e&g - quaternary science journal vol. 61 no 2

92
Vol. 61 No 2 2012 ISSN 0424-7116 | DOI 10.3285/eg.61.2 Edited by the German Quaternary Association Editor-in-Chief: Holger Freund Eiszeitalter und Gegenwart Quaternary Science Journal GEOZON E & G RIVERS, LAKES AND PEATLANDS (NE Germany) YOUNGER MIDDLE TERRACE, HöXTER/WESER (Germany) LAVRADO REGION, RORAIMA (Brazil) TERNA RIVER BASIN (India) KEMEL HEATH, SOUTHERN RHENISH MASSIF (Germany)

Upload: geozon-science-media

Post on 28-Apr-2015

85 views

Category:

Documents


0 download

DESCRIPTION

Peer reviewed original papers in Quaternary geology, palaeoecology, soil science, palaeoclimatology, geomorphology, geochronology, archaeology, geography and other topics related to the Quaternary.

TRANSCRIPT

Vol. 61 No 22012issn 0424-7116 | DOi 10.3285/eg.61.2Edited by the German Quaternary AssociationEditor-in-Chief: Holger FreundEiszeitalter und GegenwartQuaternary Science Journal GEOZONE&GrivErs, lakEs anD pEatlanDs (nE Germany)YOunGEr MiDDlE tErraCE, HxtEr/wEsEr (Germany)lavraDO rEGiOn, rOraiMa (Brazil)tErna rivEr Basin (india)kEMEl HEatH, sOutHErn rHEnisH MassiF (Germany)EditorDEUQUADeutsche Quartrvereinigung e.V. OfceStilleweg 2D-30655 HannoverGermanyTel: +49 (0)511-643 36 13E-Mail: info (at) deuqua.dewww.deuqua.orgProduCtion EditorSAbinE HElMSGeozon Science MediaPostfach 3245D-17462 GreifswaldGermanyTel. +49 (0)3834-80 14 60E-Mail: helms (at) geozon.netwww.geozon.netEditor-in-ChiEfHOlGEr FrEUnDiCbM GeoecologyCarl-von-Ossietzky Universitt OldenburgSchleusenstr. 1D-26382 WilhelmshavenGermanyTel.: +49 (0)4421-94 42 00Fax: +49 (0)4421-94 42 99E-Mail: holger.freund (at) uni-oldenburg.deAims & sCoPEThe Quaternary Science Journal publishes original articles of quaternary geology, geography, palaeontology, soil science, archaeology, climatology etc.; special issues with main topics and articles of lectures of several scientifc events.mAnusCriPt submissionPlease upload your manuscript at the on-line submission system at our journal site www.quaternary-science.net. Please note the instructions for authors before.frEQuEnCy2 numbers per yearsubsCriPtionFree for DEUQUA-Members! Prices for stand-ing order: single number 27, Euro; double number 54, Euro; plus shipping costs. We ofer discounts for libraries and bookstores. Please subscribe to the journal at the pub-lisher Geozon Science Media.JournAL EXChAnGEif you are interested in exchange your journal with the Quaternary Science Journal, please contact: Universittsbibliothek HalleTauschstelle, Frau WintherAugust-bebel-Strae 13D-06108 Halle (Saale), GermanyTel. +49 (0)345-55 22 183E-Mail: tausch (at) bibliothek.uni-halle.derEordEr reorders are possible at the publishing house. See full list and special prices of available numbers on next to last page.PubLishinG housEGeozon Science Media UG (haftungsbeschrnkt)Postfach 3245D-17462 GreifswaldGermanyTel. +49 (0)3834-80 14 80E-Mail: info (at) geozon.netwww.geozon.netPrintPrinted in Germany on 100% recycled paperclimate neutral producedCovEr fiGurEJochen lepper "Temporary outcrop of nachtigall 1 interglacial"riGhtsCopyright for articles by the authorsLiCEnsEDistributed under a Creative Commons Attribution license 3.0http://creativecommons.org/licenses/by/3.0/AssoCiAtE EditorsPiErrE AnTOinE, laboratoire de Gographie Physique, Universit Paris i Panthon-Sorbonne, FranceMArkUS FUCHS, Department of Geography, Justus-liebig-University Giessen, GermanyrAlF-DiETriCH kAHlkE, Senckenberg research institute, research Station of Quaternary Palaeontology Weimar, GermanyTHOMAS liTT, Steinmann-institute of Geology, Mineralogy and Paleontology, University of bonn, GermanylESzEk MArkS, institute of Geology, University of Warsaw, PolandHEnk J. T. WEErTS, Physical Geography Group, Cultural Heritage Agency Amersfoort, The netherlandsformEr Editors-in-ChiEfPAUl WOlDSTEDT (19511966)MArTin SCHWArzbACH (19631966)ErnST SCHnHAlS (19681978)rEinHOlD HUCkriEDE (19681978)HAnS DiETriCH lAnG (19801990)JOSEF klOSTErMAnn (19911999)WOlFGAnG SCHirMEr (2000)ErnST brUnOTTE (20012005)Advisory EditoriAL boArdFlAViO AnSElMETTi, Department of Surface Waters, Eawag (Swiss Federal institute of Aquatic Science & Technology), Dbendorf, SwitzerlandkArl-ErnST bEHrE, lower Saxonian institute of Historical Coastal research, Wilhelmshaven, GermanyPHiliP GibbArD, Department of Geography, University of Cambridge, Great britainVOlli E. kAlM, institute of Ecology and Earth Sciences, University of Tartu, EstoniaCESArE rAVAzzi, institute for the Dynamics of Environmental Processes, national research Council of italy, italyJAMES rOSE, Department of Geography, royal Holloway University of london, Great britainCHriSTiAn SCHlCHTEr, institute of Geological Sciences, University of bern, SwitzerlandDirk VAn HUSEn, Altmnster, AustriaJEF VAnDEnbErGHE, Faculty of Earth and life Sciences, VU University Amsterdam, The netherlandsAnDrEAS VTT, institute of Geography, Johannes Gutenberg-Universitt Mainz, GermanyVol ume 61 / number 2 / 2012 / DOi : 10. 3285/eg. 61. 2 / i SSn 0424-7116 / www. quaternar y-sci ence. net / Founded i n 1951Eiszeitalter und GegenwartQuaternary Science Journal E&G103E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseE&GQuaternary Science Journal Volume 61 / number 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01www.quaternary-science.net GEOzOn SCiEnCE MEDiAiSSn 0424-7116Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany refecting past climatic and human impact an overviewknut kaiser, Sebastian lorenz, Sonja Germer, Olaf Juschus, Mathias kster, Judy libra, Oliver bens, reinhard F. Httl how to cite: Kaiser,K.,Lorenz,S.,Germer,S.,Juschus,O.,Kster,M.,Libra,J.,Bens,O.&Httl,R.F.(2012):LateQaternaryevolutionofrivers,lakesandpeatlandsinnortheastGermanyrefectingpastclimaticandhumanimpactanoverview.E&GQaternaryScienceJournal,61(2):103132.DOI:10.3285/eg.61.2.01Abstract: Knowledgeofregionalpalaeohydrologyisessentialforunderstandingcurrentenvironmentalissues,sucasthecausesofrecenthydrologiccanges,impactsoflandusestrategiesandefectivenessofwetlandrestorationmeasures.Eventheinterpretationofmodelresultsonfutureimpactsofclimaticandland-covercangesmaybeimprovedusing(pre-)historicanalogies.Anoverviewof palaeohydrologic fndings of the last c. 20,000 years is given for northeast Germany with its glacial landscapes of diferentage.Riverdevelopmentisexaminedwithafocusonvalley(-foor)formationanddepositionalcanges,rivercourseandcannelcanges, and palaeodiscarge/-foods. Major genetic diferences exist amongold morainic (Elsterian, Saalian) andyoung mo-rainic(Weicselian)areas,andamongtopographicallyhigh-andlow-lyingvalleys,thelaterofwhicarestronglyinfuencedbywater-levelcangesintheNorthandBalticSeas.Lakedevelopmentwasanalysedwithrespecttolakeformation,whicwaspre-dominantlydrivenbylatePleistocenetoearlyHolocenedead-icedynamics,andwithrespecttodepositionalcanges.Furthermore,lake-levelcangeshavebeeninthefocus,showinghighlyvariablelocalrecordswithsomeconformity.Teoverviewonpeatlanddevelopment concentrated on phases of mire formation and on long-term groundwater dynamics. Close relationships betweenthedevelopmentofrivers,lakesandpeatlandsexistedparticularlyduringthelateHolocenebycomplexpaludifcationprocessesinlargerivervalleys.UntilthelateHolocene,regionalhydrologywaspredominantlydrivenbyclimatic,geomorphicandnon-anthropogenicbioticfactors.SincethelateMedievaltimes,humanactivitieshavestronglyinfuencedthedrainagepaternandthewatercycle,forinstance,bydammingofriversandlakes,constructionofcannelsanddikes,andpeatlandcultivation.Indeed,thenaturalcangescausedbylong-termclimaticandgeomorphicprocesseshavebeenexceededbyimpactsresultingfromshort-termhumanactionsinthelastc.50yearsasdiscargeregulation,hydromeliorationandformationofartifciallakes. die sptquartre Entwicklung von flssen, seen und mooren in nordostdeutschland als spiegel klimatischer und anthro-pogener Einfsse eine bersichtKurzfassung: DieKenntnisderregionalenPalohydrologieisteinewesentliceGrundlagefrdasVerstndnisaktuellerUmweltfragen,wiezumBeispielnacdenGrndenvonhydrologiscenVernderungen,demEinfussvonLandnutzungsstrategienundderWirksamkeitvonRenaturierungsvorhabeninFeuctgebieten.AucdieInterpretationvonModellierungsergebnissenzudenknfigenEinfs-sen des Klima- und Landnutzungswandels auf das Gewssersystem kann durc die Einbeziehung (pr-) historiscer Analogienverbessertwerden.FrdasglazialgeprgtenordostdeutsceTiefandwurdeeinebersictdervorliegendenpalohydrologiscenBefundefrdenZeitraumderletztenetwa20.000Jahreerarbeitet.DieEntwiclungderFlssewurdemitBlicaufdieTal-/Auen-geneseunddasAblagerungsmilieu,dieVernderungdesTal-undGerinneverlaufssowiedenPaloabfussbzw.dasPalohocwass-er betractet.Wesentlice genetisce Untersciede bestehen zwiscen Alt- (Elster- und Saalekaltzeit) und Jungmornengebieten(Weicselkaltzeit) sowie zwiscen hoc und tief gelegenenTlern. Letztere sind stark durcWasserspiegelvernderungen in derNord-undOstseebeeinfusstworden.DieEntwiclungderSeenwurdehinsictlicderSeebildung,dieberwiegendeineFolgedersptpleistoznenbisfrhholoznenToteistiefau-Dynamikist,undderVernderungenimAblagerungsmilieuanalysiert.WeiterhinstandenSeespiegelvernderungenimFokus,wobeisichocvariablelokaleBefundemiteinigenbereinstimmungenzeigten.DerberbliczurMoorentwiclungkonzentriertesicaufhydrogenetisceMoorentwiclungsphasenundaufdielangfristigeEntwic-lungdesGrundwasserspiegels.EngeBeziehungenzwiscenderEntwiclungderFlsse,SeenundMoorebestandeninsbesondereim Sptholozn durc komplexeVermoorungsprozesse in den groen Flusstlern. Bis in das Sptholozn wurde die regionaleHydrologieberwiegenddurcklimatisce,geomorphologisceundnict-anthropogenebiologisceFaktorengesteuert.SeitdemSptmitelalterwurdeinderRegiondasGewssernetzundderWasserkreislaufimstarkenMadurcanthropogeneInterventionenbeeinfusst(z.B.AufstauvonFlssenundSeen,BauvonKanlenundDeicen,Moorkultivierung).Indenletztenetwa50JahrenhabendannsogardiekurzfristigenanthropogenenEingrife,z.B.inFormvonAbfussregulierung,Hydromeliorationundknstli-cerSeebildung,dieWirksamkeitlangfristigerklimatiscerundgeomorphologiscerProzessebertrofen.Keywords: palaeohydrology, valley formation, depositional cange, lake- and groundwater-level fuctuation, mire, late Pleistocene, HoloceneAddresses of authors: K. Kaiser*, O. Bens, R. F. Httl, GFZ German Researc Centre for Geosciences, Telegrafenberg, D-14473 Potsdam, E-Mail:[email protected];S. Lorenz, M. Kster,UniversityofGreifswald,InstituteofGeographyandGeology,Friedric-Ludwig-Jahn-Strae16,D-17487Greifswald;S. Germer, J. Libra,Leibniz-InstituteforAgriculturalEngineeringPotsdam-Bornim,Max-Eyth-Allee100,D-14469Potsdam;O. Juscus,UniversityofAppliedSciencesEberswalde,FacultyofLandscapeManagementandNatureConservation,Alfred-Mller-Strae1,D-16225Eberswalde;*corresponding author104E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseContents104 1 Introduction107 2 Regional settings108 3 Principle researc questions, concepts and methods used in regional studies110 4 Results and discussion110 4.1Rivers110 4.1.1Rivervalleyformationanddepositionalcanges111 4.1.2Changesinrivercoursesandcannels113 4.1.3Palaeodiscargeandpalaeofoodcaracteristics114 4.2Lakes115 4.2.1Lakebasindevelopment115 4.2.1.1Dead-icedynamics116 4.2.1.2Depositionalcanges117 4.2.2Palaeohydrology117 4.2.2.1Lake-levelcanges119 4.2.2.2Lake-areaandlake-contourcanges119 4.3Peatlands119 4.3.1Peatlandformationandgroundwater-level canges119 4.3.1.1Generaldevelopment119 4.3.1.2Peatlandsinlargerivervalleys122 4.3.2Humanimpactonpeatlandsandlakesby millstowage123 5 Synopsis123 5.1Impactofneotectonicprocesses123 5.2Climateimpact124 5.3Pre-modernandmodernhumanimpact125 5.4Finalremarksandresearcperspectives125 6 Conclusions125 Acnowledgements126 References1 introduction Global climate cange causes regional and local variationsin the terrestrial water balance (e.g.Tao et al. 2003, IPCC2007, Bates et al. 2008, Gerten et al. 2008, Kundzewiczet al. 2008, Huang et al. 2010), infuencing the hydrologic,geomorphic and ecologic properties of the regional drain-agesystemcomprisedoffowing(rivers,streams)andstag-nantwaters(lakes,ponds)aswellaspeatlandsofvaryingdi-mension.Anaridifcationtrend,forexample,willinevitablycauseareduction(1)inthediscargeofriversbydiminish-ingsupply,(2)inthesizeoflakesbylevelloweringand(3)intheextensionofpeatlandsbygroundwaterlowering.As hydrologic and climatic researc in Europe shows,therearecurrentlydistinctcangesinwaterbalanceswithregionally difering trends (e.g. Lehner et al. 2006, BACCAuthorTeam2008,EEA2009,Merzetal.2012).Innorth-eastGermany widely adrying trend prevails, resulting indecreasinggroundwaterandlakelevelsaswellasriverdis-carges (e.g. Gerstengarbe et al. 2003, Kaiser et al. 2010,2012a,Germeretal.2011).Ifthistrendcontinues,anegativeinfuenceonecosystemservices,sucastheprovisionofwa-terforhumanuseandwetlandconservation,istobefeared.Undoubtedly, the knowledge of both historic hydrologic(lastc.1000years)andpalaeohydrologicdevelopmentscanhelp us to understand the hydrologic system dynamics atpresent and even in the future (e.g. Branson et al. 1996,Gregory&Benito2003,Brzdiletal.,2006,Gregoryetal. 2006, Czymzik et al. 2010). In particular, the frequencyandmagnitudeofshort-termevents,sucasriverfoodsanddroughts,aswellaslong-termprocesses,sucaslake-levelfuctuations, canges in the river's mean annual discargeanditshydromorphologicstatuscanbedetectedretrospec-tively (e.g. Petts et al. 1989, Berglund et al. 1996a, Har-rison et al. 1998, Brown 2002, Starkel 2005, Baker 2008,Battarbee 2010). Insights gained through suc historicanalogiescanbeusedtoimprovetheinterpretationofmod-elledfutureimpactsofclimaticandland-covercangesand,hence, to develop and optimise adaptation strategies. Fur-thermore,informationonthepre-modernecologicstatusofaquaticlandscapesisapreconditionfordevelopingrestora-tionmeasuresinaccordancewiththeEuropeanUnionWa-terFrameworkDirective(CEC2000,Bennion&Battarbee2007,Zerbe&Wiegleb2009).Intheory,palaeohydrologyisconcernedwithallcompo-nentsofthehydrologiccycle.Butinpracticemostresearcfocusesonspecifccompartments,sucasrivercannelsanddiscarge,lake-andgroundwater-levelfuctuations,isotopecemistry,oronproxyindicatorsofpastprecipitationcar-acteristics (Anthony & Wohl 1998, Gregory & Benito2003).Sucknowledgeonthepalaeohydrologyoftemperateregions in the world is well-established. Particularly west-ern and central Europe have a long-standing researc tra-dition (e.g. Starkel et al. 1991, Gregory 1995, Hagedorn1995,Vandenberghe 1995a, Starkel 2003, Macklin et al.2006,Hoffmannetal.2008).However,strongerintegrationbetweentheregionalfndingsaswellaswithrelateddisci-plinesisnecessary.InnortheastGermany,therearewell-structuredscientifccommunitiesdealingwithbothpresent-dayandfuturehy-drologic canges (investigated by hydrologists and climateimpactresearcers)aswellaswithpalaeohydrology(inves-tigatedbygeoscientistsandpalaeoecologists).Unfortunate-ly joint investigations by both communities are lacing. Inaddition, existing palaeohydrologic knowledge is not suf-cientlybeingconsideredintheinterpretationof(pre-)recenthydrologictrendsandprospective(modelling)purposes.Ob-staclestotheexploitationofhydrologicpalaeo-dataarethemultitudeoflocalcasestudies,andtheirprevailingpublica-tioninGermanperiodicalsandmonographswitharegionalornationalfocus.Publicationssynthesisingregionalpaleo-hydrologicresultsarerare.Tis overview ofers access on the results of regionalpalaeohydrologicresearcoverthelastc.twodecades.Teconsolidationoffndingsintoonepaperwillhopefullyfosterthe consideration of (pre-)historic hydrologic canges intothe respective discussions, increasing the interpretationalpowerformodellingresults.Tispaperprimarilyfocusesonthe evolution of drainage systems during the last c. 20,000years, spanning the late Pleistocene and the Holocene ep-ocs.Telong-termandpartlyinterdependentdevelopmentof the regions main aquatic inland environments rivers,lakes and peatlands will be outlined. For several specifcissues (e.g. river valley formation, palaeodiscarge carac-teristics, dead-ice dynamics, lake- and groundwater-levelcanges,peatlandformation),thestate-of-the-artwillbere-ported.105E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution license24211561327 2829301820219 482226255111091412172317163HavelSaalePleisseWeisseElsterMuldeOderElbeOderElbeElbeOderHavelPeeneNeisseSpreeMuldeHavelSpreeInnersteB a l t i cS e aBerlinMagdeburgRostockLeipzigDresdenHamburgCottbusHalleSzczecinHannoverBraun-schweigFrankfurt/O.LbeckKiel18WeichselianSaalianElsterianMaximal extent of Pleistocene ice sheetsLake River ChannelStudyarea/site0 20 40 80 100 km 60FGBBNorthSeaPLDNSNLCH ALTLVSKROBYCZDKHESTFINLRUS UABalticSea0 250 500 kmFig. 1: Hydrography, main glacial structures and study areas/sites with palaeohydrologic fndings in northeast Germany (map afer BMUNR 2003, adapt-ed). Te numbers refer to the study areas/sites presented (see Tab. 1).Abb. 1: Hydrografe, glaziale Hauptstrukturen (Marginalzonen) und Arbeitsgebiete/-orte mit palohydrologiscen Befunden in Nordostdeutscland (Karte nac BMUNR 2003, verndert). Die Zahlen beziehen sic auf die vorgestellten Arbeitsgebiete/-orte (siehe Tab. 1).106E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseno. study area / site research feld1references1 lake plner see lB, ll, nt, Ga, pl, pE Sirocko et al. 2002, Drfler 20092 lower spree river FM, pD, pE Schulz & Strahl 1997, Schulz 2000, SchnfelDer & Steinberg 2004, hilt et al. 20083 leipzig-Halle area lB, ll, Ga, pl, FM, pE, GG, Hihiller et al. 1991, Mania et al. 1993, Wolf et al. 1994, Mol 1995, bttger et al. 1998, fuhrMann 1999, tinapp et al. 2000, 2008, eiSSMann 2002, Wennrich et al. 2005, czegka et al. 2008 4 lower spree river, lower spreewald area and Dahme riverFM, lB, pE, GG bttner 1999, JuSchuS 2002, 20035 Darss peninsula, Barthe river and Endinger Bruch basin lB, ll, Ga, pl, FM, pt, CE, pEkaiSer 2001, 2004a, De klerk 2002, kaiSer et al. 2000, 2006, 2007, laMpe 2002, lane et al. 20126 Elbe river n of Magdeburg FM, Hi roMMel 19987 lower Havel river, Elb-Havel-winkel and rhinluch/Havellndisches luch areas pt, GG, pE, Ga, ll, Gw, pl, HiMunDel et al. 1983, kloSS 1987a, 1987b, MunDel 1995, 1996, 2002, SchelSki 1997, kSter & ptSch 1998, roWinSky & rutter 1999, guDerMann 2000, MatheWS 2000, zeitz 2001, graMSch 2000, kaffke 2002, WeiSSe 2003, SchnfelDer & Steinberg 2004 8 Berlin area lB, ll, Gw, Ga, pl, FM, pE, GG, pt, HibSe & branDe 1986, 2009, pachur & rper 1987, branDe 1986, 1988, 1996, grtner 1993, Schich 1994, uhleMann 1994, VarleMann 2002, grnert 2003, koSSler 2010, neugebauer et al. 2012 9 lake Mritz ll, pl, pE, Hi kaiSer 1998, kaiSer et al. 2002, ruchhft 2002, laMpe et al. 200910 lake plauer see ll, Ga, Hi ruchhft 2002, bleile et al. 2006, bleile 2008 11 nossentiner/schwinzer Heide area lB, ll, pE, pl, FM, Hi SchMiDtchen et al. 2003, lorenz 2003, rother 2003, Hbener & Drfer 2004, lorenz & Schult 2004, kaiSer et al. 2007, lorenz 2007, 2008, lorenz et al. 201012 low-lying river valleys of vorpommern (e.g. recknitz, peene and uecker river)FM, lB, ll, Gw, pE, GG, CE, pt, Ga, HikaiSer & Janke 1998, helbig 1999, kaiSer et al. 2000, 2003, MichaeliS 2000, Schatz 2000, helbig & De klerk 2002, Janke 2002, 2004, De klerk 2004, kaiSer 2004b, berg 2005, krienke et al. 2006, MichaeliS & JooSten 2010, Jantzen et al. 2011, kSter et al. 201113 upper spreewald and Cottbus areas FM, Ga, GG, pE, pt, Hi khner et al. 1999, neubauer-Saurer 1999, rollanD & arnolD 2002, Woithe 2003, poppSchtz & Strahl 2004, branDe et al. 2007 14 Headwaters of Havel river lB, ll, pE, pl, FM, Hi kaiSer & ziMMerMann 1994, kSter 2009, kSter & kaiSer 2010, kSter et al. 201215 lower Elbe river at lenzen FM, Hi, Ga SchWartz 1999, Schatz 201116 lower Oder river, Oderbruch area, stettiner Haf (szczecin lagoon), Eberswalder urstromtal (spillway) FM, GG, pl, pE, CE, pt, pD, HiDobracka 1983, broSe 1994, 1998, Schlaak et al. 2003, borWka et al. 2005, carlS 2005, DalchoW & kieSel 2005, Schlaak 2005, lutze et al. 2006, brner 2007 17 potsdam area, Havel and nuthe riverslB, Gw, pl, FM, pE, GG, pt, HiroWinSky 1995, WeiSSe et al. 2001, WolterS 2002, 2005, hickiSch 2004, hickiSch & pzolt 2005, lDer et al. 2006, kiriloVa et al. 2009, enterS et al. 201018 Biesenthal Basin, upper Finow streamlB, pE, GG chrobok & nitz 1987, 1995, nitz et al. 199519 schlaube stream pl, lB, pE SchnfelDer et al. 1999, broSe 2000, gieSecke 200020 kersdorfer rinne (tunnel valley) lB, GG, pE Schulz & broSe 2000, Schulz & Strahl 200121 wische area (lower Elbe river) FM caSperS 200022 lake arendsee pl, pE, Hi Scharf 1998, Scharf et al. 200923 lake stechlinsee, upper rhin river lB, FM, pl, pE grtner 2007, branDe 2003, kaiSer et al. 200724 rgen island and adjacent coastal and land areas lB, Gw, nt, Ga, pl, pE, GG, pE, GG, CE, ptklieWe 1989, Strahl & keDing 1996, helbig 1999, De klerk et al. 2001, krienke 2003, VerSe 2003, hoffMann & barnaSch 2005, hoffMann et al. 2005, De klerk et al. 2008a, 2008b, koSSler & Strahl 2011 25 weisser schps river (reichwalde area)FM, pt, Gw, Ga, pE frieDrich et al. 2001, Van Der kroft et al. 200226 upper spree river (nochten/scheibe area)FM, GG Mol 1997, Mol et al. 2000, hiller et al. 200427 usedom island lB, nt, pl, pE, GG, CE helbig 1999, hoffMann et al. 200528 poel island and adjacent coastal and land areasCE, nt, pE, Ga, CE laMpe et al. 2005, 201029 Jeetzel river FM, pE, Ga turner 201230 schorfheide area lB, pE, pt Schlaak 1997, StegMann 2005, Van Der linDen et al. 20081lB = lake-basin formation, ll = lake level, Gw = Groundwater level, nt = neotectonic, Ga = Geoarchaeology, pl = palaeolimnology, FM = Fluvial geomorphology / valley formation, pD = palaeodischarge, pE = palaeoecology, GG = Glacial geomorphology / geology, CE = Coastal evolution, pt = peatland evolution, Hi = Human impact on inland watersTab. 1: Study areas and sites with palaeohydrologic fndings in northeast Germany (see Fig. 1). Tab. 1: Arbeitsgebiete und -orte mit palohydrologiscen Befunden in Nordostdeutscland (siehe Abb. 1).107E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution license2 Regional settingsTeregionnortheastGermanyispartoftheNorthEuropeanPlain,whicisboundedbythecoastsoftheNorthSeaandBalticSeatothenorthandtheGermanCentralUplandstothesouth.Tesurfacerelief(330kyrs)andSaalianbelts(c.>125kyrs;oldmorainicareas)ismaturated.MajorriversintheregionaretheElbeandOderwhicdrainnortheastGermanyintotheNorthSeaand the Baltic Sea, respectively. Tese rivers are caracter-Chronology Phases of river valley genesis Phases of (lake-) basin genesis (Marcinek & broSe 1972) (nitz 1984) Late Holocene Holocene phase infuenced by man Colluvial phase(0-4 kyrs Bp) (Anthropogen beeinfusste, holozne Phase) (Kolluviumsphase) strong human infuence on the drainage system by channels, weirs, hydro amelioration and agriculture man-induced flling up of smaller depressions by colluvial sediments (hillwash) Mid-Holocene Natural Holocene phase Aggradation phase (4-8 kyrs Bp) (Natrlich holozne Phase) (Verlandungsphase) weak fuvial erosion and accumulation flling up of lake basins by sedimentation of gyttja and peat Early Holocene,LateglacialLateglacial-Early Holocene transitional phaseDeep melting phase (8-13 kyrs Bp) (Sptglazial-altholozne bergangsphase) (Tieftauphase) reversals of fow direction melting of stagnant ice, formation of (lake) partly formation of interior drainage basins melting of stagnant ice / lake formation decay of permafrost decay of permafrost Late Pleniglacial Fluvial periglacial phase Conservation phase (20-13 kyrs Bp) (Fluvioperiglazire Phase) (Konservierungsphase) formation of a hierarchic river system on conservation of stagnant ice by permafrost permafrost sedimentation of periglacial lacustrine, fuvial and aeolian deposits Late Pleniglacial Fluvioglacial Phase Ice-melting phase (>20-14 kyrs Bp) (Fluvioglazire Phase) (Niedertauphase) initial ice-marginal drainage, later ice- inclusion / burial of stagnant ice by sediments radial drainage outwash plain formation Formation phase (Anlagephase) formation of depressions by ice exaration and glaciofuvial erosion Tab. 2: Conceptual models of late Qater-nary river valley and lake basin development in northeast Germany. Adapted and modi-fed from Marcinek & Brose (1972) and Nitz (1984). Tab. 2: Konzeptionelle Modelle der sptquar-tren Flusstal- und Seebecenentwiclung in Nordostdeutscland (nac Marcinek & Brose 1972 und Brose 1984, verndert).108E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseised by present-day mean annual discarges in a range of500700m3s-1.Severaltributariesexist;themostimportantaretheSaale,Havel,Mulde,SpreeandPeene(20120m3s-1;BMUNR2003).Amainlyeast-west-orientednetworkofca-nalsusedforinlandnavigationconnectstherivers.TeWeicselian belt is caracterised by the occurrenceofnumerouslakesofdiferentsizeandofdiferentgenetic,hydrologicandecologictype.AccordingtoestimationsfromtheadjacentPolishyoungmorainicarea,onlyone-thirdtohalf of the former lakes from the late Pleistocene to earlyHolocenehaveremainedduetoaggradationcausedbynatu-ralandanthropogenicprocesses(Starkel2003).Bycontrast,onlyafewnaturallakesintheSaalianbeltoccur,butseveralartifcial lakes originating from river damming and ligniteopencastminingexist.InnortheastGermanythetotalareaof natural lakes amounts to c. 1300 km2(Korczynski et al.2005). In general, the regions natural lakes largely repre-senthollows located in the frst unconfned aquifer. Tusgroundwaterandlakehydrologyarecloselyconnected.Inaddition,alargeareaoftheregion(c.5800km2)iscov-eredbypeatlands.Tistermreferstoallkindsofdrainedorundrainedareaswithaminimalthicnessofpeatofatleastseveraldecimetres(Joosten2008).PeatlandsprimarilyoccurinrivervalleysandlargebasinsintheFederalStatesofMec-lenburg-Vorpommern (2930 km2) and Brandenburg/Berlin(2220km2;Fig.2A).Smallerareasaredistributedinthelow-landpartsofSacsen-Anhalt(580km2)andSacsen(70km2).Groundwater-fedpeatlandsdominatewithc.99%versusonly1%rain-fedpeatlands(Couwenberg&Joosten2001).Te present-day climate of the region (Hendl 1994) isclassifedastemperatehumidwithmeanannualairtemper-atures around 89 and mean annual precipitation rang-ing from 773 mm a-1 (Hamburg) to 565 mm a-1 (Cotbus).Adistinctthermoclimaticgradientexistsfromnorthwesttosoutheast, dividing the region into maritime, sub-maritimeandsub-continentalpartswithdecreasingprecipitation(Fig.2B). Te driest sites are located at the Saale (Halle/S.) andOderRivers(Frankfurt/O.)withameanannualprecipitationofabout450mma-1.3 Principle research questions, concepts and methods used in regional studiesTe main disciplines providing regional palaeohydrologicknowledge (Fig. 1,Tab. 1) are geomorphology, Qaternarygeology, palaeobotany and historical sciences. Te prin-Fig. 2: Distribution of large peatlands and large river foodplains (A) as well of thermoclimatic zones (B) in northeast Germany (afer BGR 2007, IfL 2008, adapted). Abb. 2: Verbreitung groer Moorgebiete und groer Flussauen (A) sowie thermoklimatiscer Zonen (B) in Nordostdeutscland (nac BGR 2007, IfL 2008, verndert). 109E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseZone facies area Example (river) selected genetic properties Comparing conclusions(cross-zonal)i periglacial valley bottoms in the German uplandssaale, Mulde (middle reaches) state of equilibrium between erosion and aggradation in the early Holocene deposition of gravel during atlantic frequently burying oak stems late Holocene deposition of food loams and/or erosion as most river valleys (facies zones) are only initially investigated, comparing conclu-sions are partly of preliminary status after the retreat of the weichselian ice sheet an erosional phase took place (lateglacial) afecting the large river valleys up to the uplands erosion / aggradation in northern valleys is mainly controlled by water-level changes in the Baltic sea and north sea basins, whereas southern valleys are controlled by climatic and (in the late Holocene) by human impact widespread deposition of organic sediments (peat, gyttja) and soil formation characte-rises the atlantic and subboreal areal deposition of human-induced food loams is a characteristic of the late Holocene except in low-lying valleys of zone ivbii valley bottoms in the loess beltElster, unstrut erosional phase in the early Holocene with subsequent deposition of gravel, sand and topping overbank fnes mid-Holocene hiatus (soil formation) late Holocene deposition mainly of food loams iiia valley bottoms in the old morainic area between weichselian maximum and loess belt spree, neie (middle reaches) similar depositional history as in zone iiiiib valley bottoms in the young morainic area between weichselian maximum and pomeranian stageHavel, Dosse, spree (lower reaches) frequent occurrence of fuvial connections of basins (river-lake-structures) erosion / aggradation depending from river bed changes of Elbe and Oder (zone iva) iva valley bottoms of large transzonal rivers occupying several facies areas Elbe, Oder erosional phases during (pre-?)Blling (lower Oder) and early Holocene (Elbe) early to mid-Holocene deposition of gravels and sands (Elbe) and mainly of peat (lower Oder) late Holocene deposition of overbank fnes ivb valley bottoms of tributaries of the Baltic sea north of the weichselian pomeranian stage peene, warnow erosional phases during (pre-?)Bl-ling, preboreal and late Boreal fattening of the river bed gradient by organic sedimentation in the atlantic/subboreal caused by marine infuence (littorina transgression) dominating deposition of peat and gyttja instead of overbank fnes in the late Holocene ciple researc questions some of whic have been posedperiodicallyformorethan100years(e.g.Woldstedt1956,Marcinek1987,Kaiser2002)concern(1)thestructureandformation of the natural drainage system, (2) its anthropo-genic use and historic reshaping, and (3) the (palaeo-) eco-logicstatusandcange.Morespecifcresearcquestionsinrelation to the single aquatic environments investigated rivers, lakes and peatlands are given in capters 4.1, 4.2and4.3.Corresponding to diferent thematic approaces, the re-searc concepts used come from diferent disciplines. Bothgeosciences and palaeoecology use climatologic- and bio-stratigraphicconceptsandunits.Teyaredefnedfordivid-ingandexplainingstagesofdeposition,reliefformationandbiotic canges, respectively. More specifcally, the generalmodelfortheregionallateQaternaryreliefformationwithemphasisonfuvialgeomorphology,proposedbyMarcinek& Brose (1972) and extended to incorporate the develop-mentoflakebasins(Nitz1984),hasbeenadaptedforuseinthis overview (Tab. 2). Additionally, the conceptualised re-gionalfaciesareasofHoloceneriverdevelopmentbyBrose&Prger(1983)willbeoutlined(Tab.3).Tesemodelsandscemes provided the thematic framework for most of thelater geomorphic and palaeohydrologic researc. However,theybaseonrelativelyfewlocalfeldstudiesonlyandgen-erallylacsufcientnumericagecontrol.Arcaeology, as a discipline of the historic sciences, hasconcentrated on the setlement and human use of aquat-ic landscapes in pre-Medieval (i.e. pre-German) times,thought to be a period with litle human impact on theaquaticenvironment(e.g.Bleile2012).Historyandhistoricgeographyhavedealtwithstronghumanimpactonthere-gional drainage system since Medieval times (e.g. Schich1994,Driescher2003,Blackbourn2006).Correspondingtothedisciplinesinvolved,theresultspre-sentedarebaseduponabroadrangeofgeoscientifc(includ-ing geocronology), biological (palaeoecology) and historicmethods. Te basic geoscientifc methods used include theanalysis of thousands of sedimentary profles from coringsaswellasopensections,geomorphicmappingoffuvialandlacustrinestructures,sedimentologicanalysesandgeophys-ics. Geocronology provides absolute cronologic controlTab. 3: Facies areas of Holocene river valley development in northeast Germany considering geographic location, river valley dimension and valley history (Brose & Prger 1983, adapted). Tab. 3: Faziesgebiete der holoznen Flusstalentwiclung in Nordostdeutscland unter Bercsictigung der Lage, der Flusstaldimension und der Talge-scicte (nac Brose & Prger 1983, verndert). 110E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licensecomprisingradiocarbondatingand,ataprogressiverate,lu-minescencedating(mostlyOSL).Normally,thecronologyinthisoverviewisbasedoncalibratedradiocarbonages(calyrsBP).But,dependingonthecontext,someothercrono-logicsystemswerealsoused(e.g.yrsBC,yrsAD,14CyrsBP,varveyrsBP).Temostimportantbiologicalmethodappliedispollenanalysisprovidingbothstratigraphic(thustoacer-taindegreeevencronologic)informationandpalaeoecolog-icdata(e.g.onvegetationstructure,groundwatersituation,humanimpact).Regionalknowledgeofthehistoricsciencesismainlybasedonarcaeologicalexcavationsincludingfndmateranalysis,andinterpretationofhistoricpublicrecords(documents) and maps. Te later are not available earlierthanthe16thcenturyAD.4 results and discussion 4.1 riversIn general, subjects of researc on regional river evolutionhavebeenmainly(glacio-)fuvialgeologyandgeomorpho-logy(e.g.cangeofrivercourse,riverbotomincision/aggra-dation, valley mire formation), and palaeoecology, particu-larlyanalysingsedimentaryarcivesinrivervalleysforveg-etationandwatertrophiclevelreconstruction.Itisonlyinrecentyearsthatquantitativeestimationsofpalaeodiscargewereatemptedforsomerivers(Elbe,OderandSpree),us-ingpalaeoecologic,climaticandhydraulicdata.Tefollow-ingoverviewonriverandvalleydevelopmentconcentrateson the aspects (1) river valley formation and depositionalcanges,(2)cangesintherivercoursesandcannels,and(3)palaeodiscargeandpalaeofoods.4.1.1 river valley formation and depositional changesTebacboneoftheregionalrivernetworkhasbeenasys-tem of glacial spillways (ice-marginal valleys). Tese spill-waysworkedassoutheast-northwestorienteddrainagefol-lowingtheretreatoftheWeicselianicesheet,exceptforthesouthernmostspillways,whicoriginatedfromthepreviousSaalianglaciation.Tevalleyswereoperatingfromc.26,000to17,000calyrsBP,partlyinitiatedbytheglacierblocingof northwards, i.e. to the North Sea and Baltic Sea basins,fowingrivers(Marcinek&Seifert1995).Tegeneralsub-glacial and subaerial drainage of the ice sheet to the southledtoconnectionsofthesespillwaysvialower-scalevalleys.Aferglaciersdecay,unblocingoftheterrainofenhasiniti-atedfowreversals(e.g.Kaiseretal.2007,Lorenz2008).Inparallel,severalshort-livedice-dammed(proglacial)lakesofdiferentdimensiondeveloped;someofthemofvastextent(seecapter4.2.1.2)Astrikinggeomorphicpropertyoftheyoungmorainicar-eaistheexistenceofnumerousso-called(open)tunnelval-2-30-20-1001020302.04 6 8 10 12 14 16 0Age ( C ky14rs BP)Altitude(ma.s.l./b.s.l.)L a t eP l e i s t o -c e n eH o l o c e n euncertainchronologicgroupingAller d Preboreal-BorealB lling Atlantic-Subboreal-(expanded in B)RecentABBafter (2007) BRNERafter (1994) BROSEFloodplain level of Oder River10-2-12.5 3.0 1.5 1.0 0.5 0Subatlantic Subboreal ChronozonePollenzoneCulture periodIX VIII Xa XbBronze Age pre-RomanIron AgeRomanPeriodMigration-Period2MediaevalWater level at floodplainFloodplain level(after 1994) BROSE-40Age ( C ky14rs BP)Altitude(ma.s.l./b.s.l.)Fig. 3: Changes in the foodplain level of the lower Oder River. A: General development during the late Pleis-tocene and Holocene (afer Brose 1994, Brner 2007, adapted). B: Detailed development during the late Holocene (afer Brose 1994, adapted). Abb. 3: Vernderungen des Auen-niveaus der unteren Oder. A: Ge-nerelle Entwiclung whrend des Sptpleistozns und Holozns (nac Brose 1994, Brner 2007, verndert). B: Detaillierte Entwiclung whrend des Sptholozns (nac Brose 1994, verndert). 111E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseleys(glacialcannels),containingriversandstreamsaswellaslakesandpeatlands.Additionally,buriedtunnelvalleysofsimilardimensionoccurbothintheyoungandoldmorainicarea (Eissmann 2002). Te valleys were mainly eroded bymeltwater supposed to have drained from subglacial lakes.Teir water was most likely released in repeated outburstfoods(so-calledjkulhlaups)andfowedinrelativelysmallcannels on the foors of the tunnel valleys (Piotrowski1997,Jrgensen&Sandersen2006).KnowledgeonlateQaternaryriverdevelopmentisveryirregularly available in the region (Fig. 1, Tab. 1). Te re-gionsmainriver,theElbe,hasbeenrecentlyonlymargin-allyinthe(geo-)historicfocus(e.g.Rommel1998,Caspers2000,Thieke,2002,Turner2012),infurthercontrasttooth-er large central European rivers, suc asVistula and Rhine(Schirmeretal.2005,Starkeletal.2006).Acaracteristicoflow-lyingvalleysinthenorthernpartofthestudyarea,comprisingthelowersectionsoftheElbeandOderRiversaswellastheVorpommernrivers(e.g.Uec-er,Peene,Trebel,Recnitz;Fig.1),isthehydraulicdepend-encyofvalleybotomprocessesfromwater-levelcangesintheNorthSeaandBalticSeabasinsandfromisostaticmove-ments.Ingeneral,ariseinthewaterlevelintheseabasinscausesalowerhydraulicriverbedgradient,whereasawaterlevelfallleadstotheopposite.Tisstronglyinfuencessev-eralprocessesintheriveranditsfoodplain(e.g.transport,fooding,sedimentation/erosion,vegetation).TeOderRiverandsomeVorpommernriverswereextensivelyinvestigatedinthisrespect.IntheLateglacialandearlyHolocenemarkedvalleybotomcangeswerecausedbylake-levelcangesofice-dammedlakesintheBalticSeabasin(Fig.3).Temid-tolateHolocenesea-levelrise(Lampe2005,Behre2007,Lampeet al. 2010) triggered a large-scale formation of peatlands(mostly of percolation mires), temporally even the drown-ing of lower valley sections (e.g. Brose 1994, Janke 2002,Brner2007,Michaelis&Joosten2010).Tus,incontrasttorivervalleysofthehigher-lyingglaciallandscapeandtheGerman Uplands, whic are mainly flled by minerogenicdeposits (gravels, sands, food loams), peat widely flls thepresentvalleys(Fig.4).Most regional studies have noticed that Holocene riverbotom development up to the late Atlantic/early Subbore-al is exclusively controlled by climatic and (natural-) geo-morphicaswellasbioticprocesses,sucasfuvialerosion/aggradation and beaver damming. By contrast, Neolithicandsubsequenteconomies,regionallystartinginthesouthc. 7300 cal yrs BP (Tinapp et al. 2008) and in the north c.6100calyrsBP(Lataowa1992),considerablycangedthevegetationstructure,waterbudgetandgeomorphicprocess-es of the catcments. Erosional processes, following forestclearing and accompanying agricultural use, increased thesuspended load of rivers causing deposition of food loams(overbankfnes,AuelehminGerman)duringfoodevents.Accordingly,alargernumberoffoodloamsdatefromthelateAtlantic(e.g.Hilleretal.1991,Mundel1996,Caspers2000).Moreover,thereisamultitudeoffoodloamrecordsdatingfromtheSubborealandSubatlantic(e.g.Fuhrmann1999, Brner 2007, Brande et al. 2007, Kaiser et al. 2007,Tinappetal.2008).As shown by palaeo-food indicators, human-inducedcangesinthecatcmenthydrologyledtoanincreaseinthefrequencyandmagnitudeoffoodsinthelateHolocene(seecapter 4.1.3). Te river valley botoms shifed from quasi-stabletounstableconditions(Schirmer1995,Kalicki1996,Starkel et al. 2006, Hoffmann et al. 2008). More frequentandheavyfoodscausedbothanintensifcationofriverbederosionandanaggradationofthevalleybotomandlevel-lingofitsreliefdiferences.4.1.2 Changes in river courses and channelsIngeneral,riverscancangetheircoursebyleavingtheiroldvalleyorbyformationofanewcannelwithintheirhith-ertoexistingvalley.Riverscanbeforcedtoleaveoldvalleysthrough tectonics, retrograde erosion or glacier damming.Teaccordanttimescalemostlyisafewtohundredsthou-sands of years (in phase with climatic evolution). Smallercanges in the cannel patern (fuvial style) lead to newriverbedswithinexistingvalleys,whicarepredominantlyinitiatedbyclimate-drivencangesofdrainage(frequency,magnitude),erosionandbedload.Tisspansatimescaleoftens to hundreds of years (in phase with climatic canges;Vandenberghe1995b).Oftheregionalrivers,onlytheElbehasbeeninvestigatedforcangesinitscourse.IntheTertiarytomid-Pleistocene,large-scalerivercoursecanges(lateralriverbeddeviationofmax.c.150km)occurredduetotectonicprocessesandtoriverdammingtriggeredbyglaciations.ItwasnotuntiltheendoftheSaalianthatitspresentcoursewassubstantiallyformed (e.g.Thieke 2002). Small-scale river course cang-es(max.c.25km)occurredintheElbe-HavelRiverregion(Elb-Havel-WinkelinGerman)stillinhistorictimes(early18th century AD), when the river, caused by strong foods,wasfollowingoldercoursesinthedeeperlyingHavelRiv-er valley (Schmidt 2000). Finally, evidence for river can-nelcanges(max.c.5km)isavailablefortheriversectionbetween Magdeburg and Witenberge, showing that thepresent-daysinglecannelriverwasaHoloceneanastomo-sing system in this section up to the mid-18th century AD(Rommel1998,Caspers2000).Afewrecordsareavailableoncannelpaterncangesinthe region (Fig. 5). Te mean present-day annual discargeofaccordantrivers,however,variesextremely(0.3to550m3

s-1).Sixtypesofcannelpaternswereidentifed(braiding,meanderingwithlargeandsmallmeanders,anastomosing,V-shapevalleys/straightcourse,andinundation/valleymireformation). Te type formed depends on several hydrau-lic parameters (bed gradient, load, fow velocity, discargevolume and temporal distribution; Miall 1996). In the latePleniglacial and early Lateglacial all rivers investigatedwerebraidedsystemscausedbyhighloadandstronglyepi-sodicdiscargeaferheavysnowmeltingunderperiglacialconditions(e.g.Mol1997).AnincisionphasetookplaceintheearlyLateglacial,whentheregionalerosionbaseintheBalticSeaandNorthSeabasinswasloworwhenthelocalerosion base was lowered by dead-ice melting. Te (early)Lateglacial is caracterised by the formation of so-calledlargemeanders,whicareatributedtoshort-termhighdis-carges following extreme snow melting (Vandenberghe1995a).FortheSpreeRiver,adistinctradiusdownsizingofsequenced meander generations was postulated (large me-anders:9001000m,smallmeanders:600900m,recentme-112E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseFig. 4: Model of the geomorphic development of low-lying river valleys in Vorpommern (afer Kaiser 2001, Janke 2002, adapted); a scematic geologic cross-section through a river valley is depicted. Te term W3 used for phases 13 refers to the late Pleniglacial inland-ice advance of the Meclenburgian Phase (Weicselian3/W3), whic is approximately dated by radiocarbon data from the Pomeranian Bay, southern Baltic Sea (Grsdorf & Kaiser 2001). Abb. 4: Modell der geologisc-geomorphologiscen Entwiclung tiefiegender Flusstler in Vorpommern (nac Kaiser 2001, Janke 2002, verndert). Dar-gestellt ist ein scematiscer geologiscer Scnit durc ein Flusstal. Der Begrif W3, genutzt fr die Talentwiclungsphasen 13, bezieht sic auf den sptpleniglazialen Inlandeisvorsto der Meclenburger Phase (Weicsel3/W3). Dieser Eisvorsto ist nherungsweise durc Radiokohlenstofdaten aus der Pommerscen Buct/sdlice Ostsee datiert (Grsdorf & Kaiser 2001). Fine colluvial sediments Fluviolacustrine sandand silt, silikate gyttjaPeatGlacier ice,dead iceTillCalcareousgyttjaOlder sediments Coarse glaciofluvial and colluvialsedimentsGlaciofluvial and-lacustrine sedimentsRiverStrong erosionand incisionDischarge directionNW1>18,000 cal yrs BP1st phase = glacio spillway (pre-W3) fluvialRiverStrong erosionund solifluctionDischarge dir. NWTerrace formationErosion of till3rd phase = glaciofluvial spillway (post-W3)317,000-16,500 cal yrs BPRiverStrong incisionDischarge dir. NE(up to present)4th phase = Lateglacial incision416,000-15,000 cal yrs BPLake RiverIncreasingwater levelsDeposition of fluvialand lacustr. depositsDead-ice meltingand lake formation513,500-11,500 cal yrs BP5th phase = Lateglacial aggradationLake RiverIncision and later ondeposition of fluvialsandsDep. of calcareousgyttjas in lakes611,500-9200 cal yrs BP6th phase = early Holocene incisionOxbowlake RiverValley bottomrise by peatdepositionFrequent changesof the river course,floods, formationof oxbow lakes7th phase = paludification) groundwater rise (79200-5700 cal yrs BP8th phase = groundwater loweringReduced peatformation, partlystratigraphic hiatusOxbowlake River85700-2400 cal yrs BPIncreasingwater inputby deforest-ation ofcatchmentsDeposition ofhillwashExtensive grass-land agricultureRiver92400-300 cal yrs BP9th phase = moderate human impactPeatcuttingRiverDikingPeat settlingComplex hydro-meliorationDegradation of peatIntensive agriculture10300 cal yrs BP-recent10th phase = strong human impactDeposition of till2nd phase = glaciation (W3)218,000-17,000 cal yrs BP113E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseanders:150300m;Schulz2000),whicgenerallyindicatesdecreasing (seasonal) discarge volumes. Beginning in thelate mid-Holocene but strengthened in the late Holocene,some low-lying river sections were temporarily inundatedand were generally transformed into peatlands (e.g. lowerOderRiverandsomeVorpommernrivers).In the last c. 800 years, human impact has considerablycanged both the foodplain structures and courses of re-gional rivers by deforestation, artifcial river-bed remov-ingandstrengtheningaswellasdyking,setlementandin-frastructure construction (e.g. Schich 1994, Schmidt 2000,Driescher 2003). For example, a dense network of canalsfor inland navigation has been built, beginning in the 16th

centuryADandculminatinginthelate19thtoearly20thcen-turyAD(Uhlemann1994,Eckoldt1998),inadditiontotheconstructionofinnumerabledrainageditces.4.1.3 Palaeodischarge and palaeofood characteristicsQantitativeestimationsofpalaeohydrologicparametersforriversusuallyaimatdescribingpalaeodiscarge(meanan-nualdiscarge,bankfulldiscarge)andpalaeofoodcarac-teristics(magnitude,frequency,risk;e.g.Gregory&Benito2003,Benito&Thorndycraft2005).Whereasintheadja-centPolishterritory,palaeodiscargeandpalaeofoodstud-ieswereperformedquiteearly(e.g.Rotnicki1991,Starkel2003),correspondingstudiesfornortheastGermanyaregen-erallyrareandofmorerecentstatus.OnerecentstudyoftheElbeRivermouth(GermanBight,NorthSea)producedahighresolution800-year-longproxyrecordofpalaeodiscarge,basedona18O-salinity-discargerelationship(Scheurleetal.2005;Tab.4).Tereconstructedvarianceofmeanannualdiscarge(MAD),revealingamin-imum-maximumspanof1001375m3s-1,islinkedtolong-termcangesinprecipitation.Fourmainperiodsofpalaeo-discarge/palaeoprecipitationbecomeapparent,withhigherandlowervaluesthanatpresent.For the lower Oder River, a coupled climatic-hydrolog-ic model estimated MADs for the early and mid-Holocenesimilar to those of today (Ward et al. 2007;Tab. 4). TesemodellingresultscoincidewithlocalpalaeohydrologicdatafromtheProsnaRiver(atributaryoftheOderviatheWartainPoland;Rotnicki1991),whicshowthatdiscargesthereintheearlyandmid-Holocenewerebroadlysimilartothoseintheperiod17502000AD.FortheSpreeRiver,lateHolocenepalaeomeanderswereinvestigated (Hilt et al. 2008). Reconstructions show nar-rower and shallower cannels for the undisturbed lowerSpreeascomparedtorecentconditions,whicarestronglyinfuenced by mining drainage water input (Grnewald2008).Flowvelocitiesanddiscargeatbankfullstage(Tab.4)were smaller in palaeocannels and fow variability washigher.Furthermore,theincreaseinbankfulldiscargewasatributedtodeforestationanddrainageofthecatcmentaswellascannelisation,bankprotectionandriverregulationmeasures.ForthejointareaofVorpommernandnortheastBranden-burg,Borketal.(1998)estimatedaregionalwaterbalanceLower Oder(Niederes Oder-bruch area)Jeetzel RiverBRNER (2007)TURNER (2012)Spree(Unterspreewaldarea)JUSCHUS (2003)Weier Schps VAN DER KROFTet al. (2002)Spree(Drahendorf area) SCHULZ (2000)PLElbe(Wische area) CASPERS (2000)D1 D2 AL D3 ME PB SB BO1450013480 1386013730AT1 AT2 SA1 SA2 B1335012700115601064092207500566024001150ChronozoneAge (cal yrs BP)EarlyHolo-ceneMid-Holo-ceneLate Holocene Late PleistoceneBraiding Meandering -large meandersMeandering -small meandersAnastomosing Straight course(incision)Inundation,peatland formation???VorpommernriversJANKE (2002)??Fig. 5: Late Pleistocene and Holocene cannel patern canges in river valleys in northeast Germany (afer various authors, adapted). Note missing data or questionable records are indicated by question marks.Abb. 5: Sptpleistozne und holo-zne Vernderungen der Gerinne-betmuster in Flusstlern Nordost-deutsclands (nac versciedenen Autoren, verndert). Fehlende Daten oder fraglice Befunde sind mit Fragezeicen gekennzeicnet. 114E&G / vol. 61 / no. 2 / 2012 / 103132 / DOi 10.3285/eg.61.2.01 / authors / Creative Commons attribution licenseforthetimesteps650AD,1310ADandtoday,whicshowsa maximum discarge value for the late Medieval period.Tiswascausedbythelowestamountofforestedareas(thusrelativelylowamountsofevapotranspirationandintercep-tion)duringthelateHolocene(Tab.5).Dataonpalaeofoodcaracteristicsintheregionarepri-marily available for the Elbe (Brzdil et al. 1999, Glaser2001,Mudelseeetal.2003),Oder(Glaser2001,Mudelseeetal.2003)andSpreeRivers(Rolland&Arnold2002).Spo-radic historical records start in the 11th century AD, whilemorecontinuousrecordsarenotavailableuntilthe16thcen-tury AD. As an example, for the Elbe River Mudelsee etal.(2003)detectedsignifcantlong-termcangesinfoodoc-currence rates from the 16th to the 19th century AD. A frstmaximum in the fooding rate was reaced in the mid-16th

centuryAD.Atthistime,riversincentralandsouthwestEu-ropeexperiencedasimilarincreaseinfoods,whichasbeenatributedtohigherprecipitation(Brzdiletal.1999).Lat-eronwinterfoodsreacedanabsolutemaximum(around1850AD)andthenfnallydecreased.Mudelseeetal.(2003)concluded by means of statistical correlations for the ElbeandOderRiversthatreductionsinriverlength,constructionofreservoirsanddeforestationhavehadonlyminorefectsonfoodfrequency.Furthermore,theyarrivedattheconclu-sion that there is no evidence from both historic data andmoderngaugingforarecentupwardtrendinthefoodoc-currencerate(inthiscontextseePetrow&Merz2009).Tisrepresentsanimportantregionalfndingwithrespecttothecurrent debate on regional hydrologic canges initiated byglobalclimatecange,emphasisingtheimportanceoftem-porallylonghydrologicdataseries.4.2 LakesIngeneral,lakebasinsubiquitouslyprovidesedimentaryar-civesfromwhicboththelocalandtoacertainextenteventheregionallandscapedevelopmentcanbereconstructed.Telakebasinsinthenorthernpartoftheregion(Mec-lenburg-Vorpommern) were formerly classifed by size aslargeglaciolacustrinebasins(formerproglaciallakes,>100km2),medium-sizedlakes(0.03100km2),andketleholes(