electrons in metals

14
Electrons in metals + + + + + + + + Energy E Spatial coordinate x Nucleus with localized core electrons Jellium model: electrons shield potential to a large extent Electron “sees” effective smeared potential

Upload: neila

Post on 23-Feb-2016

40 views

Category:

Documents


0 download

DESCRIPTION

. . Electrons in metals. Electron “sees” effective smeared potential. Jellium model:. Energy E. electrons shield potential to a large extent. Nucleus with localized core electrons . +. +. +. +. +. +. +. +. Spatial coordinate x. and . Electron in a box. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Electrons in metals

Electrons in metals

+ + + + + + + +

Ene

rgy

E

Spatial coordinate x

Nucleus with

localized core

electrons

Jellium model:

electrons shield potential to a large

extent

Electron “sees” effective smeared potential

Page 2: Electrons in metals

Electron in a box

In one dimension:

In three dimensions:

)r(E)r()r(V)r(m

2

2

where

otherwise

Lz,y,xfor.constV)z,y,x(V

00

222222

22 zyx kkkmm

kE

where zzyyxx nL

k,nL

k,nL

k

2222

2

8 zyx nnnmLhE

and ,...,,n,n,n zyx 321

zksinyksinxksinL

)r( zyx

/ 232

Page 3: Electrons in metals

Fixed boundary conditions:

+ + + + + + + +x

0 L

)Lx()x( 00

+

+

+ +

+ +

+ +

Periodic boundary conditions:

)z,y,x()Lz,Ly,Lx(

rki/

eL

)r(231

zzyyxx nL

k,nL

k,nL

k

222

and ,...,,,n,n,n zyx 3210

kx

mkx

2

22

Ldkx

2

“free electron parabola”

density of states

Remember the concept of

dE

# of states

in ]dEE,E[

Page 4: Electrons in metals

41111

)k(E 1 )k(E 2 E

))k(EE( 1

1. approach use the technique already applied for phonon density of states

k

))k(EE()E(D~

E

EE

E

dE)E(D~1

1

k

EE

E

dE))k(EE(1

1

where )E(D~V

:)E(D 1

Density of states per unit volume

Because I copy this part of the lecture from my solid state slides, I use E as the single particle energy.

In our stat. phys. lecture we labeled the single particle energy to distinguish it from the total energy of the N-particle system.

Please don’t be confused due to this inconsistency.

Page 5: Electrons in metals

3

3k

V d k2

1/ Volume occupied by a state in k-space

k

))k(EE()E(D~

kx

ky

kz

L2

L2

L2

Volume( )

VL

33 22

Page 6: Electrons in metals

Free electron gas: mk

mkE

22

2222

Independent from

and

dkkkd 23 4

Independent from

and

mEk 21

dEE

mdk2

1

dEE

mmE))k(EE()E(D~V

)E(D2

124211

23

Em)E(D//

3

2321

22

21

2

Each k-state can be occupied with 2 electrons of spin up/down

Em)E(D/ 23

222

21

k2

dk

Page 7: Electrons in metals

2. approach calculate the volume in k-space enclosed by the spheres

.constmk)k(E 2

22and

.constdE)k(E

kx

ky

L2

32

24

L/dkkdk)k(D~

# of states between spheres with k and k+dk :

dEE

mdk2

1

22 2

mEk

with )E(D~V

)E(D 1 2

2 spin states

Em)E(D/ 23

222

21

Page 8: Electrons in metals

E

D(E)

E’ E’+dE

D(E)dE =# of states in dE / Volume

Page 9: Electrons in metals

The Fermi gas at T=0

E

f(E,T

=0)

EF

1

E

D(E)

EF0

0

dE)T,E(f)E(Dn

Electron density

#of states in [E,E+dE]/volume

Fermi energy

depends on T

Probability that state is occupied

0

0

FE

dE)E(D dEEm FE/

0

0

23

222

21

3222

0 32

/F n

mE

T=0

Page 10: Electrons in metals

00 5

3FEnU

0

00

FE

dE)E(DEUEnergy of the electron gas @ T=0: dEEEm FE/

0

0

23

222

21

25023

22 522

21 /

F

/

Em

2300

23

22 5121 /

FF

/

EEm

3222

0 32

/F n

mE

there is an average energy of 0

53

FE per electron without thermal stimulation

with electron density 322 110

cmn we obtain KT@eVTkeVE BF 300

4011240

Energy of the electron gas: ( )2

1FE Ek

E kUe

0

( )1FE E

EU D E dEe

Page 11: Electrons in metals

Specific Heat of a Degenerate Electron Gas

here: strong deviation from classical value

only a few electrons in the vicinity of EF can be scattered by thermal energy

into free states

Specific heat much smaller than expected from classical consideration

D(E)

Den

sity

of o

ccup

ied

stat

es

EEF

energy of

electron

state

0

dE)T,E(f)E(DEU

#states in [E,E+dE]

probability of occupation,

average occupation #

2kBT

Before we calculate U let us estimate:

These Tk)E(DB

F 222

1# of electrons

increase energy from TkE BF to TkE BF TknE

TkTk)E(DU BF

BBF 2

Page 12: Electrons in metals

2Tk)E(DU BF Tk)E(DC BFel2 π

2

3

subsequent more precise calculation

Calculation of Cel from

0

dE)T,E(f)E(DEU

0

dETf)E(DE

TUC

Vel

22

1

TBkFEE

TBkFEE

B

F

e

eTkEE

Tf

0

dETf)E(DEE F

0

0 dETf)E(DE

TnE FFTrick:

Significant contributions only in the vicinity of EF

Page 13: Electrons in metals

)E(DTkC FBel2

2

3

3

2

0

dETf)E(DEEC Fel

with TkEE:x

B

F and dxTkdE B

E

D(E

)

EF

)E(D)E(D F

0

dETfEE)E(DC FFel

21

x

x

e

eTx

Tf

TBk/FEx

x

FBel dxe

ex)E(DTkC 2

22

1

decreases rapidly to zero for x

dx

e

ex)E(DTkCx

x

FBel 2

22

1

Page 14: Electrons in metals

)E(DTkC FBel2

2

3

F

/

F Em)E(D23

222

21

with 3222

0 32

/F n

mE

and

F

BBel E

TkknC2

2

in comparison with Bclassical

el knC23

1 for relevant temperatures

W.H. Lien and N.E. Phillips, Phys. Rev. 133, A1370 (1964)

Heat capacity of a metal:

3ATTC

electronic contributionlattice contribution

@ T<<ӨD