electron acceleration by langmuir turbulence

50
Electron acceleration by Langmuir turbulence Peter H. Yoon U. Maryland, College Park

Upload: granville-hamon

Post on 01-Jan-2016

50 views

Category:

Documents


3 download

DESCRIPTION

Electron acceleration by Langmuir turbulence. Peter H. Yoon U. Maryland, College Park. Outline. Laboratory Beam-Plasma Experiments Beam-plasma instability & Langmuir turbulence Solar wind electrons Conclusions. Part 1. LABORATORY BEAM-PLASMA EXPERIMENTS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Electron acceleration by Langmuir turbulence

Electron acceleration by Langmuir turbulence

Peter H. YoonU. Maryland, College Park

Page 2: Electron acceleration by Langmuir turbulence

Outline

• Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir

turbulence• Solar wind electrons• Conclusions

Page 3: Electron acceleration by Langmuir turbulence

LABORATORY BEAM-PLASMA EXPERIMENTS

Part 1.

Page 4: Electron acceleration by Langmuir turbulence

• Alexeff et al., Hot-electron plasma by beam-plasma interaction, PRL, 10, 273 (1963).

5 keV DC electron beam interacting with plasma yields 250 keV X ray photons.

Page 5: Electron acceleration by Langmuir turbulence

• Tarumov et al., Investigation of a hydrogen plasma with “hot” electrons, Sov. Phys. JETP, 25, 31 (1967).

Page 6: Electron acceleration by Langmuir turbulence

During the discharge phase the hot electron component was 1/10, which increased to 1/3 in the decay phase.

Page 7: Electron acceleration by Langmuir turbulence

• Levitskii and Shashurin, Spatial development of plasma-beam instability, Sov. Phys. JETP, 25, 227 (1967).

Page 8: Electron acceleration by Langmuir turbulence
Page 9: Electron acceleration by Langmuir turbulence

• Whelan and Stenzel, Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system, Phys. Fluids, 28, 958 (1985).

Page 10: Electron acceleration by Langmuir turbulence
Page 11: Electron acceleration by Langmuir turbulence

Outline

• Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir

turbulence• Solar wind electrons• Conclusions

Page 12: Electron acceleration by Langmuir turbulence

BEAM-PLASMA INSTABILITY AND LANGMUIR TURBULENCE

Part 2.

Page 13: Electron acceleration by Langmuir turbulence

Bump-in-tail instabilityLangmuir Turbulence generated by

beam-plasma interaction

Page 14: Electron acceleration by Langmuir turbulence

E(x, t) = Ecos(k • x −ωt),

ω =ω pe (1+ 3k 2λD2 ) =

4πne2

me1+ k 2 3Te

4πne2

⎝ ⎜

⎠ ⎟, or

ω = kcS = kTemi

.

Langmuir oscillation Ion-sound wave

Page 15: Electron acceleration by Langmuir turbulence

t

x

E(x,t)

Ion-sound wave

Page 16: Electron acceleration by Langmuir turbulence

t

x

E(x,t)

Langmuir wave

Page 17: Electron acceleration by Langmuir turbulence

E(x, t) = Ecos(k • x −ωt),

ω =ω pe (1+ 3k 2λD2 ) =

4πne2

me1+ k 2 3Te

4πne2

⎝ ⎜

⎠ ⎟, or

ω = kcS = kTemi

.

ω =ω pe (1+ 3k 2λD2 )

ω =kcS

Page 18: Electron acceleration by Langmuir turbulence

1D approxiation

Ions (protons) are taken as a quasi-steady state, and the electrons are made of two components, one background Gaussian distribution, and a tenuous beam component.

Page 19: Electron acceleration by Langmuir turbulence

Background (thermal) electrons

Beam electrons

Page 20: Electron acceleration by Langmuir turbulence
Page 21: Electron acceleration by Langmuir turbulence
Page 22: Electron acceleration by Langmuir turbulence

T Umeda, private communications

Page 23: Electron acceleration by Langmuir turbulence
Page 24: Electron acceleration by Langmuir turbulence

Bump-in-tailinstability

Page 25: Electron acceleration by Langmuir turbulence

Beam-plasma or bump-in-tail instability

Page 26: Electron acceleration by Langmuir turbulence

Bump-on-tail instabilityvfe(v)t = 0t > 0kIL(k)t = 0t > 0

A. A. Vedenov, E. P. Velikhov, R. Z. Sagdeev, Nucl. Fusion 1, 82 (1961).

W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3, 1049 (1962).

Page 27: Electron acceleration by Langmuir turbulence

ε.

k = πω0

2

k 2 ωkF ']kv=ω k⋅E k

2

4πN,

df0dt

= πe2

m2

∂v idk∫ | Ek |2

kike(2π )3k 2

∂f0∂veδ (ωk − k⋅ v),

Page 28: Electron acceleration by Langmuir turbulence

Bump-in-tailinstability

Page 29: Electron acceleration by Langmuir turbulence

Weak turbulence theoryL. M. Gorbunov, V. V. Pustovalov, and V. P. Silin, Sov. Phys. JETP 20, 967 (1965)

L. M. Al’tshul’ and V. I. Karpman, Sov Phys. JETP 20, 1043 (1965)

L. M. Kovrizhnykh, Sov. Phys. JETP 21, 744 (1965)

B. B. Kadomtsev, Plasma Turbulence (Academic Press, 1965)

V. N. Tsytovich, Sov. Phys. USPEKHI 9, 805 (1967)

V. N. Tsytovich, Nonlinear Effects in Plasma (Plenum Press, 1970)

V. N. Tsytovich, Theory of Turbulent Plasma (Consultants Bureau, 1977)

A. G. Sitenko, Fluctuations and Non-Linear Wave Interactions in Plasmas (Pergamon, 1982)

Page 30: Electron acceleration by Langmuir turbulence

Backscattered L wave

Page 31: Electron acceleration by Langmuir turbulence
Page 32: Electron acceleration by Langmuir turbulence
Page 33: Electron acceleration by Langmuir turbulence

∂fe∂t

=∂

∂v iAi fe +Dij

∂fe∂v j

⎝ ⎜ ⎜

⎠ ⎟ ⎟,

Ai =e2

4πmedk∫ kik 2

σ =±1

∑ σωkLδ (σωk

L − k⋅ v),

Dij =πe2

me2 dk∫

kik jk 2

σ =±1

∑ δ (σωkL − k⋅ v)Ik

σL .

∂IkσL

∂t=πω pe

2

k 2 dv∫ δ (σωkL − k⋅ v)

ne2

πfe +σωk

LIkσLk⋅

∂fe∂v

⎝ ⎜

⎠ ⎟

+2σ ',σ ''=±1

∑ σωkL dk'∫ Vk,k '

L δ (σωkL −σ 'ωk '

L −σ ' 'ωk −k 'S )

× σωkLIk 'σ 'LIk −k '

σ ''S −σ 'ωk 'L Ik −k 'σ ''S Ik

σL −σ ' 'ωk −k 'L Ik '

σ 'LIkσL

( )

−πe2

me2ω pe

2 σωkL

σ '=±1

∑ dk'∫ dv∫ (k⋅k')2

k 2k '2δ[σωk

L −σ 'ωk 'L − (k − k')⋅ v]

×ne2

πω pe2 (σ 'ωk '

L IkσL −σωk

LIk 'σ 'L ) f i −

memiIk 'σ 'LIk

σL (k − k')⋅∂f i∂v

⎝ ⎜ ⎜

⎠ ⎟ ⎟

~ g = 1/(nD3)

Discrete-particle (collisional) effect

Page 34: Electron acceleration by Langmuir turbulence

Weak turbulence theory

Page 35: Electron acceleration by Langmuir turbulence
Page 36: Electron acceleration by Langmuir turbulence
Page 37: Electron acceleration by Langmuir turbulence

P. H. Yoon, T. Rhee, and C.-M. Ryu, Self-consistent generation of superthermal electrons by beam-plasma interaction, PRL 95, 215003 (2005).

Long-time behavior of bump-on-tail Langmuir instability

Page 38: Electron acceleration by Langmuir turbulence

Outline

• Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir

turbulence• Solar wind electrons• Conclusions

Page 39: Electron acceleration by Langmuir turbulence

SOLAR WIND ELECTRONSPart 3.

Page 40: Electron acceleration by Langmuir turbulence

SUNEARTHFAST WINDSLOW WINDe –L

Page 41: Electron acceleration by Langmuir turbulence
Page 42: Electron acceleration by Langmuir turbulence
Page 43: Electron acceleration by Langmuir turbulence

STEREO spacecraft

Page 44: Electron acceleration by Langmuir turbulence
Page 45: Electron acceleration by Langmuir turbulence

WIND spacecraft

Page 46: Electron acceleration by Langmuir turbulence

2007 January 9Linghua Wang, Robert P. Lin, Chadi Salem

Page 47: Electron acceleration by Langmuir turbulence

By Linghua Wang, Davin Larsen, Robert Lin

fe(v)ElectronVelocityDistribution

Page 48: Electron acceleration by Langmuir turbulence

Outline

• Laboratory Beam-Plasma Experiments • Beam-plasma instability & Langmuir

turbulence• Solar wind electrons• Conclusions

Page 49: Electron acceleration by Langmuir turbulence

CONCLUSIONSPart 4.

Page 50: Electron acceleration by Langmuir turbulence

• Beam-plasma interaction is a fundamental problem in plasma physics.

• Laboratory experiment shows electrons accelerated by beam-plasma interaction.

• Electron beam-excited Langmuir turbulence theory adequately explains the laboratory results and predict the formation of energetic tail distribution.

• Solar wind electrons feature energetic tail population confirming Langmuir turbulence acceleration theory.