ejercicio-resuelto

4
∂u ∂x = ∂u ∂r ( x 2 +y 2 ) ∂x + ∂u ∂θ [ tan 1 ( y x ) ] ∂x ∂u ∂y = ∂u ∂r ( x 2 + y 2 ) ∂y + ∂u ∂θ [ tan 1 ( y x ) ] ∂y ∂v ∂x = ∂v ∂r ( x 2 +y 2 ) ∂x + ∂v ∂θ [ tan 1 ( y x ) ] ∂x ∂v ∂y = ∂v ∂r ( x 2 +y 2 ) ∂y + ∂v ∂θ [ tan 1 ( y x ) ] ∂y Derivando se obtiene: ∂u ∂x = ∂u ∂r ( x x 2 + y 2 ) + ∂u ∂θ ( y x 2 +y 2 ) ∂u ∂y = ∂u ∂r ( y x 2 +y 2 ) + ∂u ∂θ ( x x 2 +y 2 ) ∂v ∂x = ∂v ∂r ( x x 2 +y 2 ) + ∂v ∂θ ( y x 2 +y 2 ) ∂v ∂y = ∂v ∂r ( y x 2 +y 2 ) + ∂v ∂θ ( x x 2 +y 2 ) Tiendo en cuenta que r= x 2 + y 2 ,x=r cos ( θ ) ,y=r sin ( θ) La expresión queda: ∂u ∂x = ∂u ∂r [ cos( θ ) ]+ ∂u ∂θ [ sin ( θ) r ] ∂u ∂y = ∂u ∂r [ sin( θ ) ]+ ∂u ∂θ [ cos ( θ) r ] ∂v ∂x = ∂v ∂r [ cos( θ ) ]+ ∂v ∂θ [ sin ( θ) r ] ∂v ∂y = ∂v ∂r [ sin( θ ) ]+ ∂v ∂θ [ cos ( θ) r ] Ahora se sabe que las ecuaciones de Cauchy-Reimann en forma cartesiana queda expresa como:

Upload: samuel-alejandro

Post on 28-Sep-2015

214 views

Category:

Documents


0 download

DESCRIPTION

BOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGBOWLINGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

TRANSCRIPT

Derivando se obtiene:

Tiendo en cuenta que La expresin queda:

Ahora se sabe que las ecuaciones de Cauchy-Reimann en forma cartesiana queda expresa como:

Las Ecuaciones en forma polar tambin deben cumplir con esta igualdad as que sustituimos y se obtiene:

Aplicando artificios con las identidades trigonomtricas, multiplicaremos por a la primera ecuacin y por a la segunda ecuacin quedando:

Haciendo las operaciones pertinentes queda:

Realizando la suma algebraica miembro a miembro se obtiene la siguiente expresin:

Se conoce que la identidad fundamental de la trigonometra es . Aplicando factor comn y la identidad fundamental se obtiene:

De esta forma se ha demostrado la segunda ecuacin en forma polar de Cauchy-Reimann, ahora bien volvemos a repetir este proceso para obtener la primera ecuacin en forma polar de Cauchy-Reimann. A continuacin se debe multiplicar por la primera ecuacin y a la segunda.

Haciendo las operaciones pertinentes queda:

Realizando la suma algebraica miembro a miembro se obtiene la siguiente expresin:

Se conoce que la identidad fundamental de la trigonometra es . Aplicando factor comn y la identidad fundamental se obtiene:

Y as queda demostrado que las Ecuaciones de Cauchy-Reimann en forma polar son:

Prof creo que ya lo hice slo quiero entender de donde sale esto:

Es lo nico que no entiendo y supongo que debera tener una explicacin lgica. Me puede ensear eso?