3.2 none none 50 R7B 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 188.1 187.2 -1.7 165.9 165.2 -1.3 177.7 176.5 -2.3 182.7 181.5 -2.3 none none 177.8 165.3 177.8 0.0 177.8 176.1 -3.2 none none 51 S53G 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 167.8 167.2 -1.1 none none 163.7 163.0 -1.3 169.7 169.1 -1.1 none none 169.3 163.0 169.5 0.4 169.0 168.3 -1.3 163.0 162.3 -1.3 52 S60L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 220.3 219.9 -0.8 160.8 160.1 -1.3 none none none none none none 179.9 170.5 179.9 0.0 179.6 178.1 -2.9 170.8 169.6 -2.3 53 V38R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 187.9 186.9 -1.9 none none 177.4 176.2 -2.3 182.5 181.3 -2.3 none none 178.2 165.1 178.3 0.2 179.5 177.7 -3.4 164.0 162.7 -2.5 54 V57R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 188.4 187.4 -1.9 166.3 165.7 -1.1 177.7 176.5 -2.3 182.9 181.7 -2.3 none none 177.8 165.3 177.9 0.2 178.1 176.4 -3.2 none none 55 Y51L 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 230.6 229.9 -1.3 173.2 172.5 -1.3 184.7 183.5 -2.3 none none none none 188.7 180.4 188.9 0.4 188.7 187.2 -2.9 180.6 179.3 -2.5 7 C28R 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 182.9 181.9 -1.9 162.3 161.6 -1.3 172.0 170.8 -2.3 176.8 175.5 -2.5 none none 170.1 158.9 170.2 0.2 169.8 167.9 -3.6 none none 72 BE1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.8 182.8 -1.9 none none 172.9 171.7 -2.3 177.7 176.5 -2.3 none none 170.5 159.9 170.6 0.2 170.5 168.8 -3.2 160.3 158.9 -2.7 75 BK41 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 159.5 158.6 -1.7 142.6 142.0 -1.1 148.9 147.7 -2.3 150.0 148.8 -2.3 none none 136.6 133.0 136.7 0.2 139.8 138.3 -2.9 133.7 132.5 -2.3 77 BP6 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.5 182.6 -1.7 none none 172.7 171.5 -2.3 177.5 176.2 -2.5 none none 170.8 159.7 170.9 0.2 170.4 168.7 -3.2 160.1 158.7 -2.7 78 BP7 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.8 182.9 -1.7 none none 173.0 171.8 -2.3 177.8 176.6 -2.3 none none 171.2 160.0 171.2 0.0 170.7 169.0 -3.2 160.4 159.0 -2.7 79 BX18 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.8 182.9 -1.7 none none 172.9 171.7 -2.3 177.7 176.5 -2.3 none none 170.6 159.9 170.6 0.0 170.5 168.8 -3.2 160.3 158.9 -2.7 80 BX19 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.6 182.6 -1.9 none none 172.7 171.5 -2.3 177.4 176.3 -2.1 none none 170.2 159.7 170.3 0.2 170.2 168.5 -3.2 160.0 158.7 -2.5 81 CB1 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.1 183.2 -1.7 163.3 162.7 -1.1 173.1 171.9 -2.3 178.1 176.9 -2.3 none none 171.0 160.1 171.1 0.2 170.4 168.7 -3.2 160.2 158.9 -2.5 82 CB3 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.3 182.3 -1.9 162.6 161.9 -1.3 171.7 170.5 -2.3 176.7 175.5 -2.3 none none 169.2 158.7 169.3 0.2 168.6 166.9 -3.2 158.5 157.1 -2.7 83 CB42 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.1 183.2 -1.7 163.3 162.7 -1.1 173.1 171.9 -2.3 178.1 176.9 -2.3 none none 171.0 160.1 171.1 0.2 170.4 168.8 -3.0 160.3 158.9 -2.7 85 CP17 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 174.9 none 175.0 174.1 172.4 -3.2 none none 9A P_C 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 190.7 190.8 0.2 none none 181.2 181.2 0.0 185.8 185.8 0.0 none none none 173.1 none 190.2 190.2 0.0 170.4 170.4 0.0 9B D_1P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 187.0 none none none 176.5 none 181.5 none none none none none none 176.1 none 164.4 none 9C D_2P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 186.9 none none none 176.4 none 181.4 none none none none none none 175.9 173.0 -5.5 164.3 none 9D D_3P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 183.2 none none none 172.0 none 177.0 none none none none 176.2 none 169.7 none 159.3 9E D_4P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 187.1 none 165.5 none 176.5 none 181.6 none none none 170.3 none none 176.2 none 164.5 9F D_5P 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none 192.8 none 171.3 none 179.7 none 186.7 none none none none none none 179.3 none 167.8162 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.1 183.2 -1.7 163.3 162.7 -1.1 173.1 171.9 -2.3 178.1 176.9 -2.3 none none 171.0 160.1 171.1 0.2 170.4 168.7 -3.2 160.2 158.9 -2.5163 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 184.1 183.2 -1.7 163.3 162.7 -1.1 173.1 171.9 -2.3 178.1 176.9 -2.3 none none 171.0 160.1 171.1 0.2 170.4 168.8 -3.0 160.3 158.9 -2.7164 CORN BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.3 182.3 -1.9 162.6 161.9 -1.3 171.7 170.5 -2.3 176.7 175.5 -2.3 none none 169.2 158.6 169.3 0.2 168.6 166.9 -3.2 158.5 157.1 -2.7180 RAVL BK 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 none none none none none none none none none none 174.5 none 174.6 174.4 172.7 -3.2 164.1 162.7 -2.7B78SSTL 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 156.5 155.5 -1.9 172.5 171.9 -1.1 149.7 148.4 -2.5 161.1 159.9 -2.3 none none 159.2 145.9 159.3 0.2 158.0 156.3 -3.2 145.7 144.3 -2.7BASE CASE 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 185.5 184.5 -1.9 164.1 163.4 -1.3 174.6 173.4 -2.3 179.7 178.5 -2.3 none none 173.0 161.8 173.1 0.2 172.5 170.9 -3.0 162.1 160.8 -2.5G11 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 183.9 182.9 -1.9 163.0 162.3 -1.3 172.8 171.7 -2.1 177.8 176.6 -2.3 none none 170.8 159.8 170.9 0.2 170.2 168.6 -3.0 160.1 158.7 -2.7G16 67523*GLENBOR4 230 67524 CORNWLS4 230 1 G37C 188.4 191.5 190.5 -1.9 169.4 168.7 -1.3 179.7 178.5 -2.3 186.0 184.8 -2.3 none none 179.7 167.5 179.8 0.2 178.1 176.4 -3.2 166.9 165.5 -2.7 82 CB3 67524 CORNWLS4 230 67617*CORNW1 7 110 1 Corn Bk1 176.0 108.0 108.4 0.7 104.6 105.0 0.7 107.1 107.4 0.5 107.6 107.9 0.5 none none 103.8 107.0 103.8 5.7 104.5 104.9 0.7 107.5 107.8 0.5164 CORN BK 67524 CORNWLS4 230 67617*CORNW1 7 110 1 Corn Bk1 176.0 108.0 108.4 0.7 104.6 105.0 0.7 107.1 107.4 0.5 107.6 107.9 0.5 none none 103.8 106.7 103.8 5.2 104.5 104.9 0.7 107.5 107.8 0.5 82 CB3 67524 CORNWLS4 230 67618*CORNW427 110 1 Corn Bk2 176.0 107.4 107.8 0.7 104.0 104.4 0.7 106.4 106.8 0.7 107.0 107.3 0.5 none none 103.2 106.4 103.2 5.7 103.8 104.3 0.9 106.8 107.2 0.7164 CORN BK 67524 CORNWLS4 230 67618*CORNW427 110 1 Corn Bk2 176.0 107.4 107.8 0.7 104.0 104.4 0.7 106.4 106.8 0.7 107.0 107.3 0.5 none none 103.2 106.1 103.2 5.2 103.9 104.3 0.7 106.8 107.2 0.7

Overload [%]PO D14S PO S53G PO S60L PO Y51L PO G37C PO D12C PO D54C PO C28R

MHEX = -900 MHEX = -885 MHEX = -890 MHEX = -810 MHEX = -890 MHEX = -900 MHEX = -900 MHEX = -900HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX HIGH NDEX

F-11 F-11.xls 1 of 1

39

Appendix G:

Post-Disturbance Powerflow Diagram 700 MW Import Loss of D602F

60173

1.122

66752

1.012

66755

1.016

67564

1.037

67694

1.000

67695

1.000

67696

1.000

82260

1.145

67697

1.003

67686

1.021

67706

1.083

67698

1.030

67699

0.980

67529

1.064

67530

1.040

67527

1.064

67574

1.039

67524

1.029

67519

1.028

67516

1.031

67562

1.041

67690

0.992

67676

0.993

67510

1.03067511

1.051

67512

1.028

67513

1.035

67515

1.035

67689

0.960

67560

1.033

67523

0.987

63379 0.990

67556

1.116

67589

1.116

67503

1.045

67559

1.042

67501

1.045

67702

1.045

67526

1.026

67508

1.050

67701

1.046

67525

1.035

67514

1.018

67561

1.048

67557

1.016

67691

0.993

67677

0.993

67687

0.970

67572

1.05667682

1.00067569

1.043

67570

1.040

67571

1.029

67683

1.020

67684 0.962

67685 0.961

67500

1.046

67688

1.020

67693

1.020

67949

0.980

67692

1.010

67950

0.979

67951

0.979

67751

1.102

67705

1.102

68630

1.078

68601

1.088

68615

1.023

67680 0.962

67681

1.020

67558

1.029

67541

1.057

67576

1.016

60175

1.032

60101

1.035

67575

1.017

67577

1.035

67578

1.041

67504

1.024

67703

1.007

67609

1.033

67704

1.033

67584

1.054

67579

1.053

67607

1.051

67506

1.039

67935

1.008

67509

1.007

67590

1.040

67505

1.037

67502

1.047

67534

1.051

67827

1.044

0.8-110

0.611.0

-0.5-38.5

0.611.1

-0.5-38.5

0.0-31.8

1.0900

1031.5

-103-4.3

322134

-316129

15.26

18.00

322134

-316130

15.36

18.00365166

-358173

15.84

18.00

365166

-358173

15.84

18.00

-0.4-36.7

1.0000

-155.4

-0.4-36.7

1.0000

-155.4

15025.8

-150-14.9

1.0348

1139.5

-113-1.5

1.0269

1149.6

-114-1.5

1.0269

1149.6

-114-1.5

1.0269

-61.314.8-61.314.8-61.314.8

0.9550

0.9550

0.9550

13634.3

-136-34.7

-343157

353-92.0

-343173

8.1-3.7

-8.13.8

0.9875

-8.13.8

0.9875

-16.7

7.1

16.8

-25.9

1.0250

1.0250

16.0-43.4

-15.9-15.2

16.0-43.4

-15.9-15.2

-56.323.7

56.65.6

-57.5-7.1

57.9-28.2

-58.6

38.4

59.5

-26.4

-95.8-13.7

97.2-1.5

-79.05.1

80.118.8

-55.03.1

55.220.4

67752

-16.710.7

-21464.8

1.0500

-40.0-81.6

40.575.8

0.538.5

0.9816

0.538.5

0.9816

22413.7

-223-9.3

22212.5

-221-8.2

22413.7

-223-9.3

1031.5

-103-4.3

1031.5

-103-4.3

-316124

1.0742

-316130

1.0740

148-22.9

-14833.4

1.0094

150-24.4

-15035.1

1.0094

152-23.2

-15234.0

1.0094

-18964.8

192-52.4

-56.6-5.6

56.9-9.2

-131

16.0

132

-19.6

-0.32.2

0.44.0

-23.7

-2.2

23.8

-25.5

-76.320.7

76.6-24.9

-68.16.5

68.5-18.3

-100-3.0

101-5.8

1.0750

-24352.8

-25047.1

257-15.2

1.0250

1.0250

67567

67568

0.0-0.0

0.0-0.0

1.0250

0.0-13.8

1.0450

6.2-23.0

1.0450

0.60.4

1.0500

-0.6-0.4

1.0500

-55.522.4

56.3-18.0

68613

10530.5

-83.612.7

84.3-1.9

30.47.9

-30.3-18.2

-11.7-2.3

11.7-9.4

44.9-12.4

-44.84.0

-76.317.3

77.0-2.0

108

-34.0

-10622.6

34.2

-38.0

-96.4-13.9

96.511.8

-98.0-14.6

98.112.3

-8.6-2.9

8.6-3.4

-0.7

4.8

0.7

-15.9

0.9937

-191-20.9

19225.0

0.9937

67598

0.0

169

67566

0.0

82.4

56.0-2.6

-21.31.3

21.4-34.7

23.12.2

-23.140.7

1.9-8.6

42.1-27.3

-40.9-0.3

19.513.1

0.9809

19.211.6

0.9809

-8.03.7

-3.0-30.0

67582

-54.73.1

1185.4

1.0287

62.0-9.7

-61.5-9.5

-52.6-11.8

53.1-17.4

-52.58.2

1.0000

-1.1-3.8

-19.55.7

19.6-27.3

-82.537.7

1.0000

11736.8

1.0443

1185.4

1.0287

15920.1

81.4-16.4

-80.9

2.5

1001.6

-99.3-5.3

-1.5-6.5

1.50.76

7828

-98.24.9

99.0-42.1

11.03.5

0.0-157

2.40.3

0.00.0

0.0

32.0

548-37.4

42.120.7

42.020.6

0.00.0

44.111.9

55.61.3

50.08.9

25.74.3

34.0-5.7

81.0-16.0

0.00.0

31.211.1

33.04.8

0.0

-44.5

0.0

0.0

0.0-112

0.00.0

0.015.2

0.0-112

0.00.0

118-14.6

0.0-14.6

37.215.0

15.2-1.8

36.33.0

0.00.0

0.00.0

0.00.0

15.44.2

0.00.0

215-48.0

32.1-0.4

0.0-388

8.70.0

0.00.0

17.5-3.7

24.0-0.0

23.2-1.5

15.64.8

7.1-0.9

39.29.0

47.718.8

0.0-14.6

0.0-14.6

140-2.2

0.0-256

403128

427-143

0.0

17.0

0.0

11.4

0.00.0

0.014.3

0.00.0

0.027.4

0.00.0

0.00.0

0.07.1

9.3-1.9

0.00.0

0.0-435

0.00.0

0.00.0

0.0-110

12020.1

7.8-0.1

0.90.0

99.0-43.1

GF 68002

REACTORS IN F27P DATA

BUS 66705

R7B

R29H

C28R C28R

G37C

G82RS53G

D11Y

D15Y

D55YY51L

L20D

D12C

V38R

R25Y V57R

CB1

CB42

A6V A4D

M39V

F10M

G31V

G1A

G2A

P52E F27P

P58C

G9F G8P G8P P19W P19W

J30P

A3R

BK8

BK9

K24W

R26K

BK1

BK2

BK3

BK4

D5R

D13R

D16R R23R

D36RD72V

BK51

BK1

BK2

BK3

R50M

D602F

K21W

K22W

BK3

BIPOLE 1

BIPOLE 2

DCFILTERS

S60L

CB3

R32VR33V

R49R

D14S

KN36

BK52

B69R

B70H

TO

WUSK.GS

POWERTECHNOLOGIESINC.R

F00-SP09AA.TLX00Y0.SAV;SUMMER;PK LD;SYSTEM INTACTND=1913,MH=-897,MW=-308,OHMH=0,OHMP=0,EWTW=-97,BD=0700 MW IMPORT, LOSS OF D602F TUE, APR 11 2006 13:39

BUS - VOLTAGE(PU)

EQUIPMENT - MW/MVARBRANCH - MW/MVAR