efficient method for solving some types of partial

131
Republic of Iraq Ministry of Higher Education and Scientific Research University of Baghdad College of Education for Pure Science, Ibn Al-Haitham Efficient Method for Solving Some Types of Partial Differential Equations A Thesis Submitted to the Department of Mathematics, College of Education for Pure Science- Ibn Al-Haitham, University of Baghdad as Partial Fulfillment of Requirements for the Degree of Master of Science in Mathematics By Myasar Obaid Enadi Supervised By Prof. Dr. Luma Naji Mohammed Tawfiq AC 1440 AH 2019

Upload: others

Post on 20-Apr-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Efficient Method for Solving Some Types of Partial

Republic of Iraq

Ministry of Higher Education

and Scientific Research

University of Baghdad

College of Education for Pure Science,

Ibn Al-Haitham

Efficient Method for Solving Some Types of

Partial Differential Equations

A Thesis

Submitted to the Department of Mathematics, College of Education for

Pure Science- Ibn Al-Haitham, University of Baghdad as Partial

Fulfillment of Requirements for the Degree of

Master of Science in Mathematics

By

Myasar Obaid Enadi

Supervised By

Prof. Dr. Luma Naji Mohammed Tawfiq

AC 1440 AH 2019

Page 2: Efficient Method for Solving Some Types of Partial

ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…

ูˆู‚ุงู„ ุฑุจ ุฃูˆุฒุนู†ูŠ ุฃู† ุฃุดูƒุฑ ู†ุนู…ุชูƒ ุงู„ุชูŠ ุฃู† ุนู…ุช ุนู„ูŠ ูˆุนู„ู‰ ูˆุงู„ุฏูŠ ูˆุฃู† ๏ดพ19๏ดฟ ูƒ ููŠ ุนุจุงุฏูƒ ุงู„ุตุงู„ุญูŠู† ุฃุนู…ู„ ุตุงู„ุญุง ุช ุฑุถุงู‡ ูˆุฃุฏุฎู„ู†ูŠ ุจุฑุญู…ุช

ุตุฏู‚ ุงู„ู„ู‡ ุงู„ุนุธูŠู…

(19)ุงู„ุขูŠุฉ ุณูˆุฑุฉ ุงู„ู†ู…ู„

Page 3: Efficient Method for Solving Some Types of Partial
Page 4: Efficient Method for Solving Some Types of Partial
Page 5: Efficient Method for Solving Some Types of Partial

ูŠุฏู†ุง ู…ุญู…ุฏ ูˆุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุฃุดุฑู ุงู„ู…ุฑุณู„ูŠู† ุณ ุงู„ุญู…ุฏ ู„ู„ู‡ ุนู„ู‰ ู†ุนู…ู‡ ุงู„ุชูŠ ู„ุง ุชุนุฏ ูˆู„ุง ุชุญุตู‰

ูˆุฃู„ู‡ ุงู„ุทูŠุจูŠู† ุงู„ุทุงู‡ุฑูŠู†

ููŠ ู†ู‡ุงูŠุฉ ุฑุณุงู„ุชูŠ ุงู‡ุฏูŠ ุซู…ุฑุฉ ุฌู‡ุฏูŠ ุงู„ู…ุชูˆุงุถุนุฉ

ุงู„ุญูŠุงุฉ ู…ุตุงุนุจ ู…ู† ุฃุฌู„ู‡ู… ุชู‡ูˆู† ุงู„ุฐูŠู† ุฅู„ู‰

ู…ู† ุฃุฌู„ู‡ู… ุชุณุชุญู‚ ุงู„ุญูŠุงุฉ ุงู„ุฐูŠู† ุฅู„ู‰

"ุงู„ุนุงุฆู„ุฉ ุงู„ูƒุฑูŠู…ุฉ "ุญุจู‡ู… ููŠ ุงู„ู‚ู„ุจ ููƒุงู†ูˆุง ุงู„ู‡ูˆุงุก ูˆุงู„ู†ุจุถ ุณูƒู†ุฅู„ู‰ ู…ู†

ู„ู…ู‰ ู†ุงุฌูŠ ู…ุญู…ุฏ ุชูˆููŠู‚"ุงู„ุฏูƒุชูˆุฑ " ุงู„ุฃุณุชุงุฐุฑุณุงู„ุชูŠ ุนู„ู‰ ุงู†ูŠ ุจุฅุดุฑุงูู‡ุชุฅู„ู‰ ู…ู† ุดุฑู

ูˆู„ุชูˆุฌูŠู‡ุงุชู‡ุง ุงู„ุนู„ู…ูŠุฉ ูŠุนู„ ุงู„ูƒุจูŠุฑุตุจุฑู‡ุง ู„ุญุฑูˆู ู„ุฅูŠูุงุฆู‡ุง ุญู‚ู‡ุง ุงู„ุงู„ุชูŠ ู„ู† ุชูƒููŠ

ุฎุงู„ุต ุ›ูƒู…ุง ุฃุชูˆุฌู‡ ุจ ุงู„ุนู…ู„ ู†ุฌุงุฒุจุดูƒู„ ูƒุจูŠุฑ ููŠ ุฅุชู…ุงู… ูˆ ุง ุงู„ุชูŠ ุณุงู‡ู…ุช ุงู„ุชูŠ ู„ุง ุชู‚ุฏุฑ ุจุซู…ู† ูˆ

ุดูƒุฑูŠ ูˆ ุชู‚ุฏูŠุฑูŠ

ุฅู„ู‰ ุจูŠุงุฑู‚ ุงู„ุนู„ู… ูˆุงู„ู…ุนุฑูุฉ ุฃุณุงุชุฐุชูŠ ุงู„ุฃูุงุถู„

ููŠ ูุชุฑุฉ ุฏุฑุงุณุชูŠุฅู„ู‰ ูƒู„ ู…ู† ุณุงุนุฏู†ูŠ

ุงู„ุจุงุญุซ

ุฏุงุกู€ุงู„ุฅู‡

Page 6: Efficient Method for Solving Some Types of Partial

To โ€œALLAHโ€ and to his prophet โ€œMohammedโ€, my praise and thanks are due

for their blessings without which this research would not have been achieved

without their blessings. It is pleasure to express my deep appreciation to my

supervisor Prof. Dr. Luma Naji Mohammed Tawfiq for her invaluable advice,

assistance, cooperation, and support throughout the course of preparing my thesis.

I dedicate this work to my dear parents and my wife for their financial and

moral support throughout the study period, and thank them so much.

I would like to thank everyone who helped me and stayed by my side

throughout the study period from my family, friends and teachers.

Researcher

Acknowledgements

Page 7: Efficient Method for Solving Some Types of Partial

Journal Papers

1. Enadi, M. O., and Tawfiq, L.N.M., 2019, New Technique for Solving

Autonomous Equations, Ibn Al-Haitham Journal for Pure and Applied Science,

32(2), p: 123-130, Doi: 10.30526/32.2.2150

2. Enadi, M. O., and Tawfiq, L.N.M., 2019, Solving Systems of Non-linear

Partial differential Equations by Using Coupled Method, International Journal

of Modern Mathematical Sciences, 17(1), p: 68-77.

3. Enadi, M. O., and Tawfiq, L.N.M., 2019, New Approach for Solving Three

Dimensional Space Partial Differential Equation, Baghdad Science Journal,

16(3), p: 786-792, Doi: http://dx.doi.org/10.21123/bsj.2019.16.3(Suppl.).0780.

4. Enadi, M. O., and Tawfiq, L.N.M., 2019, Using New Coupled Method for

Solving System of Nonlinear Wave Equation, Computers and Mathematics with

Applications, Elsevier, Under review.

Authorโ€™s Publications

Page 8: Efficient Method for Solving Some Types of Partial

Symbol Definition

ADM Adomian Decomposition Method

An Adomian Polynomials

BCs Boundary Conditions

BVP Boundary Value Problem

CuTBs Cubic Trigonometric Bspline

DTM Differential Transform Method

Eq. Equation

Eqs. Equations

Figs. Figures

HAM Homotopy Analysis method

Hn He Polynomials

HPM Homotopy Perturbation Method

iD-PDEs

i=1,2,3,4 i dimensional Partial differential equations, i=1,2,3,4

ICs Initial Conditions

IVP Inatial Value Problem

KdV Korteweg-deVries

LT Laplace Transformation

MHPM Modified Homotopy Perturbation Method

Non-Linear Linear and Nonlinear

NT New Transformation

NTHPM New transform homotopy perturbation method

List of Symbols and Abbreviations

Page 9: Efficient Method for Solving Some Types of Partial

ODEs Ordinary Differential Equations

PDEs Partial Differential Equations

RLW Real Like Wave

t Time

VIM Variational Iteration Method

๐‘“ New transform for the function f

ฮฉ Omega

๐•‹ New Transformation

๐›ค Gamma

โ€– โ€– Norm

Page 10: Efficient Method for Solving Some Types of Partial

Subject Page

No.

Abstract I

Introduction 1

1 Chapter One : Preliminaries 6

1.1 Introduction 6

1.2 Overview of Differential Equations 6

1.3 Some Basic Concepts of the Homotopy Perturbation

Method

9

1.4 New Transformation 15

1.4.1 Definition of New Transformation 15

1.4.2 The General Properties of the New

Transformation

16

1.4.3 The Advantages of the New Transformation 17

2 Chapter Two : Couple New Transform with HPM to Solve

Some Types of Partial Differential Equations

20

2.1 Introduction 20

2.2 New Transformation โ€“ Homotopy Perturbation Method 20

2.3 Solve Linear PDEs by NTHPM 21

2.4 Illustrative Application 24

2.5 Solve Nonlinear PDE by NTHPM 27

2.6 Applications 29

2.7 Solve Automatous Equation by NTHPM 35

2.8 Illustrative Examples 38

2.9 Convergence of the Solution for Linear Case 42

2.10 Convergence of the Solution for Nonlinear Case 45

Contents

Page 11: Efficient Method for Solving Some Types of Partial

3 Chapter Three : Solving System of Partial Differential

Equations by New Couple Method

3.1 Introduction 49

3.2 Solving System for 2Equation Nonlinear PDEs by

NTHPM

50

3.3 Illustrative Examples for System of 1D-PDEs 54

3.4 Illustrative Examples for System of 2D-PDEs 60

3.5 Solving System for 3Equations Nonlinear 1D-PDEs 69

3.6 Convergence for the Series Solution 80

4 Chapter Four: Application Model 84

4.1 Introduction 84

4.2 Formulation Mathematical Model 84

4.3 Solving Model Equation by the NTHPM 89

4.4 Experiment Application 92

5 Chapter Five : Conclusions and Future Work 101

5.1 Conclusions 101

5.2 Future Works 103

References 105

Page 12: Efficient Method for Solving Some Types of Partial

I

In this thesis, a new method based on a combined form of the new transform

with homotopy perturbation method is proposed to solve some types of partial

differential equations, for finding exact solution in a wider domain. It can be used

to solve the problems without any discretization, or resorting to the frequency

domain or restrictive assumptions and it is free from round-off errors. This method

is called the new transform homotopy perturbation method.

In this thesis, we focuse on some basic concepts of the partial differential

equations.The first objective is implement suggested method in order to solve

some types of PDEs with initial condition such that: Klein-Gordan equation, wave-

like equations, autonomous equation, system of two or three non-linear equations,

Burgers' equations, coupled Hirota Satsuma KdV type II, and RLW equation.

Finally, The proposed method is used to solve application model which is soil

moisture equation where traditional HPM leads to an approximate solution. The

second aim which is the convergence of the series solution is studied, the series

solution converge to to the exact form is proved.Some examples are provided to

illustrate the reliability and capability of the suggested method.The practical results

Abstract

Page 13: Efficient Method for Solving Some Types of Partial

II

show that the proposed method is efficient tool for solving those types of partial

differential equations.

Page 14: Efficient Method for Solving Some Types of Partial
Page 15: Efficient Method for Solving Some Types of Partial

1

Many phenomena that arise in mathematical physics and engineering

fields can be described by partial differential equations (PDEs). In physics for

example, the heat flow and the wave propagation phenomena are well

described by PDEs [45,55]. So, it is a useful tool for describing natural

phenomena of science and engineering models. Most of engineering

problems are nonlinear PDEs, and it is difficult to solve them analytically.

The obtaining of the exact solution of nonlinear PDEs in physics and

mathematics is still a significant problem that needs new efficient

implemented methods to get exact solutions. Various powerful mathematical

methods have been proposed for obtaining exact and approximate analytic

solutions. Some of the classic analytic methods are perturbation techniques

[8] and Hirotaโ€™s bilinear method [46]. Perturbation techniques were generated

useful solutions in describing both quantitative and qualitative properties of

the problem, which is an advantage compared to numerical solutions.

However, some drawbacks were obvious for complex equations due to either

such parameters cause a divergence of solutions as the quantities

increase/decrease, or the non-existence of small or large perturbation

Introduction

Page 16: Efficient Method for Solving Some Types of Partial

Introduction

2

parameters. In problems where these quantities do not exist, the parameter

has to be artificially introduced which may lead to incorrect results [17].

Perturbation techniques are therefore found to be mainly suitable for weakly

nonlinear problems.

In recent years, many researchers have paid attention to study the

solutions of non-linear PDEs by using various methods. Among these are the

Adomian Decomposition Method (ADM) [2,38,39], tanh method, Homotopy

Perturbation Method (HPM) [43], Homotopy Analysis Method (HAM) [35],

the Differential Transform Method (DTM) [9], Cubic Trigonometric B-

Spline Method [29,30], Laplace Decomposition Method [26,43], Variational

Iteration Method (VIM) [37, 56], parallel processing [39,40,49] and semi

analytic technique [41, 42, 48, 50].

In this thesis we suggested a new method based on combine two efficient

methods to get exact solution for some types of PDEs such autonomous

equation which describes the appearance of the stripe pattern in two

dimensional systems. Moreover, this equation was applied to a number of

problems in variety systems, e.g., Rayleigh-Benard convection, Faraday

instability, nonlinear optics, chemical reactions and biological systems. The

approximate solutions of the autonomous equation were presented by

Page 17: Efficient Method for Solving Some Types of Partial

Introduction

3

differential transformation method [1], reduce differential transformation

[31].

The system of PDEs arises in in many areas of mathematics, engineering

and physical sciences. These systems are too complicated to be solved

exactly so it is still very difficult to get exact solution for most problems. A

vast class of analytical and numerical methods has been proposed to solve

such problems. But many systems such as system of high dimensional

equations, the required calculations to obtain its solution in some time may

be too complicated. Recently, many powerful methods have been presented,

such as the coupled method [27,30]. Herein we solved such systems by

proposed method and we get exact solution without using computer

programming and calculating.

This thesis is organized as follows:

In Chapter one, a brief review of basic definitions and concepts relate to the

work is introduced. It includes an overview of PDEs and their types.

Chapter two contains the implementation of proposed method based on

coupled two efficient methods such Homotopy Perturbation Method (HPM)

and new transform defined by Luma and Alaa in [51], that we will say the

New Transform Homotopy Perturbation Method (NTHPM) for obtaining

exact solutions to some types of PDEs such as: Klein-Gordan equation,

Page 18: Efficient Method for Solving Some Types of Partial

Introduction

4

wave-like equations, autonomous equation, 3D-PDEs, and other 3rd order

PDEs.

Chapter three contains the implementation of NTHPM for solving some types

of system of PDEs. The efficiency of the proposed method is verified by the

examples. The convergence of series solution to the exact analytic solution

function is proved.

In chapter four the proposed method are successfully implemented to solve

1D, 2D, and 3D soil moisture model equation to determine the moisture

content in soil.

Finally, in chapter five the conclusions and future works are given.

Page 19: Efficient Method for Solving Some Types of Partial

Preliminaries

Page 20: Efficient Method for Solving Some Types of Partial

6

1.1. Introduction

This chapter includes some basic definitions and concepts related to the

problems for this thesis. An overview of differential equations and their types is

introduced. In addition, we review some traditional techniques such as HPM for

solving partial differential equations, for comparison with the proposed approach

NTHPM illustrated by examples.

1.2. Overview of Differential Equations

Differential equations are used in different field of science and engineering. It's a

relation involving an unknown function (or functions say dependent variables) of

one or several independent variables and their derivatives with respect to those

variables. Many real phenomena in various fields such as engineering, physical,

biological and chemical are modeled mathematically by using differential equations

[47, 48, 50, 60]. Commonly, most real science and engineering processes including

more than one independent variable and the corresponding differential equations

are called partial differential equations (PDEs). However, the PDEs have been

reduced to ordinary differential equations (ODEs) using simplified assumptions.

Chapter One

Preliminaries

Page 21: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

7

Where ODE is a differential equation for a function of single independent variable

[47].

The order of a PDE is the order of the highest partial derivative that appears in

the equation. A PDE s are classified as homogeneous or inhomogeneous. A PDE of

any order is called homogeneous if every term of the PDE contains the dependent

variable or one of its derivatives; otherwise, it is called an inhomogeneous PDE

[55].

In research field, there are several types of PDEs which depends on the

application that are used. Each application has its own special governing equations

and properties that should considered individually.

A PDE is called linear if the power of the dependent variable and each partial

derivative contained in the equation is one and the coefficients of the dependent

variable and the coefficients of each partial derivative are constants or independent

variables. However, if any of these conditions is not satisfied, the equation is called

nonlinear [55]. Also, it can consider a semi linear, if it is linear in partial

derivative only. In addition, it can consider a quasi linear, if it is linear in the first

partial derivatives or it is nonlinear in dependent variable [60].

The general form of quasi linear 2nd order inhomogeneous PDE with two

independent variables can write as [Hoffman, 2001]:[55]

๐ด๐‘ข๐‘ฅ๐‘ฅ + ๐ต๐‘ข๐‘ฅ๐‘ฆ + ๐ถ๐‘ข๐‘ฆ๐‘ฆ + ๐ท๐‘ข๐‘ฅ + ๐ธ๐‘ข๐‘ฆ + ๐น๐‘ข = ๐บ (1.1)

Where A, B, C, D, E, and F are the coefficients and the inhomogeneous term G

may depend on x and y. The above equation (1.1) can be classified to:

Page 22: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

8

1) Elliptic, when ๐ต2 โˆ’ 4๐ด๐ถ < 0;

2) Parabolic, when ๐ต2 โˆ’ 4๐ด๐ถ = 0;

3) Hyperbolic, when ๐ต2 โˆ’ 4๐ด๐ถ > 0.

A solution of a PDE is a function satisfies the equation under discussion and

satisfies the given conditions as well. In order to find the solution of PDEs, initial

and / or boundary conditions used to solve PDEs, so the PDEs with initial

conditions (ICs) is said to be initial value problem (IVPs), the PDEs with boundary

conditions (BCs) is said to be boundary value problems (BVPs), but the PDEs with

initial and boundary conditions is said to be initial-boundary value problems, the

boundary conditions (BCs) which can be classify into three types:[60]

1) Dirichlet boundary condition: numerical values of the function are specific of

the boundary of the region.

2) Neumann boundary condition: specifies the values that the derivative of a

solution to take on the boundary of the domain.

3) Mixed boundary conditions: defines a BVP in which the solution of the given

equation is required to satisfy different boundary conditions on disjoint parts of the

boundary of the domain where the condition is stated. In effect, in a mixed BVP,

the solution is required to satisfy the Dirichlet or Neumann boundary conditions in

a mutually exclusive way on disjoint parts of the boundary.[60]

Page 23: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

9

An elliptic partial differential equation with mixed boundary conditions is called

a Robbins problem [60].

Some types of differential equation, such as nonlinear differential equation

cannot be easy to solve, so we use numerical or approximate solution. In this thesis

we suggest an efficient method to solve important types of PDEs to get exact

solution.

We are beginning with Homotopy Perturbation Method (HPM).

1.3. Some Basic Concepts of the Homotopy Perturbation Method

The HPM was first proposed by He J. Huan in 1999 [13] for solving

differential and integral equations, non-linear and has been successfully applied to

solve non-linear differential equations, and other fields for more details see [15]. It

is a combine of traditional perturbation method with homotopy method and it

suggested to overcome the difficulty arising in calculating Adomian polynomials.

This method has many advantages such as it is applied directly to the nonlinear

problems without linearizing the problem. In this section, some basic concepts of

this method have been explained.

Definition 1.1 [20]

Let X and Y are two topological spaces. Two continuous functions ๐‘“: ๐‘‹ โ†’ ๐‘Œ and

๐‘”: ๐‘‹ โ†’ ๐‘Œ are said to be homotopic, denoted by โ‰ˆ ๐‘” , if a continuous function

๐ป: ๐‘‹ ร— [0,1] โ†’ ๐‘Œ ,such that:

๐ป(๐‘ฅ, ๐‘ฃ) = ๐‘“(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹

Page 24: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

10

๐ป(๐‘ฅ, 1) = ๐‘”(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹

In this case, ๐ป is said to be a homotopy.

Now, to illustrate definition (1.1), consider the following examples.

Example 1.1[20]

Let ๐‘‹and ๐‘Œ be any topological spaces, ๐‘“ be the identity function and ๐‘” be the zero

function, then define ๐ป: ๐‘‹ ร— [0,1] โ†’ ๐‘Œ by:

๐ป(๐‘ฅ, ๐‘) = ๐‘ฅ(1 โˆ’ ๐‘), โˆ€๐‘ฅ โˆˆ ๐‘‹, โˆ€ ๐‘ โˆˆ [0,1]

Then ๐ป is a continuous function and

๐ป(๐‘ฅ, 0) = ๐‘ฅ = ๐‘“(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹

๐ป(๐‘ฅ, 1) = 0 = ๐‘”(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘‹

Therefore ๐‘“ โ‰ˆ ๐‘” .

Remark

Let ๐‘“: ๐‘… โ†’ ๐‘…and ๐‘”: ๐‘… โ†’ ๐‘… be continuous functions. Define

๐ป: ๐‘… ร— [0,1] โ†’ ๐‘… by

๐ป(๐‘ฅ, ๐‘) = (1 โˆ’ ๐‘)๐‘“(๐‘ฅ) + ๐‘๐‘”(๐‘ฅ), โˆ€ ๐‘ฅ โˆˆ ๐‘… ,โˆ€ ๐‘ โˆˆ [0,1]

Then, ๐ป(๐‘ฅ, 0) = ๐‘“(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘…

and,๐ป(๐‘ฅ, 1) = ๐‘”(๐‘ฅ), โˆ€๐‘ฅ โˆˆ ๐‘…

Therefore โ‰ˆ ๐‘” .

Now, to illustrate the basic idea of the HPM, we consider the following

nonlinear differential equation:

Page 25: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

11

A(u) f (x), x(1.2)

where A is differential operator, f is a known function of x. The operator A can

generally speaking be divided into two operators L and N, where L is a linear

operator, and N is a nonlinear operator. Therefore equation (1.2) can be rewritten as

follows:

L(u) N(u) f (x) 0

According to [16], we can construct a homotopy H:[0,1]which satisfies

the homotopy equation:

๐ป(๐‘ฃ, ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ฃ) โˆ’ ๐ฟ(๐‘ข0)] + ๐‘[๐ด(๐‘ฃ) โˆ’ ๐‘“(๐‘ฅ)] = 0

Or

๐ป(๐‘ฃ, ๐‘) = ๐ฟ(๐‘ฃ(๐‘ฅ)) โˆ’ ๐ฟ(๐‘ข0(๐‘ฅ)) + ๐‘๐ฟ(๐‘ข0(๐‘ฅ)) + ๐‘[๐‘(๐‘ฃ(๐‘ฅ)) โˆ’ ๐‘“(๐‘ฅ)] = 0 (1.3)

where p[0,1], u0 is an initial approximation solution of equation (1.2).

Obviously, from equation (1.3) we have:

H (v, 0) L(v) L(u0)

H (v,1) A(v) f (x) 0

The changing process of p from zero to unity is just that of v(x, p) from u0(x) to

u(x).

Therefore, L(v) L(u0) A(v) f (x), x

and u0(x) u(x) , x

Assume that the solution of equation (1.2) can be written as a power series in p as

follows:

Page 26: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

12

๐‘ฃ(x, p) = โˆ‘ p๐‘–โˆž๐‘–=0 vi(x) = ๐‘ฃ0 + ๐‘๐‘ฃ1 + ๐‘2๐‘ฃ2 + โ‹ฏ (1.4)

Setting p =1 in equation (1.4), can get:

๐‘ข(๐‘ฅ) = โˆ‘ v๐‘–(x)

โˆž

๐‘–=0

= lim๐‘โ†’1

๐‘ฃ = ๐‘ฃ0 + ๐‘ฃ1 + ๐‘ฃ2 + โ‹ฏ (1.5)

This is the solution of equation (1.2)

To illustrate the efficiency of method, consider the following examples.

Example 1.2[55]

Consider 2nd order linear homogeneous Klein-Gordan equation.

๐‘ข๐‘ก๐‘ก = ๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฅ + 2๐‘ข , โˆ’โˆž < ๐‘ฅ < โˆž , ๐‘ก > 0

Subject to the IC: ๐‘ข(๐‘ฅ, 0) = ๐‘’๐‘ฅ , ๐‘ข๐‘ก(๐‘ฅ, 0) = 0

Using the HPM we have

๐ป(๐‘ฃ, ๐‘) = (1 โˆ’ ๐‘)(๐‘ฃ๐‘ก๐‘ก โˆ’ ๐‘ข0๐‘ก๐‘ก) + ๐‘(๐‘ฃ๐‘ก๐‘ก โˆ’ ๐‘ฃ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฃ๐‘ฅ โˆ’ 2๐‘ฃ)

= ๐‘ฃ๐‘ก๐‘ก โˆ’ ๐‘ข0๐‘ก๐‘ก + ๐‘(๐‘ข0๐‘ก๐‘ก โˆ’ ๐‘ฃ๐‘ฅ๐‘ฅ โˆ’ ๐‘ฃ๐‘ฅ โˆ’ 2๐‘ฃ) = 0

๐‘0: ๐‘ฃ0๐‘ก๐‘ก โˆ’ ๐‘ข0๐‘ก๐‘ก = 0

๐‘ฃ0๐‘ก = ๐‘ข0๐‘ก โŸน ๐‘ฃ0 = ๐‘ข0 = ๐‘’๐‘ฅ

๐‘1: ๐‘ฃ1๐‘ก๐‘ก = (๐‘ฃ0๐‘ฅ๐‘ฅ + ๐‘ฃ0๐‘ฅ + 2๐‘ฃ0 โˆ’ ๐‘ข0๐‘ก๐‘ก) = ๐‘’๐‘ฅ + ๐‘’๐‘ฅ + 2๐‘’๐‘ฅ = 4๐‘’๐‘ฅ

๐‘ฃ1๐‘ก = 4๐‘ก๐‘’๐‘ฅ โŸน ๐‘ฃ1 = 4๐‘ก2

2!๐‘’๐‘ฅ

๐‘2: ๐‘ฃ2๐‘ก๐‘ก = (๐‘ฃ1๐‘ฅ๐‘ฅ + ๐‘ฃ1๐‘ฅ + 2๐‘ฃ1) = 4๐‘ก2

2!๐‘’๐‘ฅ + 4

๐‘ก2

2!๐‘’๐‘ฅ + 8

๐‘ก2

2!๐‘’๐‘ฅ = 16

๐‘ก2

2!๐‘’๐‘ฅ

๐‘ฃ2๐‘ก = 16๐‘ก3

3!๐‘’๐‘ฅ โŸน ๐‘ฃ2 = 16

๐‘ก4

4!๐‘’๐‘ฅ

Page 27: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

13

๐‘3: ๐‘ฃ3๐‘ก๐‘ก = (๐‘ฃ2๐‘ฅ๐‘ฅ + ๐‘ฃ2๐‘ฅ + 2๐‘ฃ2) = 16๐‘ก4

4!๐‘’๐‘ฅ + 16

๐‘ก4

4!๐‘’๐‘ฅ + 32

๐‘ก4

4!๐‘’๐‘ฅ = 64

๐‘ก4

4!๐‘’๐‘ฅ

๐‘ฃ3๐‘ก = 64๐‘ก5

5!๐‘’๐‘ฅ โŸน ๐‘ฃ3 = 64

๐‘ก6

6!๐‘’๐‘ฅ

And so on, to get

๐‘ข(๐‘ฅ, ๐‘ก) = lim๐‘โ†’1

๐‘ฃ = ๐‘ฃ0 + ๐‘ฃ1 + ๐‘ฃ2 + ๐‘ฃ3 + โ‹ฏ

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’๐‘ฅ + 4๐‘ก2

2!๐‘’๐‘ฅ + 16

๐‘ก4

4!๐‘’๐‘ฅ + 64

๐‘ก6

6!๐‘’๐‘ฅ + โ‹ฏ

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’๐‘ฅ (1 +(2๐‘ก)2

2!+

(2๐‘ก)4

4!+

(2๐‘ก)6

6!+ โ‹ฏ ) = ๐‘’๐‘ฅ ๐‘๐‘œ๐‘ โ„Ž(2๐‘ก)

Example 1.3[60]

.PDE order nonlinear rdfollowing 3onsider the C

๐‘ข๐‘ก +1

2๐‘ข๐‘ฅ

2 = ๐‘ข๐‘ฅ๐‘ฅ๐‘ก , โˆ’โˆž < ๐‘ฅ < โˆž , ๐‘ก > 0

Subject to the initial condition (IC): ๐‘ข(๐‘ฅ, 0) = ๐‘ฅ

Using the HPM we have:

๐ป(๐‘ฃ, ๐‘) = (1 โˆ’ ๐‘)(๐‘ฃ๐‘ก โˆ’ ๐‘ข0๐‘ก) + ๐‘ (๐‘ฃ๐‘ก +1

2(๐‘ฃ2)๐‘ฅ โˆ’ ๐‘ฃ๐‘ฅ๐‘ฅ๐‘ก)

= ๐‘ฃ๐‘ก โˆ’ ๐‘ข0๐‘ก + ๐‘ (๐‘ข0๐‘ก +1

2(๐‘ฃ2)๐‘ฅ โˆ’ ๐‘ฃ๐‘ฅ๐‘ฅ๐‘ก) = 0

๐‘0: ๐‘ฃ0๐‘ก โˆ’ ๐‘ข0๐‘ก = 0 , ๐‘ฃ0 = ๐‘ฅ

๐‘1: ๐‘ฃ1๐‘ก = โˆ’ (๐‘ข0๐‘ก +1

2(๐‘ฃ0

2)๐‘ฅ โˆ’ ๐‘ฃ0๐‘ฅ๐‘ฅ๐‘ก) , ๐‘ฃ1 = โˆ’๐‘ฅ๐‘ก

๐‘2: ๐‘ฃ2๐‘ก = โˆ’ (1

2(2๐‘ฃ0๐‘ฃ1)๐‘ฅ โˆ’ ๐‘ฃ1๐‘ฅ๐‘ฅ๐‘ก) , ๐‘ฃ2 = ๐‘ฅ๐‘ก2

Page 28: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

14

๐‘3: ๐‘ฃ3๐‘ก = โˆ’ (1

2(2๐‘ฃ0๐‘ฃ2 + ๐‘ฃ1

2)๐‘ฅ โˆ’ ๐‘ฃ2๐‘ฅ๐‘ฅ๐‘ก) , ๐‘ฃ3 = โˆ’๐‘ฅ๐‘ก3

And so on, to get:

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘๐‘›๐‘ฃ๐‘›(๐‘ฅ, ๐‘ก) = ๐‘ฅ โˆ‘(โˆ’๐‘ก)๐‘› = ๐‘ฅ

1 + ๐‘ก

โˆž

๐‘›=0

โˆž

๐‘›=0

This is exact solution

Example 1.4[60]

.PDE order linear rdfollowing 3onsider the C

๐‘ข๐‘ก + ๐‘ข๐‘ฅ = 2๐‘ข๐‘ฅ๐‘ฅ๐‘ก , โˆ’โˆž < ๐‘ฅ < โˆž , ๐‘ก > 0

Subject to the IC: ๐‘ข(๐‘ฅ, 0) = ๐‘’โˆ’๐‘ฅ

Using HPM we have:

๐ป(๐‘ฃ, ๐‘) = (1 โˆ’ ๐‘)(๐‘ฃ๐‘ก โˆ’ ๐‘ข0๐‘ก) + ๐‘(๐‘ฃ๐‘ก + ๐‘ฃ๐‘ฅ โˆ’ 2๐‘ฃ๐‘ฅ๐‘ฅ๐‘ก)

= ๐‘ฃ๐‘ก โˆ’ ๐‘ข0๐‘ก + ๐‘(๐‘ข0๐‘ก + ๐‘ฃ๐‘ฅ โˆ’ 2๐‘ฃ๐‘ฅ๐‘ฅ๐‘ก) = 0

๐‘0: ๐‘ฃ0๐‘ก โˆ’ ๐‘ข0๐‘ก = 0 , ๐‘ฃ0 = ๐‘’โˆ’๐‘ฅ

๐‘1: ๐‘ฃ1๐‘ก = 2๐‘ฃ0๐‘ฅ๐‘ฅ๐‘ก โˆ’ ๐‘ฃ0๐‘ฅ โˆ’ ๐‘ข0๐‘ก , ๐‘ฃ1 = ๐‘ก๐‘’โˆ’๐‘ฅ = ๐‘1(๐‘ก)๐‘’โˆ’๐‘ฅ

๐‘2: ๐‘ฃ2๐‘ก = 2๐‘ฃ1๐‘ฅ๐‘ฅ๐‘ก โˆ’ ๐‘ฃ1๐‘ฅ , ๐‘ฃ2 = (2๐‘ก +๐‘ก2

2) ๐‘’โˆ’๐‘ฅ = ๐‘2(๐‘ก)๐‘’โˆ’๐‘ฅ

๐‘3: ๐‘ฃ3๐‘ก = 2๐‘ฃ2๐‘ฅ๐‘ฅ๐‘ก โˆ’ ๐‘ฃ2๐‘ฅ , ๐‘ฃ3 = (4๐‘ก + 2๐‘ก2 +๐‘ก3

3!) ๐‘’โˆ’๐‘ฅ = ๐‘3(๐‘ก)๐‘’โˆ’๐‘ฅ

And so on, where ๐‘๐‘›(๐‘ก) is a polynomial which has the following form:

๐‘๐‘›(๐‘ก) = 2๐‘›โˆ’1๐‘ก + โˆ‘ ๐‘Ž๐‘›๐‘—๐‘ก๐‘—

๐‘›

๐‘—=0

; ๐‘Ž๐‘›2 , ๐‘Ž๐‘›3, โ€ฆ โ€ฆ โ€ฆ , ๐‘Ž๐‘›๐‘› > 0

By induction, we get:

Page 29: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

15

๐‘ฃ๐‘› = ๐‘๐‘›(๐‘ก)๐‘’โˆ’๐‘ฅ

And

๐‘ฃ๐‘›+1 = ๐ฟ๐‘กโˆ’1[2๐‘ฃ๐‘›๐‘ฅ๐‘ฅ๐‘ก โˆ’ ๐‘ฃ๐‘›๐‘ฅ] = ๐ฟ๐‘ก

โˆ’1[2๐ฟ๐‘ก๐‘๐‘›(๐‘ก) + ๐‘๐‘›(๐‘ก)]๐‘’โˆ’๐‘ฅ

= [2๐‘๐‘›(๐‘ก) + ๐ฟ๐‘กโˆ’1๐‘๐‘›(๐‘ก)]๐‘’โˆ’๐‘ฅ โ‰ก ๐‘๐‘›+1(๐‘ก)๐‘’โˆ’๐‘ฅ

It is easy to see that ๐‘๐‘›(๐‘ก) โ†’ +โˆž (๐‘› โ†’ +โˆž) for any ๐‘ก > 0. Therefore, the infinite

series:

โˆ‘ ๐‘ฃ๐‘›

โˆž

๐‘›=0

= [1 + โˆ‘ ๐‘๐‘›(๐‘ก)

โˆž

๐‘›=1

] ๐‘’โˆ’๐‘ฅ

Is divergent.

We note that in example 1.3, the PDE is nonlinear and the method gave the exact

solution, in example 1.4, the PDE is linear but the method miss fire to get the exact

solution. For these reasons we suggest efficient method based on coupled new

transformation with HPM and denoted by NTHPM. Now, firstly introduce the new

transformation proposed by luma-Alaa [51].

1.4. New Transformation

In this section, a new integral transformation is introduced. The

domain of the new transformation (NT) is wider than of the domain of

other transformation; therefore, it is more widely used to solve problems.

Definition 1.2 [51]

The new transformation of a function f(t) is defined by:

Page 30: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

16

๐‘“(๐‘ข) = ๐•‹{๐‘“(๐‘ก)} = โˆซ ๐‘’โˆ’๐‘ก๐‘“ (๐‘ก

๐‘ข) ๐‘‘๐‘ก

โˆž

0

, (1.6)

Where u is a real number, for those values of u which the improper integral is

finite. A list of the NT for common functions is presented in the Table (1.1).

Table 1.1: New transformation for some common functions[51]

f(t) ๐‘“(๐‘ข) = ๐•‹{๐‘“(๐‘ก)} ๐ท๐‘“

n=0,1,โ€ฆ, nt ๐‘›!

๐‘ข๐‘› ๐‘ข โ‰  0

, a>0 at au(a+1)/ u0

ate ๐‘ข

๐‘ขโˆ’๐‘Ž

uR\[0,a] a0 uR\[a,0]

a<0

sin(at) ๐‘Ž๐‘ข

๐‘Ž2 + ๐‘ข2 ๐‘ข โ‰  0

cos(at) ๐‘ข2

๐‘Ž2 + ๐‘ข2 ๐‘ข โ‰  0

sinh(at) โˆ’๐‘Ž๐‘ข

๐‘Ž2 โˆ’ ๐‘ข2 |๐‘ข| > |๐‘Ž|

cosh(at) โˆ’๐‘ข2

๐‘Ž2 โˆ’ ๐‘ข2 |๐‘ข| > |๐‘Ž|

)a-t)=H(a-t)=u(t(au au-e u>0

(t-a) /uau-e u>0

1.4.1. The General Properties of the New Transformation

If the new transformation ๐•‹{๐‘“} and ๐•‹{๐‘”} of the functions f (t) and g(t) are well-

defined and a, b are constants, then the following properties are hold:

1. Linearity property: ๐•‹{๐‘Ž๐‘“(๐‘ก) + ๐‘๐‘”(๐‘ก)} = ๐‘Ž๐•‹{๐‘“(๐‘ก)} + ๐‘๐•‹{๐‘”(๐‘ก)} (1.7)

Page 31: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

17

2. Convolution property: (๐‘“ โˆ— ๐‘”)(๐‘ก) = โˆซ ๐‘“(๐œ)๐‘”(๐‘ก โˆ’ ๐œ)๐‘‘๐œ๐‘ก

0 (1.8)

3. ๐•‹{๐‘ก๐‘›} = ๐‘›!

๐‘ฃ๐‘› , ๐‘ฃ โ‰  0 , ๐‘› = 0,1,2,3, โ€ฆ (1.9)

4. Differentiation property: ๐•‹{๐‘“โ€ฒ} = ๐‘ฃ(๐•‹{๐‘“} โˆ’ ๐‘“(0)) (1.10)

For more details see [51].

1.4.2. The Advantages of the New Transform

The NT has many interesting properties which make it rival to the Laplace

Transform (LT). Some of these properties are:

1. The domain of the NT is wider than or equal to the domain of LT as illustrate in

Table (1.2). This feature makes the NT more widely used for problems.

2. Depending on [51], the NT has the duality with LT, therefore, the NT can be

solve all the problems which be solved by LT.

3. The unit step function in the t-domain is transformed to unity in the u-domain.

4. The differentiation and integration in the tโ€domain are equivalent to

multiplication and division of the transformed function F(u) by u in the uโ€

domain.

5. By Linear property (1.7), we have that for any constant aR, ๐•‹{๐‘Ž} = ๐‘Ž๐•‹{1} =

๐‘Ž, and hence, ๐•‹โˆ’1{๐‘Ž} = ๐‘Ž, that is, we donโ€™t have any problem when we dealing

with the constant term( the constant with respect to the parameter u).

Page 32: Efficient Method for Solving Some Types of Partial

Preliminaries Chapter One

18

Table 1.2: The domain of Laplace and new transformation[51]

In the next chapter, we will use a combination of new transformation (NT)

and the HPM to solve types of PDEs and get exact solution without needing

computer calculations.

f(t) Laplace New Transform

[ ๐•ƒ (f)](s) Domain [ ๐•‹ (f)](u) Domain

tn n=0,1,2,โ€ฆ n!/sn+1 s>0 n!/un u0

ta a>0 (a+1)/sa+1 s>0 (a+1)/ua u0

eat 1/(s-a) s>a u/(u-a)

uR/[0,a] if

a0 uR/[a,0]

if a<0

sin(at) a/(s2+a2) s>0 au/(u2+a2) u0

cos(at) s/(s2+a2) s>0 u2/(u2+a2) u0

sinh(at) a/(s2-a2) s>|a| au/(u2-a2) |u|>|a|

cosh(at) s/(s2-a2) s>|a| u2/(u2-a2) |u|>|a|

ua(t)=u(t-a)=H(t-

a) e-as/s s>0 e-au u>0

(t-a) e-as s>0 e-au/u u>0

ln(at) a>0 (ln(a/s)-ฮณ) /s s>0 ln(a/u)-ฮณ u>0

๐›พ = โˆ’ โˆซ ๐‘’โˆ’๐‘ก๐‘™๐‘›๐‘ก ๐‘‘๐‘ก

โˆž

0

โ‰… 0.5772 โ€ฆ

Page 33: Efficient Method for Solving Some Types of Partial

Couple New Transform

with HPM to Solve Some

Types of Partial

Differential Equations

Page 34: Efficient Method for Solving Some Types of Partial

20

2.1. Introduction

In this chapter, we will introduce an approach in obtaining the exact

solution of non-linear partial differential equations. The new approach based

on combine two methods, new transform with HPM and denoted by NTHPM.

Then applied it to solve some important model equations. The exact solutions

of these equations are compared to the HPM. The comparisons show the

efficiency of the proposed NTHPM against the other methods. The method is

strongly and powerful to treatment the nonlinear term of nonlinear equations.

2.2. New Transformationโ€“Homotopy Perturbation Method

The NTHPM is a new method to solve differential equation; it

successfully applied to solve types of PDEs. This method is powerful to obtain

the exact solution without using computer calculating. The method suggested

firstly by Tawfiq and Jabber in 2018 [18] to solve groundwater equation. The

NTHPM has many merits and has many advantages over the HPM and ADM.

In the present work, the suggested method is used to solve of 1D, 2D, and 3D;

Chapter Two

Couple New Transform with HPM to Solve

Some Types of Partial Differential Equations

Page 35: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

21

2nd and 3rd order non-linear PDEs equations, and comparison has been made to

the results obtained by the HPM and NTHPM.

2.3. Solve Linear PDEs by NTHPM

In this section, we will use a combination of new transform (NT) and the

HPM to get the new transform that has played an important role because its

theoretical interest also in such method that allows to solve in the simplest

form; it used have to accelerate the convergence of power series.

To illustrate the ideas of NTHPM to find the exact solution of linear three

dimensions 2nd order PDEs of the form:

๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฆ๐‘ฆ + ๐‘ข๐‘ง๐‘ง = ๐›ผ๐‘ข๐‘ก ; ๐‘ฅ, ๐‘ฆ, ๐‘ง โˆˆ ๐‘… & ๐‘ก > 0 (2.1)

with initial condition (IC): ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, 0) = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง); ฮฑ is constant.

Firstly, rewrite equation (2.1) as following:

๐ฟ[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)] + ๐‘…[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)] = ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) (2.2)

where L: is the linear differential operator (๐ฟ = ๐›ผ๐œ•

๐œ•๐‘ก), ๐‘…: is the remainder of

the linear operator, g(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) is the inhomogeneous part.

We construct a Homotopy as:

๐ป(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)) โˆ’ ๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, 0))] +

๐‘ [๐ด[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)] โˆ’ ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)] = 0 (2.3)

Where p[0, 1] is an embedding parameter and A defined as A= L+ R.

Page 36: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

22

It is clear that, if p =1, then the homotopy equation (2.3) is converted to the

differential equation (2.2).

Substituting equation (2.2) into equation (2.3) and rewrite it as:

๐ฟ(๐‘ข) โˆ’ ๐ฟ(๐‘“) โˆ’ ๐‘๐ฟ(๐‘ข) + ๐‘๐ฟ(๐‘“) + ๐‘๐ฟ(๐‘ข) + ๐‘๐‘…(๐‘ข) โˆ’ ๐‘ ๐‘” = 0

Then

๐ฟ(๐‘ข) โˆ’ ๐ฟ(๐‘“) + ๐‘[๐ฟ(๐‘“) + ๐‘…(๐‘ข) โˆ’ ๐‘”] = 0 (2.4)

Since f(x, y, z) is independent of the variable t and the linear operator L

dependent on t so, L(f(x, y, z)) = 0, i.e., the equation (2.4) becomes:

๐ฟ(๐‘ข) + ๐‘๐‘…(๐‘ข) โˆ’ ๐‘ ๐‘” = 0 (2.5)

According to the classical perturbation technique, the solution of the equation

(2.5) can be written as a power series of embedding parameter p, as follows:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

(2.6)

The convergence of series (2.6) at p =1 is discussed and proved in [8,25],

which satisfies the differential equation (2.2).

The final step is determining the parts un (n= 0,1, 2,โ€ฆ) to get the solution

u(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก).

Here, we couple the NT with HPM as follows:

Taking the NT (with respect to the variable t) for the equation (2.5) to get:

๐•‹{๐ฟ(๐‘ข)} + ๐‘ ๐•‹{๐‘…(๐‘ข)} โˆ’ ๐‘ ๐•‹{๐‘”} = 0 (2.7)

Now by using the differentiation property of NT (property 4) and equations

(2.2), (2.7) becomes:

Page 37: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

23

๐‘ฃ๐›ผ๐•‹{๐‘ข} โˆ’ ๐‘ฃ๐›ผ๐‘“(๐‘ฅ) + ๐‘ ๐•‹{๐‘…(๐‘ข)} โˆ’ ๐‘ ๐•‹{๐‘”} = 0 (2.8)

Hence:

๐•‹{๐‘ข} = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆ’ ๐‘๐•‹{๐‘…(๐‘ข)}

๐‘ฃ๐›ผ+ ๐‘

๐•‹{๐‘”}

๐‘ฃ๐›ผ (2.9)

Taking the inverse of the NT on both sides of equation (2.9), to get:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆ’ ๐‘๐•‹โˆ’1 {๐•‹{๐‘…(๐‘ข(๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ก))}

๐‘ฃ๐›ผ} + ๐‘๐•‹โˆ’1 {

๐•‹{๐‘”(๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ก)}

๐‘ฃ๐›ผ} (2.10)

Then substituting equation (2.6) into equation (2.10) to obtain:

โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

= ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) โˆ’ ๐‘๐•‹โˆ’1 {๐•‹ {๐‘…(โˆ‘ ๐‘๐‘›๐‘ข๐‘›

โˆž๐‘›=0 )}

๐‘ฃ๐›ผ} + ๐‘ ๐•‹โˆ’1 {

๐•‹{๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)}

๐‘ฃ๐›ผ} (2.11)

By comparing the coefficient of powers of p in both sides of the equation

(2.11), we have:

๐‘ข0 = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘ข1 = โˆ’๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข0]}

๐‘ฃ๐›ผ} + ๐•‹โˆ’1 {

๐•‹{๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)}

๐‘ฃ๐›ผ}

๐‘ข2 = โˆ’๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข1]}

๐‘ฃ๐›ผ}

๐‘ข3 = โˆ’๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข2]}

๐‘ฃ๐›ผ} (2.12)

โ‹ฎ

๐‘ข๐‘›+1 = โˆ’๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›]}

๐‘ฃ๐›ผ}

Page 38: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

24

2.4. Illustrative Application

Here, the NTHPM may be used to solve the 2nd order-PDE with initial

condition as following:

Example 2.1[60]

Let us consider the following 3D - PDE

๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฆ๐‘ฆ + ๐‘ข๐‘ง๐‘ง = ๐›ผ๐‘ข๐‘ก ; ๐‘Ž๐‘™๐‘™ ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐‘–๐‘› ๐‘… & ๐‘ก > 0

Subject to IC: ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, 0) = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) = 5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง),

where a, b, c and ๐›ผ are constants. According to the equation (2.12) the power

series of p get as follows:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = 5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ’(5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก

๐›ผ) (๐‘Ž2 + ๐‘2 + ๐‘2)

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = (5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก2

2 ๐›ผ2) (๐‘Ž2 + ๐‘2 + ๐‘2)2

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ’(5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก3

3! ๐›ผ3) (๐‘Ž2 + ๐‘2 + ๐‘2)3

๐‘4: ๐‘ข4(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = (5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก4

4! ๐›ผ4) (๐‘Ž2 + ๐‘2 + ๐‘2)4

๐‘5: ๐‘ข5(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ’(5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก5

5! ๐›ผ5) (๐‘Ž2 + ๐‘2 + ๐‘2)5

โž

๐‘๐‘›: ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = (โˆ’1)๐‘›(5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง)) (๐‘ก๐‘›

๐‘›! ๐›ผ๐‘›) (๐‘Ž2 + ๐‘2 + ๐‘2)๐‘›

Thus, we get the following series form:

Page 39: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

25

(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

= โˆ‘(โˆ’1)๐‘›5 ๐‘ ๐‘–๐‘›(๐‘Ž๐‘ฅ) ๐‘ ๐‘–๐‘›(๐‘๐‘ฆ) ๐‘ ๐‘–๐‘›(๐‘๐‘ง) (๐‘ก๐‘›

๐‘›! ๐›ผ๐‘›) (๐‘Ž2 + ๐‘2 + ๐‘2)๐‘›

โˆž

๐‘›=0

So, the closed form of the above series is:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = 5 sin(๐‘Ž๐‘ฅ) sin(๐‘๐‘ฆ) sin(๐‘๐‘ง) ๐‘’โˆ’๐‘ก๐›ผ(๐‘Ž2+๐‘2+๐‘2)

This gives an exact solution of the problem.

Example 2.2[60]

Consider the following 3D-PDE

๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฆ๐‘ฆ + ๐‘ข๐‘ง๐‘ง + ๐‘’๐‘ฅ+๐‘ฆ = ๐›ผ๐‘ข๐‘ก ; ๐‘Ž๐‘™๐‘™ ๐‘ฅ, ๐‘ฆ, ๐‘ง ๐‘–๐‘› ๐‘… & ๐‘ก > 0

with IC: ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, 0) = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐‘‘, where d is constants.

From equation (2.12), we get the power series of p as follows:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = ๐‘‘

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐‘ก

๐›ผ(๐‘’๐‘ฅ+๐‘ฆ)

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐‘ก2

2๐›ผ2(๐‘’๐‘ฅ+๐‘ฆ)

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐‘ก3

6๐›ผ3(๐‘’๐‘ฅ+๐‘ฆ)

๐‘4: ๐‘ข4(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐‘ก4

24๐›ผ4(๐‘’๐‘ฅ+๐‘ฆ)

โž

๐‘๐‘›: ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐‘ก๐‘›

๐‘›!๐›ผ๐‘›(๐‘’๐‘ฅ+๐‘ฆ)

Thus, the following series form is obtained:

Page 40: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

26

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =

โˆž

๐‘›=0

๐‘‘ +โˆ‘๐‘ก๐‘›+1

(๐‘› + 1)! ๐›ผ๐‘›+1(๐‘’๐‘ฅ+๐‘ฆ)

โˆž

๐‘›=0

Therefore, the closed form of the above series is:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = ๐‘’๐‘ฅ+๐‘ฆ (๐‘’๐‘ก

๐›ผ โˆ’ 1) + ๐‘‘

Example 2.3[55]

Consider another linear homogeneous Klein-Gordan equation

๐‘ข๐‘ก๐‘ก = ๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฅ + 2๐‘ข , โˆ’โˆž < ๐‘ฅ < โˆž , ๐‘ก > 0

Subject to the ICs:

๐‘ข(๐‘ฅ, 0) = ๐‘’๐‘ฅ , ๐‘ข๐‘ก(๐‘ฅ, 0) = 0

Taking new transformation on both sides, subject to the IC, to get:

๐•‹[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘’๐‘ฅ +1

๐‘ฃ2๐•‹[๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฅ + 2๐‘ข ]

Taking inverse of new transformation, we get:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘’๐‘ฅ + ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹[๐‘ข๐‘ฅ๐‘ฅ + ๐‘ข๐‘ฅ + 2๐‘ข]]

by HPM, we get:

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

Using equation (2.11) in equation (2.10), to get:

Page 41: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

27

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

= ๐‘’๐‘ฅ

+ ๐‘(๐•‹โˆ’1 [1

๐‘ฃ2๐•‹ [โˆ‘๐‘๐‘›๐‘ข๐‘›๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

+โˆ‘๐‘๐‘›๐‘ข๐‘›๐‘ฅ(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

+ 2โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

]])

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐‘’๐‘ฅ

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) =(2๐‘ก)2

2!๐‘’๐‘ฅ

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) =(2๐‘ก)4

4! ๐‘’๐‘ฅ

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ก) =(2๐‘ก)6

6!๐‘’๐‘ฅ

:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’๐‘ฅ (1 +(2๐‘ก)2

2!+(2๐‘ก)4

4!+(2๐‘ก)6

6!+ โ‹ฏ) = ๐‘’๐‘ฅ ๐‘๐‘œ๐‘ โ„Ž(2๐‘ก)

2.5. Solve Nonlinear PDE by NTHPM

In the NTHPM can be used for solving various types of nonlinear PDEs. To

illustrate the basic idea of suggested method, we consider general nonlinear

PDEs with the initial conditions of the form:

๐ฟ๐‘ข(๐‘ฅ, ๐‘ก) + ๐‘…๐‘ข(๐‘ฅ, ๐‘ก) + ๐‘๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘”(๐‘ฅ, ๐‘ก) , (2.13)

Subject to ICs: ๐‘ข(๐‘ฅ, 0) = โ„Ž(๐‘ฅ) , ๐‘ข๐‘ก(๐‘ฅ, 0) = ๐‘“(๐‘ฅ) .

Page 42: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

28

where L is the 2nd order linear differential operator ๐ฟ =๐œ•2

๐œ•๐‘ก2 , R is the linear

differential operator of less order than L ; N represents the general nonlinear

differential operator and ๐‘”(๐‘ฅ, ๐‘ก)is the source term.

Taking the new transformation on both sides of equation (2.13) to get:

๐•‹[๐ฟ๐‘ข(๐‘ฅ, ๐‘ก)] + ๐•‹[๐‘…๐‘ข(๐‘ฅ, ๐‘ก)] + ๐•‹[๐‘๐‘ข(๐‘ฅ, ๐‘ก)] = ๐•‹[๐‘”(๐‘ฅ, ๐‘ก)] , (2.14)

Using the differentiation property of the new transform, we have:

๐•‹[๐‘ข(๐‘ฅ, ๐‘ก)] = โ„Ž(๐‘ฅ) +๐‘“(๐‘ฅ)

๐‘ฃ+1

๐‘ฃ2๐•‹[๐‘”(๐‘ฅ, ๐‘ก) โˆ’ ๐‘…๐‘ข(๐‘ฅ, ๐‘ก) โˆ’ ๐‘๐‘ข(๐‘ฅ, ๐‘ก)] (2.15)

Operating with the inverse of new transformation on both sides of equation

(2.15) gives:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐บ(๐‘ฅ, ๐‘ก) โˆ’ ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹[๐‘…๐‘ข(๐‘ฅ, ๐‘ก) โˆ’ ๐‘๐‘ข(๐‘ฅ, ๐‘ก)]] (2.16)

where G(x, t) represents the term arising from the source term and the

prescribed initial conditions. Now, we apply the HPM.

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

(2.17)

The nonlinear term can be decomposed as:

๐‘๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘๐‘๐‘›๐ป๐‘›(๐‘ข)

โˆž

๐‘›=0

(2.18)

for He's polynomials Hn(u) (see [48-49]) that are given by:

๐ป๐‘›(๐‘ข0, ๐‘ข1, โ€ฆโ€ฆ , ๐‘ข๐‘›) =1

๐‘›!

๐œ•๐‘›

๐œ•๐‘๐‘›[๐‘(โˆ‘ ๐‘๐‘–๐‘ข๐‘–

โˆž๐‘–=0 )], ๐‘› = 0,1,2,3, โ€ฆ (2.19)

Page 43: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

29

Substituting equation (2.17), (2.18) and (2.19) in equation (2.16) to get:

โˆ‘ ๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)โˆž๐‘›=0 = G(x, t) โˆ’ p (๐•‹โˆ’1 [

1

v2๐•‹[Rโˆ‘ pnun(x, t)

โˆžn=0 +Nโˆ‘ pnHn(u)

โˆžn=0 ]]) (2.20)

Comparing the coefficient of powers of p, to get:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐บ(๐‘ฅ, ๐‘ก)

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = โˆ’๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐‘…๐‘ข0(๐‘ฅ, ๐‘ก) + ๐ป0(๐‘ข)]],

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) = โˆ’๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐‘…๐‘ข1(๐‘ฅ, ๐‘ก) + ๐ป1(๐‘ข)]],

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ก) = โˆ’๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐‘…๐‘ข2(๐‘ฅ, ๐‘ก) + ๐ป2(๐‘ข)]],

and so on.

2.6. Applications

In this section, NTHPM is applied for solving various types of nonlinear

wave-like equations with variable coefficients.

Example 2.4[10]

Consider the following 2D- nonlinear wave-like equations with variable

coefficients.

๐‘ข๐‘ก๐‘ก =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ฆ๐‘ฆ) โˆ’

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ข๐‘ฅ๐‘ข๐‘ฆ) โˆ’ ๐‘ข

with the ICs: ๐‘ข(๐‘ฅ, ๐‘ฆ, 0) = ๐‘’๐‘ฅ๐‘ฆ , ๐‘ข๐‘ก(๐‘ฅ, ๐‘ฆ, 0) = ๐‘’๐‘ฅ๐‘ฆ

Taking new transformation on both sides, subject to the IC, we get:

๐•‹[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘’๐‘ฅ๐‘ฆ +๐‘’๐‘ฅ๐‘ฆ

๐‘ฃ+

1

๐‘ฃ2๐•‹ [

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ฆ๐‘ฆ) โˆ’

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ข๐‘ฅ๐‘ข๐‘ฆ) โˆ’ ๐‘ข ]

Taking inverse of new transform, we have:

Page 44: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

30

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = (1 + ๐‘ก)๐‘’๐‘ฅ๐‘ฆ โˆ’ ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹ [

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ฆ๐‘ฆ) โˆ’

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ข๐‘ฅ๐‘ข๐‘ฆ) โˆ’ ๐‘ข]]

By HPM, we have:

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)โˆž๐‘›=0

Substation equation (2.13) in the equation (2.14), to get:

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

= (1 + ๐‘ก)๐‘’๐‘ฅ๐‘ฆ

+ ๐‘(๐•‹โˆ’1 [1

๐‘ฃ2๐•‹ [โˆ‘๐‘๐‘›๐ป๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’โˆ‘๐‘๐‘›๐พ๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

]])

Where ๐ป๐‘›(๐‘ข) and ๐พ๐‘›(๐‘ข) are the He's polynomials having the value ๐ป๐‘›(๐‘ข) =

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ฆ๐‘ฆ) and ๐พ๐‘›(๐‘ข) =

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ๐‘ข๐‘ฅ๐‘ข๐‘ฆ)

The first few components of ๐ป๐‘›(๐‘ข) and ๐พ๐‘›(๐‘ข) are given by:

๐ป0(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข0๐‘ฅ๐‘ฅ๐‘ข0๐‘ฆ๐‘ฆ) =

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ[(1 + ๐‘ก)2๐‘ฅ2๐‘ฆ2๐‘’2๐‘ฅ๐‘ฆ]

๐ป1(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข1๐‘ฅ๐‘ฅ๐‘ข0๐‘ฆ๐‘ฆ + ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข1๐‘ฆ๐‘ฆ)

=๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ[โˆ’2(1 + ๐‘ก) (

๐‘ก2

2!+๐‘ก3

3!) ๐‘ฅ2๐‘ฆ2๐‘’2๐‘ฅ๐‘ฆ]

๐ป2(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข2๐‘ฅ๐‘ฅ๐‘ข0๐‘ฆ๐‘ฆ + ๐‘ข1๐‘ฅ๐‘ฅ๐‘ข1๐‘ฆ๐‘ฆ + ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข2๐‘ฆ๐‘ฆ)

And so on

๐พ0(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ(๐‘ข0๐‘ฅ๐‘ข0๐‘ฆ)) =

๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ[(1 + ๐‘ก)2๐‘ฅ2๐‘ฆ2๐‘’2๐‘ฅ๐‘ฆ]

๐พ1(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ(๐‘ข1๐‘ฅ๐‘ข0๐‘ฆ + ๐‘ข0๐‘ฅ๐‘ข1๐‘ฆ))

Page 45: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

31

=๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ[โˆ’2(1 + ๐‘ก) (

๐‘ก2

2!+๐‘ก3

3!) ๐‘ฅ2๐‘ฆ2๐‘’2๐‘ฅ๐‘ฆ]

๐พ2(๐‘ข) =๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ฅ๐‘ฆ(๐‘ข2๐‘ฅ๐‘ข0๐‘ฆ + ๐‘ข1๐‘ฅ๐‘ข1๐‘ฆ + ๐‘ข0๐‘ฅ๐‘ข2๐‘ฆ))

:

Comparing the coefficients of various powers of p, to get:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ((1 + ๐‘ก)๐‘’๐‘ฅ๐‘ฆ

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐ป0(๐‘ข) + ๐พ0(๐‘ข) โˆ’ ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก)]]

= โˆ’(๐‘ก2

2!+๐‘ก3

3!) ๐‘’๐‘ฅ๐‘ฆ

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐ป1(๐‘ข) + ๐พ1(๐‘ข) โˆ’ ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก)]]

= (๐‘ก4

4!+๐‘ก5

5!) ๐‘’๐‘ฅ๐‘ฆ

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐ป2(๐‘ข) + ๐พ2(๐‘ข) โˆ’ ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก)]]

= โˆ’(๐‘ก6

6!+๐‘ก7

7!) ๐‘’๐‘ฅ๐‘ฆ

And so on

Therefore the solution is given by:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข3(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ

= ๐‘’๐‘ฅ๐‘ฆ (1 + ๐‘ก โˆ’๐‘ก2

2!โˆ’๐‘ก3

3!+๐‘ก4

4!+๐‘ก5

5!โˆ’๐‘ก6

6!โˆ’๐‘ก7

7!+โ‹ฏ)

So, ๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘’๐‘ฅ๐‘ฆ(cos ๐‘ก + sin ๐‘ก)

Page 46: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

32

Example 2.5[10]

Consider the following nonlinear 1D- equation with variable coefficients.

๐‘ข๐‘ก๐‘ก = ๐‘ข2๐œ•2

๐œ•๐‘ฅ2(๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ๐‘ฅ) + ๐‘ข๐‘ฅ

2๐œ•2

๐œ•๐‘ฅ2(๐‘ข๐‘ฅ

3) โˆ’ 18๐‘ข5 + ๐‘ข

with ICs: ๐‘ข(๐‘ฅ, 0) = ๐‘’๐‘ฅ, ๐‘ข๐‘ก(๐‘ฅ, 0) = ๐‘’๐‘ฅ

By applying NTHPM, we get:

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

= (1 + ๐‘ก)๐‘’๐‘ฅ

+ ๐‘(๐•‹โˆ’1 [1

๐‘ฃ2๐•‹ [โˆ‘๐‘๐‘›๐ป๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’โˆ‘๐‘๐‘›๐พ๐‘›(๐‘ข)

โˆž

๐‘›=0

+ 18โˆ‘๐‘๐‘›๐ฝ๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

]])

Where ๐ป๐‘›(๐‘ข), ๐พ๐‘›(๐‘ข)and ๐ฝ๐‘›(๐‘ข) are He's polynomials. First few components of

He's polynomials are given by:

๐ป0(๐‘ข) = ๐‘ข02 ๐œ•2

๐œ•๐‘ฅ2(๐‘ข0๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ฅ) = 9(1 + ๐‘ก)

5๐‘’5๐‘ฅ

๐ป1(๐‘ข) = 2๐‘ข0๐‘ข1๐œ•2

๐œ•๐‘ฅ2(๐‘ข0๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ฅ) + ๐‘ข0

2 ๐œ•2

๐œ•๐‘ฅ๐œ•๐‘ฆ(๐‘ข1๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ฅ +

๐‘ข0๐‘ฅ๐‘ข1๐‘ฅ๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ฅ + ๐‘ข0๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ๐‘ข1๐‘ฅ๐‘ฅ๐‘ฅ) = 45(1 + ๐‘ก)4 (

๐‘ก2

2!+๐‘ก3

3!) ๐‘’5๐‘ฅ

:

and

๐พ0(๐‘ข) = (๐‘ข0๐‘ฅ)2 ๐œ•2

๐œ•๐‘ฅ2[(๐‘ข0๐‘ฅ)

3] = (1 + ๐‘ก)2๐‘’2๐‘ฅ๐œ•2

๐œ•๐‘ฅ2[(1 + ๐‘ก)3๐‘’3๐‘ฅ]

= 9(1 + ๐‘ก)5๐‘’5๐‘ฅ

Page 47: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

33

๐พ1(๐‘ข) = 2๐‘ข0๐‘ฅ๐‘ข1๐‘ฅ๐œ•2

๐œ•๐‘ฅ2(๐‘ข0๐‘ฅ)

3 + 3(๐‘ข0๐‘ฅ)2 ๐œ•2

๐œ•๐‘ฅ2[(๐‘ข0๐‘ฅ)

2๐‘ข1๐‘ฅ]

= 45(1 + ๐‘ก)4 (๐‘ก2

2!+๐‘ก3

3!) ๐‘’5๐‘ฅ

:

and

๐ฝ0(๐‘ข) = (๐‘ข0)5 = (1 + ๐‘ก)5๐‘’5๐‘ฅ

๐ฝ1(๐‘ข) = 5(๐‘ข0)4๐‘ข1 = 5(1 + ๐‘ก)

4 (๐‘ก2

2!+๐‘ก3

3!) ๐‘’5๐‘ฅ

:

Comparing the coefficients of various powers of p, we get:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = (1 + ๐‘ก)๐‘’๐‘ฅ

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹[๐ป0(๐‘ข) + ๐พ0(๐‘ข) โˆ’ 18๐ฝ0(๐‘ข) + ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก)]]

= (๐‘ก2

2!+๐‘ก3

3!) ๐‘’๐‘ฅ

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹[๐ป1(๐‘ข) + ๐พ1(๐‘ข) โˆ’ 18๐ฝ1(๐‘ข) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก)]]

= (๐‘ก4

4!+๐‘ก5

5!) ๐‘’๐‘ฅ

and so on, therefore the solution is given by:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ก) + ๐‘ข2(๐‘ฅ, ๐‘ก) + ๐‘ข3(๐‘ฅ, ๐‘ก) + โ‹ฏ

= ๐‘’๐‘ฅ (1 + ๐‘ก +๐‘ก2

2!+๐‘ก3

3!+๐‘ก4

4!+

๐‘ก5

5!+๐‘ก6

6!+๐‘ก7

7!+โ‹ฏ) = ๐‘’๐‘ฅ+๐‘ก

This is the exact solution.

Page 48: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

34

Example 2.6[10]

Consider the following nonlinear 1D -3rd order wave-like equation with

variable coefficients.

๐‘ข๐‘ก๐‘ก = ๐‘ฅ2 ๐œ•

๐œ•๐‘ฅ(๐‘ข๐‘ฅ๐‘ข๐‘ฅ๐‘ฅ) โˆ’ ๐‘ฅ

2(๐‘ข๐‘ฅ๐‘ฅ2 ) โˆ’ ๐‘ข , 0 < ๐‘ฅ < 1 , ๐‘ก > 0

With ICs: ๐‘ข(๐‘ฅ, 0) = 0, ๐‘ข๐‘ก(๐‘ฅ, ๐‘ฆ, 0) = ๐‘ฅ2

By applying NTHPM, we get:

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

โˆž

๐‘›=0

= ๐‘ฅ2๐‘ก

+ ๐‘(๐•‹โˆ’1 [1

๐‘ฃ2๐•‹ [๐‘ฅ2โˆ‘๐‘๐‘›๐ป๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’ ๐‘ฅ2โˆ‘๐‘๐‘›๐พ๐‘›(๐‘ข)

โˆž

๐‘›=0

โˆ’โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

]])

Where ๐ป๐‘›(๐‘ข) and ๐พ๐‘›(๐‘ข) are He's polynomials. First few components of He's

polynomials are given by:

๐ป0(๐‘ข) =๐œ•

๐œ•๐‘ฅ(๐‘ข0๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ) = 4๐‘ก

2

๐ป1(๐‘ข) =๐œ•

๐œ•๐‘ฅ(๐‘ข1๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ + ๐‘ข0๐‘ฅ๐‘ข1๐‘ฅ๐‘ฅ) = โˆ’8

๐‘ก4

3!

๐ป2(๐‘ข) =๐œ•2

๐œ•๐‘ฅ(๐‘ข2๐‘ฅ๐‘ข0๐‘ฅ๐‘ฅ + ๐‘ข1๐‘ฅ๐‘ข1๐‘ฅ๐‘ฅ + ๐‘ข0๐‘ฅ๐‘ข2๐‘ฅ๐‘ฅ)

:

And

๐พ0(๐‘ข) = (๐‘ข0๐‘ฅ๐‘ฅ)2 = 4๐‘ก2

๐พ1(๐‘ข) = 2๐‘ข0๐‘ฅ๐‘ฅ๐‘ข1๐‘ฅ๐‘ฅ = โˆ’8๐‘ก4

3!

๐พ2(๐‘ข) = (๐‘ข12)๐‘ฅ๐‘ฅ + 2(๐‘ข0)๐‘ฅ๐‘ฅ(๐‘ข2)๐‘ฅ๐‘ฅ

:

Page 49: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

35

Comparing the coefficients of various powers of p, to get:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐‘ฅ2๐‘ก

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 [1

๐‘ฃ2๐•‹[๐‘ฅ2๐ป0(๐‘ข) โˆ’ ๐‘ฅ

2๐พ0(๐‘ข) โˆ’ ๐‘ข0(๐‘ฅ, ๐‘ก)]] = โˆ’๐‘ฅ2 ๐‘ก

3

3!

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 [

1

๐‘ฃ2๐•‹[๐‘ฅ2๐ป1(๐‘ข) โˆ’ ๐‘ฅ

2๐พ1(๐‘ข) โˆ’ ๐‘ข1(๐‘ฅ, ๐‘ก)]] = ๐‘ฅ2 ๐‘ก

5

5!

:

Therefore, the solution is given by:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข3(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ

= ๐‘ฅ2 (๐‘ก โˆ’๐‘ก3

3!+๐‘ก5

5!โˆ’โ‹ฏ) = ๐‘ฅ2 sin ๐‘ก

This is the exact solution.

2.7. Solve Autonomous Equation by NTHPM

In this section the proposed method will be used to solve one of the most

important of amplitude equations is the autonomous equation which describes

the appearance of the stripe pattern in two dimensional systems. Moreover,

this equation was applied to a number of problems in variety systems, e.g.,

Rayleigh-Benard convection, Faraday instability, nonlinear optics, chemical

reactions and biological systems [60]. The approximate solutions of the

autonomous equation were presented by differential transformation method

[18], reduce differential transformation [8]. Here a reliable couple NTHPM is

applied for solving autonomous equation.

Page 50: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

36

To illustrate the ideas of NTHPM, firstly rewrite the initial value problem

in autonomous equation in the form:

๐‘ข๐‘ก(๐‘ฅ, ๐‘ก) = ๐‘๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก) + ๐‘1๐‘ข(๐‘ฅ, ๐‘ก) โˆ’ ๐‘2๐‘ข๐‘›(๐‘ฅ, ๐‘ก) (2.20๐‘Ž)

With the IC: ๐‘ข (๐‘ฅ, ๐‘ก) = ๐‘”(๐‘ฅ) (2.20๐‘)

where ๐‘1 and ๐‘2 are real numbers and c and n are positive integers.

Taking new transformation on both sides of the equation (2.20a) and using the

linearity property of the new transformation gives:

๐•‹{๐‘ข๐‘ก(๐‘ฅ, ๐‘ก)} = ๐‘๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} + ๐‘1๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘2๐•‹{๐‘ข๐‘›(๐‘ฅ, ๐‘ก)} (2.21)

By applying the differentiation property of new transform, we have

๐‘ฃ๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘ฃ๐‘ข(๐‘ฅ, 0)

= ๐‘๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} + ๐‘1๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘2๐•‹{๐‘ข๐‘›(๐‘ฅ, ๐‘ก)} (2.22)

Thus, we get:

(๐‘ฃ โˆ’ ๐‘1)๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} = ๐‘ฃ๐‘”(๐‘ฅ) + ๐‘๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘2๐•‹{๐‘ข๐‘›(๐‘ฅ, ๐‘ก)}

๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} =๐‘ฃ๐‘”(๐‘ฅ)

๐‘ฃโˆ’๐‘1+

๐‘

๐‘ฃโˆ’๐‘1๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’

๐‘2

๐‘ฃโˆ’๐‘1๐•‹{๐‘ข๐‘›(๐‘ฅ, ๐‘ก)}

Taking the inverse of new transformation on equation (2.22), we obtain:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 {๐‘ฃ๐‘”(๐‘ฅ)

๐‘ฃโˆ’๐‘1} + ๐•‹โˆ’1 (

๐‘

๐‘ฃโˆ’๐‘1๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’

๐‘2

๐‘ฃโˆ’๐‘1๐•‹{๐‘ข๐‘›(๐‘ฅ, ๐‘ก)}) (2.23)

Page 51: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

37

In the HPM, the basic assumption is that the solutions can be written as a

power series in p:

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก) (2.24)

โˆž

๐‘›=0

and the nonlinear term N(u) = ๐‘ข๐‘›, ๐‘› > 1 can be presented by an infinite

series as:

๐‘(๐‘ข) = โˆ‘ ๐‘๐‘›๐ป๐‘›(๐‘ฅ, ๐‘ก) (2.25)โˆž๐‘›=0

where p โˆˆ [0,1] is an embedding parameter. Hn(u) is He polynomials. Now,

substituting (2.24) and (2.25) in (2.23), to get:

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก) =

โˆž

๐‘›=0

๐•‹โˆ’1 {๐‘ฃ๐‘”(๐‘ฅ)

๐‘ฃ โˆ’ ๐‘1}

+ ๐‘๐•‹โˆ’1 (๐‘

๐‘ฃ โˆ’ ๐‘1๐•‹ {โˆ‘๐‘๐‘›

โˆž

๐‘›=0

๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’๐‘2

๐‘ฃ โˆ’ ๐‘1๐•‹ {โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

} )

Comparing the coefficient of powers of p, the following are obtained.

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 {

๐‘ฃ๐‘”(๐‘ฅ)

๐‘ฃ โˆ’ ๐‘1}

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

๐‘

๐‘ฃ โˆ’ ๐‘1๐•‹{๐‘ข0๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’

๐‘2๐‘ฃ โˆ’ ๐‘1

๐•‹{๐ป0})

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

๐‘

๐‘ฃ โˆ’ ๐‘1๐•‹{๐‘ข1๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’

๐‘2๐‘ฃ โˆ’ ๐‘1

๐•‹{๐ป1})

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (๐‘

๐‘ฃ โˆ’ ๐‘1๐•‹{๐‘ข2๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’

๐‘2๐‘ฃ โˆ’ ๐‘1

๐•‹{๐ป2})

Page 52: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

38

Proceeding in this same manner, the rest of the components un(x, t) can be

completely obtained and the series solution is thus entirely determined.

Finally, we approximate the analytical solution ๐‘ข(๐‘ฅ, ๐‘ก) by truncated series:

๐‘ข(๐‘ฅ, ๐‘ก) = lim๐‘โ†’โˆž

(โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ก)

๐‘

๐‘›=0

)

The above series solutions generally converge very rapidly.

2.8. Illustrative Examples

In this section, some non-linear autonomous equations with IC are

presented to show the advantages of the proposed method.

Example 2.7 [1]

Consider linear 1D, 2nd order autonomous equation.

๐‘ข๐‘ก(๐‘ฅ, ๐‘ก) = ๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก) โˆ’ 3๐‘ข(๐‘ฅ, ๐‘ก) (2.26)

With IC: ๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’2๐‘ฅ

Taking the new transformation on both sides of equation (2.26), we have

๐•‹{๐‘ข๐‘ก(๐‘ฅ, ๐‘ก)} = ๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’ 3๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)}

By applying the differentiation property of new transformation, we get:

๐‘ฃ๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘ฃ๐‘ข(๐‘ฅ, 0) = ๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} โˆ’ 3๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)}

Thus, we have:

(๐‘ฃ + 3)๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} = ๐‘ฃ๐‘’2๐‘ฅ + ๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)}

Page 53: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

39

๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} =๐‘ฃ๐‘’2๐‘ฅ

๐‘ฃ+3+

1

๐‘ฃ+3๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} (2.27)

Taking the inverse new transformation on equation (2.27), to get:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 {๐‘ฃ๐‘’2๐‘ฅ

๐‘ฃ+3} + ๐•‹โˆ’1 (

1

๐‘ฃ+3๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)})

Now, applying the HPM, we get:

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก) =

โˆž

๐‘›=0

๐‘’2๐‘ฅโˆ’3๐‘ก + ๐‘๐•‹โˆ’1 (1

๐‘ฃ + 3๐•‹ {โˆ‘๐‘๐‘›

โˆž

๐‘›=0

๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)})

Comparing the coefficients of powers of p, we have:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐‘’2๐‘ฅโˆ’3๐‘ก

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

1

๐‘ฃ + 3๐•‹{๐‘ข0๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)}) = ๐•‹

โˆ’1 (1

๐‘ฃ + 3๐•‹{4๐‘’2๐‘ฅ๐‘’โˆ’3๐‘ก})

= 4๐‘’2๐‘ฅ๐•‹โˆ’1 (๐‘ฃ

(๐‘ฃ + 3)2) = 4๐‘ก๐‘’2๐‘ฅโˆ’3๐‘ก

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

1

๐‘ฃ+3๐•‹{๐‘ข1๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)}) = ๐•‹

โˆ’1 (1

๐‘ฃ+3๐•‹{16๐‘ก๐‘’2๐‘ฅ๐‘’โˆ’3๐‘ก})

= ๐•‹โˆ’1 (1

๐‘ฃ+3โˆ—16๐‘’2๐‘ฅ๐‘ฃ

(๐‘ฃ+3)2) = ๐•‹โˆ’1 (8๐‘’2๐‘ฅ โˆ—

2!๐‘ฃ

(๐‘ฃ+3)2+1) = 8๐‘ก2๐‘’2๐‘ฅโˆ’3๐‘ก

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (1

๐‘ฃ + 3๐•‹{๐‘ข2๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)})

= ๐•‹โˆ’1 (1

๐‘ฃ+3๐•‹{32๐‘’2๐‘ฅ๐‘ก2๐‘’โˆ’3๐‘ก}) = 32๐‘’2๐‘ฅ๐•‹โˆ’1 (

1

๐‘ฃ+3โˆ—

2!๐‘ฃ

(๐‘ฃ+3)3)

= 32๐‘’2๐‘ฅ๐•‹โˆ’1 (2! ๐‘ฃ

(๐‘ฃ + 3)4) =

32

3๐‘’2๐‘ฅ๐•‹โˆ’1 (

3! ๐‘ฃ

(๐‘ฃ + 3)3+1) =

32

3๐‘ก3๐‘’2๐‘ฅโˆ’3๐‘ก

Page 54: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

40

And so on, therefore the solution u(x, t) is given by:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’2๐‘ฅโˆ’3๐‘ก (1 + 4๐‘ก + 8๐‘ก2 +32๐‘ก3

3+โ‹ฏ)

= ๐‘’2๐‘ฅโˆ’3๐‘ก (1 + (4๐‘ก) +(4๐‘ก)2

2!+(4๐‘ก)3

3!+ โ‹ฏ) = ๐‘’2๐‘ฅ+๐‘ก

Example 2.8 [1]

Consider nonlinear 1D, 2nd order autonomous equation.

๐‘ข๐‘ก(๐‘ฅ, ๐‘ก) = 5๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก) + 2๐‘ข(๐‘ฅ, ๐‘ก) + ๐‘ข2(๐‘ฅ, ๐‘ก) (2.28)

With the IC: ๐‘ข (๐‘ฅ, ๐‘ก) = ๐›ฝ

where ๐›ฝ is arbitrary constant. Taking the new transformation on both sides of

equation (2.28), we have:

๐•‹{๐‘ข๐‘ก(๐‘ฅ, ๐‘ก)} = 5๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} + 2๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} + ๐•‹{๐‘ข2(๐‘ฅ, ๐‘ก)}

๐‘ฃ๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} โˆ’ ๐‘ฃ๐‘ข(๐‘ฅ, 0) = 5๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} + 2๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} + ๐•‹{๐‘ข2(๐‘ฅ, ๐‘ก)}

(๐‘ฃ โˆ’ 2)๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} = ๐‘ฃ๐›ฝ + 5๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} + ๐•‹{๐‘ข2(๐‘ฅ, ๐‘ก)}

๐•‹{๐‘ข(๐‘ฅ, ๐‘ก)} =๐‘ฃ๐›ฝ

๐‘ฃ โˆ’ 2+

5

๐‘ฃ โˆ’ 2๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +

1

๐‘ฃ โˆ’ 2๐•‹{๐‘ข2(๐‘ฅ, ๐‘ก)} (2.29)

Taking the inverse new transformation on equation (2.29), we obtain:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 {๐‘ฃ๐›ฝ

๐‘ฃโˆ’2} + ๐•‹โˆ’1 (

5

๐‘ฃโˆ’2๐•‹{๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +

1

๐‘ฃโˆ’2๐•‹{๐‘ข2(๐‘ฅ, ๐‘ก)})

Now, applying the HPM, we get:

Page 55: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

41

โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ก) = ๐›ฝ

โˆž

๐‘›=0

๐‘’2๐‘ก + ๐‘๐•‹โˆ’1 (5

๐‘ฃ โˆ’ 2๐•‹ {โˆ‘๐‘๐‘›

โˆž

๐‘›=0

๐‘ข๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +1

๐‘ฃ โˆ’ 2๐•‹ {โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

})

Comparing the coefficients of powers of p, we have:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = ๐›ฝ๐‘’2๐‘ก

๐‘1: ๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

5

๐‘ฃ โˆ’ 2๐•‹{๐‘ข0๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +

1

๐‘ฃ โˆ’ 2๐•‹{๐ป0(๐‘ข)})

๐‘2: ๐‘ข2(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (

5

๐‘ฃโˆ’2๐•‹{๐‘ข1๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +

1

๐‘ฃโˆ’2๐•‹{๐ป1(๐‘ข)})

๐‘3: ๐‘ข3(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (5

๐‘ฃ โˆ’ 2๐•‹{๐‘ข2๐‘ฅ๐‘ฅ(๐‘ฅ, ๐‘ก)} +

1

๐‘ฃ โˆ’ 2๐•‹{๐ป2(๐‘ข)})

:

First, compute An to the nonlinear part N(u) , we have:

๐‘(๐‘ข) = ๐‘(โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

)

= ๐‘ข02 + ๐‘ (2๐‘ข0๐‘ข1) + ๐‘

2(2๐‘ข0๐‘ข2 + ๐‘ข12) + ๐‘3(2๐‘ข0๐‘ข3 + 2๐‘ข1๐‘ข2) + โ‹ฏ

So,

๐ป0 = ๐‘ข02

๐ป1 = 2๐‘ข0๐‘ข1

๐ป2 = 2๐‘ข0๐‘ข2 + ๐‘ข12

and so on.

Moreover, the sequence of the parts un is:

๐‘ข0(๐‘ฅ, ๐‘ก) = ๐›ฝ๐‘’2๐‘ก

Page 56: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

42

๐‘ข1(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (0 +

1

๐‘ฃโˆ’2๐•‹{๐›ฝ2๐‘’4๐‘ก})

= ๐•‹โˆ’1 (1

๐‘ฃโˆ’2โˆ—๐›ฝ2๐‘ฃ

๐‘ฃโˆ’4) = ๐›ฝ2๐•‹โˆ’1 (

๐‘ฃ

(๐‘ฃโˆ’2)(๐‘ฃโˆ’4))

= ๐›ฝ2๐•‹โˆ’1 (๐‘ฃ

2(๐‘ฃโˆ’4)โˆ’

๐‘ฃ

2(๐‘ฃโˆ’2)) = ๐›ฝ2 [

1

2๐‘’4๐‘ก โˆ’

1

2๐‘’2๐‘ก] =

๐›ฝ2

2๐‘’2๐‘ก(๐‘’2๐‘ก โˆ’ 1)

๐‘ข2(๐‘ฅ, ๐‘ก) = ๐•‹โˆ’1 (0 +

1

๐‘ฃโˆ’2๐•‹ {2๐›ฝ๐‘’2๐‘ก โˆ—

๐›ฝ2

2๐‘’2๐‘ก(๐‘’2๐‘ก โˆ’ 1)})

= ๐•‹โˆ’1 (1

๐‘ฃโˆ’2๐•‹{๐›ฝ3(๐‘’6๐‘ก โˆ’ ๐‘’4๐‘ก)}) = ๐•‹โˆ’1 (

๐›ฝ3

๐‘ฃโˆ’2(๐‘ฃ

๐‘ฃโˆ’6โˆ’

๐‘ฃ

๐‘ฃโˆ’4))

= ๐›ฝ3๐•‹โˆ’1 (๐‘ฃ

(๐‘ฃโˆ’2)(๐‘ฃโˆ’6)โˆ’

๐‘ฃ

(๐‘ฃโˆ’2)(๐‘ฃโˆ’4) )

= ๐›ฝ3๐•‹โˆ’1 ((๐‘ฃ

4(๐‘ฃโˆ’6)โˆ’

๐‘ฃ

4(๐‘ฃโˆ’2)) โˆ’ (

๐‘ฃ

2(๐‘ฃโˆ’4)โˆ’

๐‘ฃ

2(๐‘ฃโˆ’2)) )

= ๐›ฝ3 [(1

4๐‘’6๐‘ก โˆ’

1

4๐‘’2๐‘ก) โˆ’ (

1

2๐‘’4๐‘ก โˆ’

1

2๐‘’2๐‘ก)] = ๐›ฝ3 [

1

4๐‘’6๐‘ก โˆ’

1

2๐‘’4๐‘ก +

1

4๐‘’2๐‘ก]

= ๐›ฝ3

4๐‘’2๐‘ก(๐‘’4๐‘ก โˆ’ 2๐‘’2๐‘ก + 1) =

๐›ฝ3

4๐‘’2๐‘ก(๐‘’2๐‘ก โˆ’ 1)2

๐‘ข3(๐‘ฅ, ๐‘ก) =๐›ฝ4

8๐‘’2๐‘ก(๐‘’2๐‘ก โˆ’ 1)3

Therefore the solution u(x, t) is given by:

๐‘ข(๐‘ฅ, ๐‘ก) = ๐‘’2๐‘ก (๐›ฝ + ๐›ฝ

2

2(๐‘’2๐‘ก โˆ’ 1) +

๐›ฝ3

4(๐‘’2๐‘ก โˆ’ 1)2 +

๐›ฝ4

8(๐‘’2๐‘ก โˆ’ 1)3 +โ‹ฏ)

= 2๐›ฝ๐‘’2๐‘ก

2+ ๐›ฝ(1โˆ’๐‘’2๐‘ก)

Page 57: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

43

2.9. Convergence of the Solution for Linear Case

Now, we need to show the convergence of series form to the exact form for

3D- PDEs.

Lemma 2.1 If f be continues function then

๐œ•

๐œ•๐‘กโˆซ๐‘“(๐‘ก โˆ’ ๐œ)๐‘‘๐œ

๐‘ก

0

= ๐‘“(๐‘ก)

Proof

Suppose that

โˆซ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = ๐น(๐‘ฅ) + ๐‘

Assume that ๐‘ฅ = ๐‘ก โˆ’ ๐œ then ๐‘‘๐‘ฅ = โˆ’๐‘‘๐œ then

๐œ•

๐œ•๐‘กโˆซ ๐‘“(๐‘ก โˆ’ ๐œ)๐‘‘๐œ๐‘ก

0= โˆ’

๐œ•

๐œ•๐‘กโˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ0

๐‘ก=

๐œ•

๐œ•๐‘กโˆซ ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ๐‘ก

0=

๐œ•

๐œ•๐‘ก[๐น(๐‘ฅ)|0

๐‘ก ] =

๐œ•

๐œ•๐‘ก[๐น(๐‘ก) โˆ’ ๐น(0)] =

๐œ•

๐œ•๐‘ก๐น(๐‘ก) โˆ’

๐œ•

๐œ•๐‘ก๐น(0) = ๐‘“(๐‘ก)

๐‘ ๐‘œ, ๐œ•

๐œ•๐‘กโˆซ ๐‘“(๐‘ก โˆ’ ๐œ)๐‘‘๐œ๐‘ก

0= ๐‘“(๐‘ก)

Lemma 2.2 Let ๐•‹ is new transformation. Then

๐œ•

๐œ•๐‘ก(๐•‹โˆ’1 {

1

๐‘ข ๐•‹ {๐‘“(๐‘‹, ๐‘ก)}}) = ๐‘“(๐‘‹, ๐‘ก) , where ๐‘‹ = (๐‘ฅ, ๐‘ฆ, ๐‘ง)

Proof

Using properties 2 and 3 of NT, and lemma (2.1), we have:

๐œ•

๐œ•๐‘ก(๐•‹โˆ’1 {

1

๐‘ข ๐•‹ {๐‘“(๐‘‹, ๐‘ก)}}) =

๐œ•

๐œ•๐‘ก(๐•‹โˆ’1 {

1

๐‘ข ๐•‹ {1}๐•‹ {๐‘“(๐‘‹, ๐‘ก)}}) =

๐œ•

๐œ•๐‘ก(๐•‹โˆ’1{๐•‹ {1 โˆ—

๐‘“(๐‘‹, ๐‘ก)}}) =๐œ•

๐œ•๐‘ก(1 โˆ— ๐‘“(๐‘‹, ๐‘ก)) =

๐œ•

๐œ•๐‘ก(โˆซ ๐‘“(๐‘‹, ๐‘ก โˆ’ ๐œ)๐‘‘๐œ

๐‘ก

0) = ๐‘“(๐‘‹, ๐‘ก)

Page 58: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

44

Theorem 2.1 (Convergence Theorem)

If the series form given in equation (2.6) with p = 1, i.e.,

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

(2.30)

is convergent. Then the limit point converges to the exact solution of equation

(2.1), where un (n = 0, 1, โ€ฆ) are calculated by NTHPM, i.e.,

๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = ๐•‹โˆ’1 {๐‘“ +1

๐‘ฃ๐›ผ ๐•‹ {โˆ’๐‘…[๐‘ข0]}}

๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐›ผ๐•‹{๐‘…[๐‘ข๐‘›โˆ’1]}} , ๐‘› > 1

}

Proof

Suppose that equation (2.30) converges to the limit point say as:

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

Now, from right hand side of equation (2.1) we have:

๐›ผ๐œ•๐‘ค

๐œ•๐‘ก= ๐›ผ

๐œ•

๐œ•๐‘ก โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž๐‘›=0 = ๐›ผ

๐œ•

๐œ•๐‘ก [๐‘ข0 + ๐‘ข1 + โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž๐‘›=2 ]

= ๐›ผ ๐œ•

๐œ•๐‘ก [๐•‹โˆ’1 {๐‘“ +

1

๐‘ฃ๐›ผ ๐•‹ {โˆ’๐‘…[๐‘ข0]}} โˆ’โˆ‘๐•‹โˆ’1 {

1

๐‘ฃ๐›ผ[๐•‹{๐‘…[๐‘ข๐‘›โˆ’1]}]}

โˆž

๐‘›=2

]

= ๐›ผ ๐œ•๐‘“

๐œ•๐‘กโˆ’ ๐‘…[๐‘ข0] โˆ’

๐œ•

๐œ•๐‘ก (โˆ‘๐•‹โˆ’1 {

1

๐‘ฃ[๐•‹{๐‘…[๐‘ข๐‘›]}]}

โˆž

๐‘›=2

)

= 0 โˆ’ ๐‘…[๐‘ข0] โˆ’โˆ‘๐œ•

๐œ•๐‘ก (๐•‹โˆ’1 {

1

๐‘ฃ[๐•‹{๐‘…[๐‘ข๐‘›]}]})

โˆž

๐‘›=0

(2.31)

By lemma (2.2), the equation (2.31) becomes:

Page 59: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

45

๐›ผ๐œ•๐‘ค

๐œ•๐‘ก= โˆ’โˆ‘๐‘…[๐‘ข๐‘›]

โˆž

๐‘›=0

= โˆ’ ๐‘… [โˆ‘๐‘ข๐‘›

โˆž

๐‘›=0

] = โˆ’๐‘…๐‘ค = ๐‘ค๐‘ฅ๐‘ฅ +๐‘ค๐‘ฆ๐‘ฆ +๐‘ค๐‘ง๐‘ง

Then w(x, y, z, t) satisfies equation (2.1). So, it is exact solution.

2.10. Convergence of the Solution for Nonlinear Case

Now, we must prove the convergence of solution of equation (2.13) to the

exact solution when we used the NTHPM, the solution is given in equation

(2.32), where un,, (n= 0, 1, โ€ฆ), are calculated by new transformation, i.e.,

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) + โ‹ฏ =โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

(2.32)

๐‘ข0 = ๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง)

๐‘ข๐‘› = โˆ’๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›โˆ’1] + ๐ด๐‘›โˆ’1}

๐‘ฃ} , ๐‘› โ‰ฅ 1

} (2.33)

and An, (n = 0, 1, โ€ฆ), are defined as

๐ด๐‘› = ๐‘ข๐‘›๐œ•๐‘ข0

๐œ•๐‘ง+ ๐‘ข๐‘›โˆ’1

๐œ•๐‘ข1

๐œ•๐‘ง+โ‹ฏ+ ๐‘ข0

๐œ•๐‘ข๐‘›

๐œ•๐‘ง= โˆ‘ ๐‘ข๐‘˜

๐œ•๐‘ข๐‘›โˆ’๐‘˜

๐œ•๐‘ง

๐‘›๐‘˜=0 (2.34)

Now we proof the convergence in the following theorem.

Theorem 2.2 (Convergence Theorem)

If the series (2.32) which was calculated by NTHPM, is convergent then

the limit point converges to the exact solution for the equation (2.13). Suppose

that the limit point is:

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

Now, from left hand side of equation (2.13), we have:

Page 60: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

46

๐œ•๐‘ค

๐œ•๐‘ก=

๐œ•

๐œ•๐‘ก โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=0

= ๐œ•

๐œ•๐‘ก [๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) +โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก)

โˆž

๐‘›=1

]

= ๐œ•

๐œ•๐‘ก [๐•‹โˆ’1{๐‘“} โˆ’โˆ‘๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›โˆ’1] + ๐ด๐‘›โˆ’1}

๐‘ฃ}

โˆž

๐‘›=1

]

=๐œ•

๐œ•๐‘ก [๐•‹โˆ’1{๐‘“} โˆ’โˆ‘๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›]}

๐‘ฃ}

โˆž

๐‘›=0

โˆ’โˆ‘๐•‹โˆ’1 {๐•‹{๐ด๐‘›}

๐‘ฃ}

โˆž

๐‘›=0

]

= ๐œ•๐‘“

๐œ•๐‘กโˆ’

๐œ•

๐œ•๐‘ก โˆ‘๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›]}

๐‘ฃ}

โˆž

๐‘›=0

โˆ’๐œ•

๐œ•๐‘กโˆ‘๐•‹โˆ’1 {

๐•‹{๐ด๐‘›}

๐‘ฃ}

โˆž

๐‘›=0

= ๐œ•๐‘“

๐œ•๐‘กโˆ’โˆ‘

๐œ•

๐œ•๐‘ก[๐•‹โˆ’1 {

๐•‹{๐‘…[๐‘ข๐‘›]}

๐‘ฃ}]

โˆž

๐‘›=0

โˆ’โˆ‘๐œ•

๐œ•๐‘ก[๐•‹โˆ’1 {

๐•‹{๐ด๐‘›}

๐‘ฃ}]

โˆž

๐‘›=0

(2.35)

By lemma (2.2) and equation (2.35), we get:

๐œ•๐‘ค

๐œ•๐‘ก= 0 โˆ’ โˆ‘๐‘…[๐‘ข๐‘›]

โˆž

๐‘›=0

โˆ’โˆ‘๐ด๐‘›

โˆž

๐‘›=0

(2.36)

However, from equation (2.34), we have:

โˆ‘๐ด๐‘›

โˆž

๐‘›=0

=โˆ‘โˆ‘๐‘ข๐‘˜ ๐œ•๐‘ข๐‘›โˆ’๐‘˜๐œ•๐‘ง

๐‘›

๐‘˜=0

โˆž

๐‘›=0

= ๐‘ข0๐œ•๐‘ข0๐œ•๐‘ง

+ ๐‘ข0๐œ•๐‘ข1๐œ•๐‘ง

+ ๐‘ข1๐œ•๐‘ข0๐œ•๐‘ง

+ ๐‘ข0๐œ•๐‘ข2๐œ•๐‘ง

+ ๐‘ข1๐œ•๐‘ข1๐œ•๐‘ง

+ ๐‘ข2๐œ•๐‘ข0๐œ•๐‘ง

+ ๐‘ข0๐œ•๐‘ข3๐œ•๐‘ง

+ ๐‘ข1๐œ•๐‘ข2๐œ•๐‘ง

+ ๐‘ข2๐œ•๐‘ข1๐œ•๐‘ง

+ ๐‘ข3๐œ•๐‘ข0๐œ•๐‘ง

+โ‹ฏ

= ๐‘ข0 (๐œ•๐‘ข0

๐œ•๐‘ง+๐œ•๐‘ข1

๐œ•๐‘ง+๐œ•๐‘ข2

๐œ•๐‘ง+๐œ•๐‘ข3

๐œ•๐‘ง+โ‹ฏ) + ๐‘ข1 (

๐œ•๐‘ข0

๐œ•๐‘ง+๐œ•๐‘ข1

๐œ•๐‘ง+๐œ•๐‘ข2

๐œ•๐‘ง+๐œ•๐‘ข3

๐œ•๐‘ง+โ‹ฏ) +

๐‘ข2 (๐œ•๐‘ข0

๐œ•๐‘ง+๐œ•๐‘ข1

๐œ•๐‘ง+๐œ•๐‘ข2

๐œ•๐‘ง+๐œ•๐‘ข3

๐œ•๐‘ง+โ‹ฏ) + ๐‘ข3 (

๐œ•๐‘ข0

๐œ•๐‘ง+๐œ•๐‘ข1

๐œ•๐‘ง+๐œ•๐‘ข2

๐œ•๐‘ง+๐œ•๐‘ข3

๐œ•๐‘ง+โ‹ฏ) +โ‹ฏ

Page 61: Efficient Method for Solving Some Types of Partial

Chapter Two NTHPM to Solve Types of PDEs

47

= (๐‘ข0 + ๐‘ข1 + ๐‘ข2 + ๐‘ข3 +โ‹ฏ) (๐œ•๐‘ข0

๐œ•๐‘ง+๐œ•๐‘ข1

๐œ•๐‘ง+

๐œ•๐‘ข2

๐œ•๐‘ง+๐œ•๐‘ข3

๐œ•๐‘ง+โ‹ฏ) =

(โˆ‘ ๐‘ข๐‘›โˆž๐‘›=0 ) (โˆ‘

๐œ•๐‘ข๐‘›

๐œ•๐‘งโˆž๐‘›=0 ) = (โˆ‘ ๐‘ข๐‘›

โˆž๐‘›=0 ) (

๐œ•

๐œ•๐‘งโˆ‘ ๐‘ข๐‘›โˆž๐‘›=0 ) (2.37)

Then substitute equation (2.37) in equation (2.36) to obtain:

๐œ•๐‘ค

๐œ•๐‘ก= โˆ’๐‘…[โˆ‘ ๐‘ข๐‘›

โˆž๐‘›=0 ] โˆ’ (โˆ‘ ๐‘ข๐‘›

โˆž๐‘›=0 ) (

๐œ•

๐œ•๐‘งโˆ‘ ๐‘ข๐‘›โˆž๐‘›=0 ) = โˆ’๐‘…[๐‘ค] โˆ’ ๐‘ค

๐œ•๐‘ค

๐œ•๐‘ง

๐‘กโ„Ž๐‘’๐‘› ๐œ•๐‘ค

๐œ•๐‘ก = [

๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2+๐œ•2๐‘ค

๐œ•๐‘ง2] โˆ’ ๐‘ค

๐œ•๐‘ค

๐œ•๐‘ง

Then w(x, y, z, t) is satisfy equation (2.13). So, its exact solution.

Page 62: Efficient Method for Solving Some Types of Partial

Solving System of Partial

Differential Equations by

New Couple Methods

Page 63: Efficient Method for Solving Some Types of Partial

49

3.1. Introduction

The system of PDEs arises in many areas of mathematics, engineering

and physical sciences. These systems are too complicated to be solved

exactly so it is still very difficult to get closed-form solutions for most

problems. A vast class of analytical and numerical methods has been

proposed to solve such problems. Such as the ADM [24, 57], VIM [6, 54],

HPM [3, 7, 8, 59], HAM [5] and DTM [28]. But many systems such that

system of high dimensional equations, the required calculations to obtain

its solution in some time may be too complicated. Recently, many powerful

methods have been presented, such as the coupled method [10, 32, 52].

In this chapter, new coupled method based on HPM and new transform

NTHPM, is presented to solve systems of PDEs. The efficiency of the

NTHPM is verified by some examples.

Chapter Three

Solving System of Partial Differential

Equations by New Couple Method

Page 64: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

50

3.2. Solving System of Nonlinear PDEs by NTHPM

This section consist the procedure of the NTHPM to solve system of

nonlinear PDEs. Firstly, writes the system of nonlinear PDEs as follows:

๐ฟ[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘…[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)

๐ฟ[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘…[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) (3.1๐‘Ž)

With IC:

๐‘ข(๐‘ฅ, ๐‘ฆ, 0) = ๐‘“(๐‘ฅ, ๐‘ฆ)

๐‘ค(๐‘ฅ, ๐‘ฆ, 0) = ๐‘”(๐‘ฅ, ๐‘ฆ) (3.1๐‘)

where all ๐‘ฅ, ๐‘ฆ ๐‘–๐‘› ๐‘… , L is a linear differential operator (๐ฟ =๐œ•

๐œ•๐‘ก), R is a

remained of the linear operator, N is a nonlinear differential operator and

๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) are the nonhomogeneous part.

We construct a homotopy u(x, p): ๐‘…๐‘›ร— [0, 1] โ†’ R, using the homotopy

perturbation technique which satisfies

๐ป(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, 0))] + ๐‘[๐ด(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ป(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, 0))] + ๐‘[๐ด(๐‘ฃ(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 (3.2)

Where ๐‘ โˆˆ [0,1] is an embedding parameter and the operator A defined as:

๐ด = ๐ฟ + ๐‘… + ๐‘.

Obviously, if p = 0, the system (3.2) becomes:

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, 0)), and ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, 0)).

Page 65: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

51

It is clear that, if ๐‘ = 1 then the homotopy system (3.2) convert to the main

system (3.1). In topology, this deformation is called homotopic.

Substitute equation (3.1b) in system (3.2) and rewrite it as:

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) โˆ’ ๐‘๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) +

๐‘๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) โˆ’ ๐‘๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) +

๐‘๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 0

Then

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) + ๐‘[๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) + ๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) +

๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) + ๐‘[๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) + ๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) +

๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 (3.3)

Since ๐‘“(๐‘ฅ, ๐‘ฆ) and ๐‘”(๐‘ฅ, ๐‘ฆ) are independent of the variable ๐‘ก and the linear

operator L dependent on t so, ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) = 0, ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) = 0, i.e., system

(3.3) becomes:

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘[๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘[๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 (3.4)

According to the classical perturbation technique, the solution of system

(3.4) can be written as a power series of embedding parameter p, in the

form:

Page 66: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

52

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

(3.5)

For most cases, the series form in (3.5) is convergent and the convergent

rate depends on the nonlinear operator ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) and ๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)).

Taking the NT (with respect to the variable t) for the system (3.4) to get:

๐•‹{๐ฟ(๐‘ข)} + ๐‘ ๐•‹{๐‘…(๐‘ข) + ๐‘(๐‘ข) โˆ’ ๐‘”1} = 0

๐•‹{๐ฟ(๐‘ค)} + ๐‘ ๐•‹{๐‘…(๐‘ค) + ๐‘(๐‘ค) โˆ’ ๐‘”2} = 0 (3.6)

Now by using the differentiation property of NT and IC in (3.1b), so

system (3.6) becomes:

๐‘ฃ๐•‹{๐‘ข} โˆ’ ๐‘ฃ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹{๐‘…(๐‘ข) + ๐‘(๐‘ข) โˆ’ ๐‘”1} = 0

๐‘ฃ๐•‹{๐‘ค} โˆ’ ๐‘ฃ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹{๐‘…(๐‘ค) + ๐‘(๐‘ค) โˆ’ ๐‘”2} = 0

Hence:

๐•‹{๐‘ข} = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘1

๐‘ฃ๐•‹{๐‘”1 โˆ’ ๐‘…(๐‘ข) โˆ’ ๐‘(๐‘ข)}

๐•‹{๐‘ค} = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘1

๐‘ฃ๐•‹{๐‘”2 โˆ’ ๐‘…(๐‘ค) โˆ’ ๐‘(๐‘ค)} (3.7)

By taking the inverse of NT on both sides of system (3.7), to get:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก))}}

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก))}} (3.8)

Then, substitute system (3.5) in system (3.8) to get:

Page 67: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

53

โˆ‘๐‘๐‘›๐‘ข๐‘› =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘(โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

)}}

โˆ‘๐‘๐‘›๐‘ค๐‘› =

โˆž

๐‘›=0

๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘(โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

)}} (3.9)

The nonlinear part can be decomposed, as will be explained later, by

substituting system (3.5) in it as:

๐‘(๐‘ข) = ๐‘(โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

๐‘(๐‘ค) = ๐‘(โˆ‘๐‘๐‘›๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘๐‘๐‘›๐พ๐‘›

โˆž

๐‘›=0

Then system (3.9) becomes:

โˆ‘๐‘๐‘›๐‘ข๐‘› =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

) โˆ’โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

}}

โˆ‘๐‘๐‘›๐‘ค๐‘› =

โˆž

๐‘›=0

๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

) โˆ’โˆ‘๐‘๐‘›๐พ๐‘›

โˆž

๐‘›=0

}} (3.10)

By comparing the coefficient with the same power of p, in both sides of the

system (3.10) we have:

๐‘ข0 = ๐‘“(๐‘ฅ, ๐‘ฆ), ๐‘ค0 = ๐‘”(๐‘ฅ)

๐‘ข1 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ข0) โˆ’ ๐ป0}} , ๐‘ค1 = ๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ค0) โˆ’ ๐พ0}}

๐‘ข2 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข1) + ๐ป1}}, ๐‘ค2 = โˆ’๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐‘ค1) + ๐พ1}}

๐‘ข3 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข2) + ๐ป2}}, ๐‘ค3 = โˆ’๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐‘ค2) + ๐พ2}}

:

Page 68: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

54

๐‘ข๐‘›+1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข๐‘›) + ๐ป๐‘›}} , ๐‘ค๐‘›+1 = โˆ’๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐‘ค๐‘›) + ๐พ๐‘›}}

According to the series solution in system (3.5), when at p=1 we can get

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)โˆž๐‘›=0

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ค0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ค1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ = โˆ‘ ๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)โˆž๐‘›=0

3.3. Illustrative Examples for System of 1D-PDEs

In this section, the NTHPM can be used to solve system of 1D,

nonlinear PDEs.

Example 3.1 [7]

Consider the following system of 1D, nonhomogeneous nonlinear PDEs.

๐œ•๐‘ข

๐œ•๐‘ฅโˆ’ ๐‘ค

๐œ•๐‘ข

๐œ•๐‘ก+ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ก= โˆ’1 + ๐‘’๐‘ฅ sin(๐‘ก)

๐œ•๐‘ค

๐œ•๐‘ฅ+๐œ•๐‘ข

๐œ•๐‘ก

๐œ•๐‘ค

๐œ•๐‘ฅ+๐œ•๐‘ค

๐œ•๐‘ก

๐œ•๐‘ข

๐œ•๐‘ฅ= โˆ’1 โˆ’ ๐‘’โˆ’๐‘ฅ cos(๐‘ก)

Subject to IC: ๐‘ข(0, ๐‘ก) = sin(๐‘ก) , ๐‘ค(0, ๐‘ก) = cos(๐‘ก)

๐‘ข0 = sin(๐‘ก) , ๐‘ค0 = cos(๐‘ก)

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐‘ค0

๐œ•๐‘ข0๐œ•๐‘ก

โˆ’ ๐‘ข0๐œ•๐‘ค0๐œ•๐‘ก

โˆ’ 1 + ๐‘’๐‘ฅ sin(๐‘ก)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘’๐‘ฅ sin(๐‘ก)}}

= ๐•‹โˆ’1 {1

๐‘ฃโˆ—๐‘ฃ sin(๐‘ก)

๐‘ฃ โˆ’ 1} = sin(๐‘ก)๐•‹โˆ’1 {

๐‘ฃ

๐‘ฃ โˆ’ 1โˆ’ 1} = ๐‘’๐‘ฅ sin(๐‘ก) โˆ’ sin(๐‘ก)

Page 69: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

55

๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {โˆ’

๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฅ

โˆ’๐œ•๐‘ค0๐œ•๐‘ก

๐œ•๐‘ข0๐œ•๐‘ฅ

โˆ’ 1 โˆ’ ๐‘’โˆ’๐‘ฅ cos(๐‘ก)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’1 โˆ’ ๐‘’โˆ’๐‘ฅ cos(๐‘ก)}}

= ๐•‹โˆ’1 {โˆ’1

๐‘ฃโˆ’๐‘ฃ cos(๐‘ก)

๐‘ฃ(๐‘ฃ + 1)} = โˆ’๐‘ฅ + cos(๐‘ก)๐•‹โˆ’1 {

โˆ’๐‘ฃ

๐‘ฃ + 1+ 1}

= โˆ’๐‘ฅ + ๐‘’โˆ’๐‘ฅ cos(๐‘ก) โˆ’ cos(๐‘ก)

๐‘ข2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(๐‘ค1

๐œ•๐‘ข0๐œ•๐‘ก

+ ๐‘ค0๐œ•๐‘ข1๐œ•๐‘ก) โˆ’ (๐‘ข1

๐œ•๐‘ค0๐œ•๐‘ก

+ ๐‘ข0๐œ•๐‘ค1๐œ•๐‘ก)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’2 + ๐‘’๐‘ฅ + ๐‘’โˆ’๐‘ฅ โˆ’ ๐‘ฅ cos(๐‘ก)}}

= ๐•‹โˆ’1 {โˆ’2

๐‘ฃ+

1

๐‘ฃ โˆ’ 1+

1

๐‘ฃ + 1โˆ’cos(๐‘ก)

๐‘ฃ2}

= ๐•‹โˆ’1 {โˆ’2

๐‘ฃ+

๐‘ฃ

๐‘ฃ โˆ’ 1โˆ’ 1 โˆ’

๐‘ฃ

๐‘ฃ + 1+ 1 โˆ’

cos(๐‘ก)

๐‘ฃ2}

= โˆ’2๐‘ก + ๐‘’๐‘ฅ โˆ’ ๐‘’โˆ’๐‘ฅ โˆ’๐‘ฅ2

2!cos(๐‘ก)

๐‘ค2 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(

๐œ•๐‘ข1๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฅ

+๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค1๐œ•๐‘ฅ

) + (๐œ•๐‘ค1๐œ•๐‘ก

๐œ•๐‘ข0๐œ•๐‘ฅ

+๐œ•๐‘ค0๐œ•๐‘ก

๐œ•๐‘ข1๐œ•๐‘ฅ)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’cos(๐‘ก) โˆ’ ๐‘’โˆ’๐‘ฅ cos2(๐‘ก) โˆ’ ๐‘’๐‘ฅ sin2(๐‘ก)}}

= โˆ’๐•‹โˆ’1 {โˆ’cos(๐‘ก)

๐‘ฃโˆ’๐‘ฃ cos2(๐‘ก)

๐‘ฃ(๐‘ฃ + 1)โˆ’๐‘ฃ sin2(๐‘ก)

๐‘ฃ(๐‘ฃ โˆ’ 1)}

Page 70: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

56

= ๐•‹โˆ’1 {cos(๐‘ก)

๐‘ฃ+ cos2(๐‘ก) (

โˆ’๐‘ฃ

(๐‘ฃ + 1)+ 1) + sin2(๐‘ก) (

๐‘ฃ

(๐‘ฃ โˆ’ 1)โˆ’ 1)}

= ๐‘ฅ cos(๐‘ก) โˆ’ ๐‘’โˆ’๐‘ฅ cos2(๐‘ก) + cos2(๐‘ก) + ๐‘’๐‘ฅ sin2(๐‘ก) โˆ’ sin2(๐‘ก)

= ๐‘ฅ cos(๐‘ก) โˆ’ ๐‘’โˆ’๐‘ฅ cos2(๐‘ก) + ๐‘’๐‘ฅ sin2(๐‘ก) + cos(2๐‘ก)

and so on, therefore

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ก) = sin(๐‘ก) + ๐‘’๐‘ฅ sin(๐‘ก) โˆ’ sin(๐‘ก) + โ‹ฏ = ๐‘’๐‘ฅ sin(๐‘ก)โˆž

๐‘›=0

๐‘ค(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘ค๐‘›(๐‘ฅ, ๐‘ก) = cos(๐‘ก) + ๐‘’โˆ’๐‘ฅ cos(๐‘ก) โˆ’ cos(๐‘ก) โˆ’ ๐‘ฅ +โ‹ฏ =โˆž

๐‘›=0

๐‘’โˆ’๐‘ฅ cos(๐‘ก)

This is the exact solution.

Example 3.2 [3]

Consider a system of 1D, 3rd order nonlinear KdV equations (type1).

๐œ•๐‘ข

๐œ•๐‘กโˆ’๐œ•3๐‘ข

๐œ•๐‘ฅ3โˆ’ ๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅโˆ’๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฅ= 0

๐œ•๐‘ค

๐œ•๐‘ก+

๐œ•3๐‘ข

๐œ•๐‘ฅ3+ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ= 0

Subject to IC: ๐‘ข(๐‘ฅ, 0) = 3 โˆ’ 6 tanh2 (๐‘ฅ

2) , ๐‘ค(๐‘ฅ, 0) = โˆ’3๐‘–โˆš2 tanh2 (

๐‘ฅ

2)

We have the following terms:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = 3 โˆ’ 6 tanh2 (๐‘ฅ

2) , ๐‘0: ๐‘ค0(๐‘ฅ, ๐‘ก) = โˆ’3๐‘–โˆš2 tanh

2 (๐‘ฅ

2)

๐‘1: ๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{

๐œ•3๐‘ข0

๐œ•๐‘ฅ3+ ๐‘ข0

๐œ•๐‘ข0

๐œ•๐‘ฅ+๐‘ค0

๐œ•๐‘ค0

๐œ•๐‘ฅ}}

Page 71: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

57

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{(โˆ’6 ๐‘ก๐‘Ž๐‘›โ„Ž3(

๐‘ฅ

2)๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2) + 12 ๐‘ก๐‘Ž๐‘›โ„Ž(

๐‘ฅ

2) ๐‘ ๐‘’๐‘โ„Ž4(

๐‘ฅ

2)) + (โˆ’18 tanh (

๐‘ฅ

2) ๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2) +

36 ๐‘ก๐‘Ž๐‘›โ„Ž3(๐‘ฅ

2)๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2)) + (โˆ’18 ๐‘ก๐‘Ž๐‘›โ„Ž3 (

๐‘ฅ

2) ๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2))}}

๐‘ข1 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {12 tanh3(

๐‘ฅ

2) sech2(

๐‘ฅ

2) + 12 tanh(

๐‘ฅ

2) sech4(

๐‘ฅ

2)

โˆ’ 18 tanh(๐‘ฅ

2)sech2(

๐‘ฅ

2)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {12 tanh(

๐‘ฅ

2) sech2(

๐‘ฅ

2) โˆ’ 18 tanh(

๐‘ฅ

2)sech2(

๐‘ฅ

2)}}

= (โˆ’6 tanh (๐‘ฅ

2) sech2 (

๐‘ฅ

2)) ๐‘ก

๐‘1: ๐‘ค1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐œ•3๐‘ข0๐œ•๐‘ฅ3

+ ๐‘ข0๐œ•๐‘ค0๐œ•๐‘ฅ

}}

๐‘ค1 = โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{(โˆ’6๐‘–โˆš2 ๐‘ก๐‘Ž๐‘›โ„Ž3(

๐‘ฅ

2)๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2) + 12๐‘–โˆš2 ๐‘ก๐‘Ž๐‘›โ„Ž(

๐‘ฅ

2) ๐‘ ๐‘’๐‘โ„Ž4(

๐‘ฅ

2)) +

(โˆ’9๐‘–โˆš2 ๐‘ก๐‘Ž๐‘›โ„Ž (๐‘ฅ

2) ๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2) + 18๐‘–โˆš2 ๐‘ก๐‘Ž๐‘›โ„Ž3(

๐‘ฅ

2)๐‘ ๐‘’๐‘โ„Ž2(

๐‘ฅ

2))}}

๐‘ค1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{12๐‘–โˆš2 tanh3(

๐‘ฅ

2) sech2(

๐‘ฅ

2) + 12๐‘–โˆš2 tanh(

๐‘ฅ

2) sech4(

๐‘ฅ

2) โˆ’

9๐‘–โˆš2 tanh(๐‘ฅ

2)sech2(

๐‘ฅ

2)}}

= โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{12๐‘–โˆš2 tanh(

๐‘ฅ

2) sech2(

๐‘ฅ

2) โˆ’ 9๐‘–โˆš2 tanh(

๐‘ฅ

2)sech2(

๐‘ฅ

2)}}

= (โˆ’3๐‘–โˆš2 tanh (๐‘ฅ

2) sech2 (

๐‘ฅ

2)) ๐‘ก

and so on, therefore

Page 72: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

58

๐‘ข = 3 โˆ’ 6 tanh2 (๐‘ฅ

2) โˆ’ (6 tanh (

๐‘ฅ

2) sech2 (

๐‘ฅ

2)) ๐‘ก + โ€ฆโ€ฆโ€ฆ

๐‘ค = โˆ’3๐‘–โˆš2 tanh2 (๐‘ฅ

2) โˆ’ (3๐‘–โˆš3 tanh (

๐‘ฅ

2) sech2 (

๐‘ฅ

2)) ๐‘ก + โ€ฆโ€ฆโ€ฆ

The above series closed to exact solution:

๐‘ข = 3 โˆ’ 6 tanh2 (๐‘ฅ+๐‘ก

2) , ๐‘ค = โˆ’3๐‘–โˆš2 tanh2 (

๐‘ฅ+๐‘ก

2)

Example 3.3 [3]

Consider a system of 1D, 3rd order nonlinear KdV equations (type 2).

๐œ•๐‘ข

๐œ•๐‘กโˆ’๐œ•3๐‘ข

๐œ•๐‘ฅ3โˆ’ 2๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฅโˆ’ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ= 0

๐œ•๐‘ค

๐œ•๐‘กโˆ’ ๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ= 0

Subject to ICs: ๐‘ข(๐‘ฅ, 0) = โˆ’ tanh (๐‘ฅ

โˆš3) , ๐‘ค(๐‘ฅ, 0) = โˆ’

1

6โˆ’

1

2tanh2 (

๐‘ฅ

โˆš3)

Now, we solve the system by using our suggested method to get:

๐‘0: ๐‘ข0(๐‘ฅ, ๐‘ก) = โˆ’ tanh (๐‘ฅ

โˆš3) , ๐‘0: ๐‘ค0(๐‘ฅ, ๐‘ก) = โˆ’

1

6โˆ’1

2tanh2 (

๐‘ฅ

โˆš3)

๐‘1: ๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐œ•3๐‘ข0๐œ•๐‘ฅ3

+ 2๐‘ค0๐œ•๐‘ข0๐œ•๐‘ฅ

+ ๐‘ข0๐œ•๐‘ค0๐œ•๐‘ฅ

}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{(โˆ’

4

3โˆš3tanh2(

๐‘ฅ

โˆš3)sech2(

๐‘ฅ

โˆš3) +

2

3โˆš3sech4(

๐‘ฅ

โˆš3)) + (

1

6โˆš3sech2(

๐‘ฅ

โˆš3) +

1

2โˆš3tanh2(

๐‘ฅ

โˆš3)sech2(

๐‘ฅ

โˆš3)) + (

1

โˆš3tanh2 (

๐‘ฅ

โˆš3) sech2(

๐‘ฅ

โˆš3))}}

Page 73: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

59

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {

2

3โˆš3tanh2(

๐‘ฅ

โˆš3) sech2(

๐‘ฅ

โˆš3) +

2

3โˆš3sech4(

๐‘ฅ

โˆš3)

+1

3โˆš3sech2(

๐‘ฅ

โˆš3)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{

2

3โˆš3sech2(

๐‘ฅ

โˆš3) +

1

3โˆš3sech2(

๐‘ฅ

โˆš3)}}

= (1

โˆš3sech2 (

๐‘ฅ

โˆš3)) ๐‘ก

๐‘1: ๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘ข0

๐œ•๐‘ข0

๐œ•๐‘ฅ}}

๐‘ค1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(

1

โˆš3tanh (

๐‘ฅ

โˆš3) sech2(

๐‘ฅ

โˆš3))}}

= (1

โˆš3tanh(

๐‘ฅ

โˆš3) sech2(

๐‘ฅ

โˆš3)) ๐‘ก

and so on, therefore

๐‘ข = โˆ’ tanh (๐‘ฅ

โˆš3) + (

1

โˆš3sech2 (

๐‘ฅ

โˆš3)) ๐‘ก + โ€ฆโ€ฆโ€ฆ

๐‘ค = โˆ’1

6โˆ’1

2tanh2 (

๐‘ฅ

โˆš3) + (

1

โˆš3tanh(

๐‘ฅ

โˆš3) sech2(

๐‘ฅ

โˆš3)) ๐‘ก + โ€ฆโ€ฆโ€ฆ

The above series closed to exact solution:

๐‘ข = โˆ’ tanh (โˆ’๐‘ก + ๐‘ฅ

โˆš3) , ๐‘ค = โˆ’

1

6โˆ’1

2tanh2 (

โˆ’๐‘ก + ๐‘ฅ

โˆš3)

Page 74: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

60

3.4. Illustrative Examples for System of 2D-PDEs

In this section, the NTHPM will be used to solve system of 2D,

nonlinear PDEs.

Example 3.4 [7]

Consider the following system of 2D, nonhomogeneous nonlinear PDEs.

๐œ•๐‘ข

๐œ•๐‘กโˆ’ ๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฅโˆ’๐œ•๐‘ค

๐œ•๐‘ก

๐œ•๐‘ข

๐œ•๐‘ฆ= 1 โˆ’ ๐‘ฅ + ๐‘ฆ + ๐‘ก

๐œ•๐‘ค

๐œ•๐‘กโˆ’ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅโˆ’๐œ•๐‘ข

๐œ•๐‘ก

๐œ•๐‘ค

๐œ•๐‘ฆ= 1 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘ก

Subject to ICs:

๐‘“(๐‘ฅ, ๐‘ฆ) = ๐‘ข(๐‘ฅ, ๐‘ฆ, 0) = ๐‘ฅ + ๐‘ฆ โˆ’ 1 , ๐‘”(๐‘ฅ, ๐‘ฆ) = ๐‘ค(๐‘ฅ, ๐‘ฆ, 0) = ๐‘ฅ โˆ’ ๐‘ฆ + 1

๐ฟ[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] =๐œ•๐‘ข(๐‘ฅ,๐‘ฆ,๐‘ก)

๐œ•๐‘ก , ๐‘…[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 ,

๐‘[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = โˆ’๐‘ค๐œ•๐‘ข

๐œ•๐‘ฅโˆ’๐œ•๐‘ค

๐œ•๐‘ก

๐œ•๐‘ข

๐œ•๐‘ฆ , ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 1 โˆ’ ๐‘ฅ + ๐‘ฆ + ๐‘ก

๐‘[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = โˆ’๐‘ข๐œ•๐‘ค

๐œ•๐‘ฅโˆ’๐œ•๐‘ข

๐œ•๐‘ก

๐œ•๐‘ค

๐œ•๐‘ฆ , ๐‘”(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 1 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘ก

First, compute the nonlinear of ๐‘(๐‘ข) to get:

๐‘ค๐œ•๐‘ข

๐œ•๐‘ฅ= โˆ‘๐ป(1,๐‘›)

โˆž

๐‘›=0

(๐‘ข, ๐‘ค) , ๐œ•๐‘ค

๐œ•๐‘ก

๐œ•๐‘ข

๐œ•๐‘ฆ= โˆ‘๐ป(2,๐‘›)

โˆž

๐‘›=0

(๐‘ข, ๐‘ค)

Also, compute the nonlinear of ๐‘(๐‘ค) to get:

๐‘ข๐œ•๐‘ค

๐œ•๐‘ฅ= โˆ‘ ๐พ(1,๐‘›)

โˆž๐‘›=0 (๐‘ข,๐‘ค) ,

๐œ•๐‘ข

๐œ•๐‘ก

๐œ•๐‘ค

๐œ•๐‘ฆ= โˆ‘ ๐พ(2,๐‘›)

โˆž๐‘›=0 (๐‘ข, ๐‘ค)

๐ป(1,0) = ๐‘ค0๐œ•๐‘ข0

๐œ•๐‘ฅ , ๐ป(2,0) =

๐œ•๐‘ค0

๐œ•๐‘ก

๐œ•๐‘ข0

๐œ•๐‘ฆ

Page 75: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

61

๐ป(1,1) = ๐‘ค1๐œ•๐‘ข0

๐œ•๐‘ฅ+๐‘ค0

๐œ•๐‘ข1

๐œ•๐‘ฅ , ๐ป(2,1) =

๐œ•๐‘ค1

๐œ•๐‘ก

๐œ•๐‘ข0

๐œ•๐‘ฆ+๐œ•๐‘ค0

๐œ•๐‘ก

๐œ•๐‘ข1

๐œ•๐‘ฆ

And so on

๐พ(1,0) = ๐‘ข0๐œ•๐‘ค0๐œ•๐‘ฅ

, ๐พ(2,0) =๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฆ

๐พ(1,1) = ๐‘ข1๐œ•๐‘ค0๐œ•๐‘ฅ

+ ๐‘ข0๐œ•๐‘ค1๐œ•๐‘ฅ

, ๐พ(2,1) =๐œ•๐‘ข1๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฆ

+๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค1๐œ•๐‘ฆ

And so on.

Moreover, we have the sequence of ๐‘ข๐‘› , ๐‘ค๐‘› as:

๐‘ข0 = ๐‘ฅ + ๐‘ฆ โˆ’ 1 , ๐‘ค0 = ๐‘ฅ โˆ’ ๐‘ฆ + 1

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐‘ค0

๐œ•๐‘ข0๐œ•๐‘ฅ

+๐œ•๐‘ค0๐œ•๐‘ก

๐œ•๐‘ข0๐œ•๐‘ฆ

+ 1 โˆ’ ๐‘ฅ + ๐‘ฆ + ๐‘ก}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{2 + ๐‘ก}} = ๐•‹โˆ’1 {

2

๐‘ฃ+

1

๐‘ฃ2} = 2๐‘ก +

๐‘ก2

2!

๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐‘ข0

๐œ•๐‘ค0๐œ•๐‘ฅ

+๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฆ

+ 1 โˆ’ ๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘ก}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’๐‘ก}} = ๐•‹โˆ’1 {โˆ’

1

๐‘ฃ2} = โˆ’

๐‘ก2

2!

๐‘ข2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(๐‘ค1

๐œ•๐‘ข0๐œ•๐‘ฅ

+ ๐‘ค0๐œ•๐‘ข1๐œ•๐‘ฅ) + (

๐œ•๐‘ค1๐œ•๐‘ก

๐œ•๐‘ข0๐œ•๐‘ฆ

+๐œ•๐‘ค0๐œ•๐‘ก

๐œ•๐‘ข1๐œ•๐‘ฆ)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {โˆ’

๐‘ก2

2!โˆ’ ๐‘ก}} = ๐•‹โˆ’1 {โˆ’

1

๐‘ฃ3โˆ’

1

๐‘ฃ2} = โˆ’

๐‘ก3

3!โˆ’๐‘ก2

2!

Page 76: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

62

๐‘ค2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(๐‘ข1

๐œ•๐‘ค0๐œ•๐‘ฅ

+ ๐‘ข0๐œ•๐‘ค1๐œ•๐‘ฅ

) + (๐œ•๐‘ข1๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฆ

+๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค1๐œ•๐‘ฆ

)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’2 + ๐‘ก +

๐‘ก2

2!}} = ๐•‹โˆ’1 {โˆ’

2

๐‘ฃ+1

๐‘ฃ2+1

๐‘ฃ3} = โˆ’2t +

๐‘ก2

2!+๐‘ก3

3!

๐‘ข3 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {(๐‘ค2

๐œ•๐‘ข0๐œ•๐‘ฅ

+ ๐‘ค1๐œ•๐‘ข1๐œ•๐‘ฅ

+ ๐‘ค0๐œ•๐‘ข2๐œ•๐‘ฅ

) + (๐œ•๐‘ค2๐œ•๐‘ก

๐œ•๐‘ข0๐œ•๐‘ฆ

+๐œ•๐‘ค1๐œ•๐‘ก

๐œ•๐‘ข1๐œ•๐‘ฆ

+๐œ•๐‘ค0๐œ•๐‘ก

๐œ•๐‘ข2๐œ•๐‘ฆ

)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’2 โˆ’ ๐‘ก + ๐‘ก2 +

๐‘ก3

3!}} = ๐•‹โˆ’1 {โˆ’

2

๐‘ฃโˆ’1

๐‘ฃ2+2

๐‘ฃ3+1

๐‘ฃ4}

= โˆ’2๐‘ก โˆ’๐‘ก2

2!+๐‘ก3

3!+๐‘ก4

4!

๐‘ค3 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {(๐‘ข2

๐œ•๐‘ค0๐œ•๐‘ฅ

+ ๐‘ข1๐œ•๐‘ค1๐œ•๐‘ฅ

+ ๐‘ข0๐œ•๐‘ค2๐œ•๐‘ฅ

) + (๐œ•๐‘ข2๐œ•๐‘ก

๐œ•๐‘ค0๐œ•๐‘ฆ

+๐œ•๐‘ข1๐œ•๐‘ก

๐œ•๐‘ค1๐œ•๐‘ฆ

+๐œ•๐‘ข0๐œ•๐‘ก

๐œ•๐‘ค2๐œ•๐‘ฆ

)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘ก โˆ’

๐‘ก3

3!}} = ๐•‹โˆ’1 {

1

๐‘ฃ2โˆ’1

๐‘ฃ4} =

๐‘ก2

2!โˆ’๐‘ก4

4!

๐‘ข4 =๐‘ก2

2!+๐‘ก3

3!โˆ’๐‘ก4

4!โˆ’๐‘ก5

5!

๐‘ค4 = 2๐‘ก โˆ’๐‘ก2

2!โˆ’๐‘ก3

2+๐‘ก4

4!+๐‘ก5

5!

๐‘ข5 = 2t +๐‘ก2

2!โˆ’2๐‘ก3

3โˆ’๐‘ก4

12+๐‘ก5

60+๐‘ก6

6!

๐‘ค5 = โˆ’๐‘ก2

2!+๐‘ก4

12โˆ’๐‘ก6

6!

๐‘ข6 = โˆ’๐‘ก2

2!โˆ’๐‘ก3

3!+๐‘ก4

12+๐‘ก5

60โˆ’๐‘ก6

6!โˆ’๐‘ก7

7!

Page 77: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

63

๐‘ค6 = โˆ’2๐‘ก +๐‘ก2

2!+5๐‘ก3

3!โˆ’๐‘ก4

12โˆ’๐‘ก5

30+๐‘ก6

6!+๐‘ก7

7!

And so on. Therefore

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ฅ + ๐‘ฆ โˆ’ 1 + 2๐‘ก +๐‘ก2

2!โˆ’๐‘ก2

2!โˆ’๐‘ก3

3!โˆ’ 2๐‘ก โˆ’โˆž

๐‘›=0

๐‘ก2

2!+๐‘ก3

3!+๐‘ก4

4!+โ‹ฏ = ๐‘ฅ + ๐‘ฆ + ๐‘ก โˆ’ 1

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘ ๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ฅ โˆ’ ๐‘ฆ + 1 โˆ’๐‘ก2

2!โˆ’ 2๐‘ก +

๐‘ก2

2!+

๐‘ก3

3!+๐‘ก2

2!โˆ’๐‘ก4

4!+โˆž

๐‘›=0

2๐‘ก โˆ’๐‘ก2

2!โˆ’๐‘ก3

2+๐‘ก4

4!+๐‘ก5

5!+โ‹ฏ = ๐‘ฅ โˆ’ ๐‘ฆ โˆ’ ๐‘ก + 1

This is the exact solution.

Example 3.5 [22]

Consider the following 2D, nonlinear system of Burgers' equations

๐œ•๐‘ข

๐œ•๐‘ก+ ๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆ=

1

๐‘…(๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2), (3.11)

๐œ•๐‘ค

๐œ•๐‘ก+ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆ= (

๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2),

Subject to the ICs:

๐‘ข(๐‘ฅ, ๐‘ฆ, 0) = ๐‘ฅ + ๐‘ฆ , ๐‘ค(๐‘ฅ, ๐‘ฆ, 0) = ๐‘ฅ โˆ’ ๐‘ฆ ; (๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆˆ ๐‘…2 ร— [0 ,1

โˆš2).

To solve equation (3.11) by using NTHPM, we construct the following

homotopy

Page 78: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

64

๐ป(๐‘ข, ๐‘) = (1 โˆ’ ๐‘) (๐œ•๐‘ข

๐œ•๐‘กโˆ’๐œ•๐‘ข0

๐œ•๐‘ก) + ๐‘ (

๐œ•๐‘ข

๐œ•๐‘ก+ ๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+ ๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2)) = 0

๐ป(๐‘ค, ๐‘) = (1 โˆ’ ๐‘) (๐œ•๐‘ค

๐œ•๐‘กโˆ’๐œ•๐‘ค0

๐œ•๐‘ก) + ๐‘(

๐œ•๐‘ค

๐œ•๐‘ก+ ๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+ ๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2)) = 0

Or equivalent:

๐œ•๐‘ข

๐œ•๐‘ก=

๐œ•๐‘ข0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2) +

๐œ•๐‘ข0

๐œ•๐‘ก)

๐œ•๐‘ค

๐œ•๐‘ก=

๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2) +

๐œ•๐‘ค0

๐œ•๐‘ก)

Applying NT on both sides of above system, to get:

๐•‹ {๐œ•๐‘ข

๐œ•๐‘ก} = ๐•‹{

๐œ•๐‘ข0๐œ•๐‘ก

โˆ’ ๐‘ (๐‘ข๐œ•๐‘ข

๐œ•๐‘ฅ+ ๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆโˆ’1

๐‘…(๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2) +

๐œ•๐‘ข0๐œ•๐‘ก)}

๐•‹ {๐œ•๐‘ค

๐œ•๐‘ก} = ๐•‹ {

๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2) +

๐œ•๐‘ค0

๐œ•๐‘ก)}

Now by using the differentiation property of NT we obtain:

๐‘ฃ๐•‹{๐‘ข} = ๐‘ฃ๐‘ข(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹ {๐œ•๐‘ข0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2) +

๐œ•๐‘ข0

๐œ•๐‘ก)}

๐‘ฃ๐•‹{๐‘ค} = ๐‘ฃ๐‘ค(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹ {๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+ ๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆโˆ’

1

๐‘…(๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2) +

๐œ•๐‘ค0

๐œ•๐‘ก)}

By applying inverse of NT we have:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{

๐œ•๐‘ข0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅ+ ๐‘ค

๐œ•๐‘ข

๐œ•๐‘ฆโˆ’ (

๐œ•2๐‘ข

๐œ•๐‘ฅ2+๐œ•2๐‘ข

๐œ•๐‘ฆ2) +

๐œ•๐‘ข0

๐œ•๐‘ก)}}

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ค(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{

๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ (๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ+๐‘ค

๐œ•๐‘ค

๐œ•๐‘ฆโˆ’ (

๐œ•2๐‘ค

๐œ•๐‘ฅ2+๐œ•2๐‘ค

๐œ•๐‘ฆ2) +

๐œ•๐‘ค0

๐œ•๐‘ก)}} (3.12)

Page 79: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

65

Suppose the series solution has the form:

๐‘ข = ๐‘ข0 + ๐‘๐‘ข1 + ๐‘2๐‘ข2 +โ‹ฏ

๐‘ค = ๐‘ค0 + ๐‘๐‘ค1 + ๐‘2๐‘ค2 +โ‹ฏ (3.13)

Substituting the system (3.12) into the system (3.13) and comparing

coefficients of the terms with the identical powers of p, this lead to

๐‘0 = {๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{

๐œ•๐‘ข0

๐œ•๐‘ก}}

๐‘ค0(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ค(๐‘ฅ, ๐‘ฆ, 0) + ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {

๐œ•๐‘ค0

๐œ•๐‘ก}}

๐‘1 =

{

๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {โˆ’

๐œ•๐‘ข0

๐œ•๐‘กโˆ’ ๐‘ข0

๐œ•๐‘ข0

๐œ•๐‘ฅโˆ’ ๐‘ฃ0

๐œ•๐‘ข0

๐œ•๐‘ฆ+ (

๐œ•2๐‘ข0

๐œ•๐‘ฅ2+๐œ•2๐‘ข0

๐œ•๐‘ฆ2)}}

๐‘ค1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {โˆ’

๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ข0

๐œ•๐‘ค0

๐œ•๐‘ฅโˆ’ ๐‘ค0

๐œ•๐‘ค0

๐œ•๐‘ฆ+ (

๐œ•2๐‘ค0

๐œ•๐‘ฅ2+๐œ•2๐‘ค0

๐œ•๐‘ฆ2)}}

๐‘2 =

{

๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {โˆ’๐‘ข0

๐œ•๐‘ข1๐œ•๐‘ฅ

โˆ’ ๐‘ข1๐œ•๐‘ข0๐œ•๐‘ฅ

โˆ’ ๐‘ค0๐œ•๐‘ข1๐œ•๐‘ฆ

โˆ’ ๐‘ฃ1๐œ•๐‘ข0๐œ•๐‘ฆ

+ (๐œ•2๐‘ข1๐œ•๐‘ฅ2

+๐œ•2๐‘ข1๐œ•๐‘ฆ2

)}}

๐‘ค2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {โˆ’๐‘ข0

๐œ•๐‘ค1๐œ•๐‘ฅ

โˆ’ ๐‘ข1๐œ•๐‘ค0๐œ•๐‘ฅ

โˆ’ ๐‘ค0๐œ•๐‘ค1๐œ•๐‘ฆ

โˆ’ ๐‘ค1๐œ•๐‘ค0๐œ•๐‘ฆ

+ (๐œ•2๐‘ค1๐œ•๐‘ฅ2

+๐œ•2๐‘ค1๐œ•๐‘ฆ2

)}}

And so on, we have

๐‘๐‘— =

{

๐‘ข๐‘—(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹

โˆ’1 {1

๐‘ฃ๐•‹{โˆ‘(โˆ’๐‘ข๐‘˜

๐œ•๐‘ข๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฅโˆ’ ๐‘ค๐‘˜

๐œ•๐‘ข๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฆ)

๐‘—โˆ’1

๐‘˜=0

+ (๐œ•2๐‘ข๐‘—โˆ’1

๐œ•๐‘ฅ2+๐œ•2๐‘ข๐‘—โˆ’1

๐œ•๐‘ฆ2)}} , ๐‘— = 1,2, โ€ฆ

๐‘ค๐‘—(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ‘(โˆ’๐‘ข๐‘˜

๐œ•๐‘ค๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฅโˆ’ ๐‘ค๐‘˜

๐œ•๐‘ค๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฆ)

๐‘—โˆ’1

๐‘˜=0

+ (๐œ•2๐‘ค๐‘—โˆ’1

๐œ•๐‘ฅ2+๐œ•2๐‘ค๐‘—โˆ’1

๐œ•๐‘ฆ2)}} , ๐‘— = 1,2, โ€ฆ

From above system, we obtain the following recurrent relations:

Page 80: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

66

๐‘ข๐‘—(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ‘(โˆ’๐‘ข๐‘˜

๐œ•๐‘ข๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฅโˆ’ ๐‘ค๐‘˜

๐œ•๐‘ข๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฆ)

๐‘—โˆ’1

๐‘˜=0

+ (๐œ•2๐‘ข๐‘—โˆ’1

๐œ•๐‘ฅ2+๐œ•2๐‘ข๐‘—โˆ’1

๐œ•๐‘ฆ2)}}

๐‘ค๐‘—(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ‘(โˆ’๐‘ข๐‘˜

๐œ•๐‘ค๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฅโˆ’ ๐‘ค๐‘˜

๐œ•๐‘ค๐‘—โˆ’๐‘˜โˆ’1

๐œ•๐‘ฆ)

๐‘—โˆ’1

๐‘˜=0

+ (๐œ•2๐‘ค๐‘—โˆ’1

๐œ•๐‘ฅ2+๐œ•2๐‘ค๐‘—โˆ’1

๐œ•๐‘ฆ2)}}

Starting with

๐‘ข0 = ๐‘ฅ + ๐‘ฆ , ๐‘ค0 = ๐‘ฅ โˆ’ ๐‘ฆ

Then we get the following results:

๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’

๐œ•๐‘ข0

๐œ•๐‘กโˆ’ ๐‘ข0

๐œ•๐‘ข0

๐œ•๐‘ฅโˆ’ ๐‘ค0

๐œ•๐‘ข0

๐œ•๐‘ฆ+ (

๐œ•2๐‘ข0

๐œ•๐‘ฅ2+๐œ•2๐‘ข0

๐œ•๐‘ฆ2)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{0 โˆ’ (๐‘ฅ + ๐‘ฆ)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(1) + 0}} = ๐•‹โˆ’1 {โˆ’

2๐‘ฅ

๐‘ฃ} = โˆ’2๐‘ฅ๐‘ก

๐‘ค1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {โˆ’

๐œ•๐‘ค0

๐œ•๐‘กโˆ’ ๐‘ข0

๐œ•๐‘ค0

๐œ•๐‘ฅโˆ’๐‘ค0

๐œ•๐‘ค0

๐œ•๐‘ฆ+ (

๐œ•2๐‘ค0

๐œ•๐‘ฅ2+๐œ•2๐‘ค0

๐œ•๐‘ฆ2)}}

๐‘ค1 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{0 โˆ’ (๐‘ฅ + ๐‘ฆ)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(โˆ’1) + 0}} = ๐•‹โˆ’1 {โˆ’

2๐‘ฆ

๐‘ฃ} = โˆ’2๐‘ฆ๐‘ก

๐‘ข2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’๐‘ข0

๐œ•๐‘ข1

๐œ•๐‘ฅโˆ’ ๐‘ข1

๐œ•๐‘ข0

๐œ•๐‘ฅโˆ’ ๐‘ค0

๐œ•๐‘ข1

๐œ•๐‘ฆโˆ’ ๐‘ค1

๐œ•๐‘ข0

๐œ•๐‘ฆ+ (

๐œ•2๐‘ข1

๐œ•๐‘ฅ2+๐œ•2๐‘ข1

๐œ•๐‘ฆ2)}}

๐‘ข2 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(โˆ’2๐‘ก) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(0) โˆ’ (โˆ’2๐‘ฆ๐‘ก)(1) + 0}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{2๐‘ฅ๐‘ก + 2๐‘ฆ๐‘ก + 2๐‘ฅ๐‘ก + 2๐‘ฆ๐‘ก}} = ๐•‹โˆ’1 {

4๐‘ฅ

๐‘ฃ2+4๐‘ฆ

๐‘ฃ2}

= 2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2

Page 81: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

67

๐‘ค2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’๐‘ข0

๐œ•๐‘ค1๐œ•๐‘ฅ

โˆ’ ๐‘ข1๐œ•๐‘ค0๐œ•๐‘ฅ

โˆ’ ๐‘ค0๐œ•๐‘ค1๐œ•๐‘ฆ

โˆ’ ๐‘ค1๐œ•๐‘ค0๐œ•๐‘ฆ

+ (๐œ•2๐‘ค1๐œ•๐‘ฅ2

+๐œ•2๐‘ค1๐œ•๐‘ฆ2

)}}

๐‘ค2 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(0) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(โˆ’2๐‘ก) โˆ’ (โˆ’2๐‘ฆ๐‘ก)(โˆ’1) + 0}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{2๐‘ฅ๐‘ก + 2๐‘ฅ๐‘ก โˆ’ 2๐‘ฆ๐‘ก โˆ’ 2๐‘ฆ๐‘ก}} = ๐•‹โˆ’1 {

4๐‘ฅ

๐‘ฃ2โˆ’4๐‘ฆ

๐‘ฃ2}

= 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2

๐‘ข3 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(2๐‘ก2) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(โˆ’2๐‘ก) โˆ’ (2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(2๐‘ก2)

โˆ’ (โˆ’2๐‘ฆ๐‘ก)(0) โˆ’ (2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2)(1) + 0}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 โˆ’ 4๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’12๐‘ฅ๐‘ก2}} = ๐•‹โˆ’1 {

โˆ’24๐‘ฅ

๐‘ฃ3} = โˆ’4๐‘ฅ๐‘ก3

๐‘ค3 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(2๐‘ก2) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(0) โˆ’ (2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(โˆ’2๐‘ก2)

โˆ’ (โˆ’2๐‘ฆ๐‘ก)(โˆ’2๐‘ก) โˆ’ (2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2)(โˆ’1) + 0}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 + 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 โˆ’ 4๐‘ฆ๐‘ก2 + 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’12๐‘ฆ๐‘ก2}} = ๐•‹โˆ’1 {

โˆ’24๐‘ฆ

๐‘ฃ3} = โˆ’4๐‘ฆ๐‘ก3

Page 82: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

68

๐‘ข4 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(โˆ’4๐‘ก3) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(2๐‘ก2) โˆ’ (2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2)(โˆ’2๐‘ก) โˆ’

(โˆ’4๐‘ฅ๐‘ก3)(1) โˆ’ (๐‘ฅ โˆ’ ๐‘ฆ)(0) โˆ’ (โˆ’2๐‘ฆ๐‘ก)(2๐‘ก2) โˆ’ (2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2)(0) โˆ’ (โˆ’2๐‘ฆ๐‘ก3)(1)}} =

๐•‹โˆ’1 {1

๐‘ฃ๐•‹{4๐‘ฅ๐‘ก3 + 4๐‘ฆ๐‘ก3 + 4๐‘ฅ๐‘ก3 + 4๐‘ฅ๐‘ก3 + 4๐‘ฆ๐‘ก3 + 4๐‘ฅ๐‘ก3 + 4๐‘ฆ๐‘ก3 + 4๐‘ฆ๐‘ก3}} =

๐•‹โˆ’1 {1

๐‘ฃ๐•‹{16๐‘ฅ๐‘ก3 + 16๐‘ฆ๐‘ก3}} = ๐•‹โˆ’1 {

96๐‘ฅ

๐‘ฃ4+96๐‘ฆ

๐‘ฃ4} = 4๐‘ฅ๐‘ก4 + 4๐‘ฆ๐‘ก4

๐‘ค4 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’(๐‘ฅ + ๐‘ฆ)(0) โˆ’ (โˆ’2๐‘ฅ๐‘ก)(2๐‘ก2) โˆ’ (2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2)(0) โˆ’ (โˆ’4๐‘ฅ๐‘ก3)(1) โˆ’

(๐‘ฅ โˆ’ ๐‘ฆ)(โˆ’4๐‘ก3) โˆ’ (โˆ’2๐‘ฆ๐‘ก)(โˆ’2๐‘ก2) โˆ’ (2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2)(โˆ’2๐‘ก) โˆ’ (โˆ’4๐‘ฆ๐‘ก3)(โˆ’1)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{4๐‘ฅ๐‘ก3 + 4๐‘ฅ๐‘ก3 + 4๐‘ฅ๐‘ก3 โˆ’ 4๐‘ฆ๐‘ก3 โˆ’ 4๐‘ฆ๐‘ก3 + 4๐‘ฅ๐‘ก3 โˆ’ 4๐‘ฆ๐‘ก3 โˆ’ 4๐‘ฆ๐‘ก3}} =

๐•‹โˆ’1 {1

๐‘ฃ๐•‹{16๐‘ฅ๐‘ก3 โˆ’ 16๐‘ฆ๐‘ก3}} = ๐•‹โˆ’1 {

96๐‘ฅ

๐‘ฃ4โˆ’96๐‘ฆ

๐‘ฃ4} = 4๐‘ฅ๐‘ก4 โˆ’ 4๐‘ฆ๐‘ก4

๐‘ข5 = โˆ’8๐‘ฅ๐‘ก5 , ๐‘ค5 = โˆ’8๐‘ฆ๐‘ก

5

๐‘ข6 = 8๐‘ฅ๐‘ก6 + 8๐‘ฆ๐‘ก6 , ๐‘ค6 = 8๐‘ฅ๐‘ก

6 โˆ’ 8๐‘ฆ๐‘ก6

And so on, the solution of the system (3.11) can be obtained by setting ๐‘ =

1, i.e.,

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = lim๐‘โ†’1

๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข0 + ๐‘ข1 + ๐‘ข2 + ๐‘ข3 + ๐‘ข4 + ๐‘ข5 + ๐‘ข6 +โ‹ฏ

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ฅ + ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ก + 2๐‘ฅ๐‘ก2 + 2๐‘ฆ๐‘ก2 โˆ’ 4๐‘ฅ๐‘ก3 + 4๐‘ฅ๐‘ก4 + 4๐‘ฆ๐‘ก4 โˆ’ 8๐‘ฅ๐‘ก5 + 8๐‘ฅ๐‘ก6 + 8๐‘ฆ๐‘ก6

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = (๐‘ฅ + ๐‘ฆ)(1 + 2๐‘ก2 + 4๐‘ก4 + 8๐‘ก6 +โ‹ฏ) โˆ’ 2๐‘ฅ๐‘ก(1 + 2๐‘ก2 + 4๐‘ก4 + 8๐‘ก6 +โ‹ฏ)

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) =๐‘ฅ + ๐‘ฆ

1 โˆ’ 2๐‘ก2โˆ’

2๐‘ฅ๐‘ก

1 โˆ’ 2๐‘ก2=๐‘ฅ + ๐‘ฆ โˆ’ 2๐‘ฅ๐‘ก

1 โˆ’ 2๐‘ก2

Page 83: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

69

Also by similar way, we get:

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = lim๐‘โ†’1

๐‘ฃ๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ค0 +๐‘ค1 +๐‘ค2 +๐‘ค3 +๐‘ค4 +๐‘ค5 +๐‘ค6 +โ‹ฏ

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ฅ โˆ’ ๐‘ฆ โˆ’ 2๐‘ฆ๐‘ก + 2๐‘ฅ๐‘ก2 โˆ’ 2๐‘ฆ๐‘ก2 โˆ’ 4๐‘ฆ๐‘ก3 + 4๐‘ฅ๐‘ก4 โˆ’ 4๐‘ฆ๐‘ก4 โˆ’ 8๐‘ฆ๐‘ก5 + 8๐‘ฅ๐‘ก6 โˆ’ 8๐‘ฆ๐‘ก6

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = (๐‘ฅ โˆ’ ๐‘ฆ)(1 + 2๐‘ก2 + 4๐‘ก4 + 8๐‘ก6 +โ‹ฏ) โˆ’ 2๐‘ฆ๐‘ก(1 + 2๐‘ก2 + 4๐‘ก4 + 8๐‘ก6 +โ‹ฏ)

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) =๐‘ฅ โˆ’ ๐‘ฆ

1 โˆ’ 2๐‘ก2โˆ’

2๐‘ฆ๐‘ก

1 โˆ’ 2๐‘ก2=๐‘ฅ โˆ’ ๐‘ฆ โˆ’ 2๐‘ฆ๐‘ก

1 โˆ’ 2๐‘ก2

3.5. Solving System for 3Equations Nonlinear 1D-PDEs

In this section, the procedure of NTHPM will be used to solve system

of 1D, for 3 equations nonlinear PDEs.

Firstly the system is written as follows:

๐ฟ[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘…[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘[๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)

๐ฟ[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘…[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘[๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) (3.14)

๐ฟ[๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘…[๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)] + ๐‘[๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = ๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก)

Subject to IC:

๐‘ข(๐‘ฅ, ๐‘ฆ, 0) = ๐‘“(๐‘ฅ, ๐‘ฆ)

๐‘ค(๐‘ฅ, ๐‘ฆ, 0) = ๐‘”(๐‘ฅ, ๐‘ฆ)

๐‘ง(๐‘ฅ, ๐‘ฆ, 0) = โ„Ž(๐‘ฅ, ๐‘ฆ)

Where all ๐‘ฅ, ๐‘ฆ โˆˆ ๐‘… , L is a linear differential operator (๐ฟ =๐œ•

๐œ•๐‘ก), R is a

remained of the linear operator; N is a nonlinear differential operator and

๐‘”1, ๐‘”2, ๐‘”3 is the nonhomogeneous part.

Page 84: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

70

We construct a homotopy as: u(x, p): ๐‘…๐‘›ร— [0, 1] โ†’R,

๐ป1(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, 0))] + ๐‘[๐ด(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] =

0

๐ป2(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, 0))] + ๐‘[๐ด(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก)] =

0

๐ป3(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘)[๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, 0))] + ๐‘[๐ด(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

Where ๐‘ โˆˆ [0,1] is an embedding parameter and the operator A defined as:

๐ด = ๐ฟ + ๐‘… + ๐‘.

Obviously, if p = 0, then the above system becomes

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, 0)), ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, 0)) and ๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) = ๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, 0)).

Substitute ICs in above system and rewrite it as:

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) โˆ’ ๐‘๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) + ๐‘๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) +

๐‘๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) โˆ’ ๐‘๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) + ๐‘๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) +

๐‘๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 0

๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(โ„Ž(๐‘ฅ, ๐‘ฆ)) โˆ’ ๐‘๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐ฟ(โ„Ž(๐‘ฅ, ๐‘ฆ)) + ๐‘๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) +

๐‘๐‘…(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘๐‘(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก) = 0

Then

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) + ๐‘[๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) + ๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) + ๐‘[๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) + ๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 (3.15)

Page 85: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

71

๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐ฟ(โ„Ž(๐‘ฅ, ๐‘ฆ)) + ๐‘[๐ฟ(โ„Ž(๐‘ฅ, ๐‘ฆ)) + ๐‘…(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

Since ๐‘“(๐‘ฅ, ๐‘ฆ), ๐‘”(๐‘ฅ, ๐‘ฆ) and โ„Ž(๐‘ฅ, ๐‘ฆ) are independent of the variable ๐‘ก and the

linear operator L dependent on t so, ๐ฟ(๐‘“(๐‘ฅ, ๐‘ฆ)) = 0, ๐ฟ(๐‘”(๐‘ฅ, ๐‘ฆ)) = 0, and

๐ฟ(โ„Ž(๐‘ฅ, ๐‘ฆ)) = 0; i.e., the system (3.15) becomes:

๐ฟ(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘[๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ฟ(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘[๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0

๐ฟ(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘[๐‘…(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) + ๐‘(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก)] = 0 (3.16)

According to the classical perturbation technique, the solution of the above

system can be written as a power series of embedding parameter p, as the

form

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

(3.17)

๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โˆ‘๐‘๐‘›๐‘ง๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

For most cases, the series form in (3.17) is convergent and the convergent

rate depends on the nonlinear operator.

Taking the NT (with respect to the variable t) for the system (3.16) to get:

๐•‹{๐ฟ(๐‘ข)} + ๐‘ ๐•‹{๐‘…(๐‘ข) + ๐‘(๐‘ข) โˆ’ ๐‘”} = 0

๐•‹{๐ฟ(๐‘ค)} + ๐‘ ๐•‹{๐‘…(๐‘ค) + ๐‘(๐‘ค) โˆ’ ๐‘”} = 0 (3.18)

Page 86: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

72

๐•‹{๐ฟ(๐‘ง)} + ๐‘ ๐•‹{๐‘…(๐‘ง) + ๐‘(๐‘ง) โˆ’ ๐‘”} = 0

Now by using the differentiation property of NT and IC, the above system

becomes:

๐‘ฃ๐•‹{๐‘ข} โˆ’ ๐‘ฃ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹{๐‘…(๐‘ข) + ๐‘(๐‘ข) โˆ’ ๐‘”1} = 0

๐‘ฃ๐•‹{๐‘ค} โˆ’ ๐‘ฃ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹{๐‘…(๐‘ค) + ๐‘(๐‘ค) โˆ’ ๐‘”2} = 0

๐‘ฃ๐•‹{๐‘ง} โˆ’ ๐‘ฃโ„Ž(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹{๐‘…(๐‘ง) + ๐‘(๐‘ง) โˆ’ ๐‘”3} = 0

Hence:

๐•‹{๐‘ข} = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘1

๐‘ฃ๐•‹{๐‘”1 โˆ’ ๐‘…(๐‘ข) โˆ’ ๐‘(๐‘ข)}

๐•‹{๐‘ค} = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘1

๐‘ฃ๐•‹{๐‘”2 โˆ’ ๐‘…(๐‘ค) โˆ’ ๐‘(๐‘ค)}

๐•‹{๐‘ง} = โ„Ž(๐‘ฅ, ๐‘ฆ) + ๐‘1

๐‘ฃ๐•‹{๐‘”3 โˆ’ ๐‘…(๐‘ง) โˆ’ ๐‘(๐‘ง)}

By taking the inverse of new transform on both sides of the above system,

to get:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘(๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก))}}

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’

๐‘(๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก))}} (3.19)

๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก) = โ„Ž(๐‘ฅ, ๐‘ฆ) + ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก)) โˆ’ ๐‘(๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก))}}

Then, substitute system (3.17) in the system (3.19) to get:

โˆ‘๐‘๐‘›๐‘ข๐‘› =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘(โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

)}}

โˆ‘๐‘๐‘›๐‘ค๐‘› =

โˆž

๐‘›=0

๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘(โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

)}} (3.20)

Page 87: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

73

โˆ‘๐‘๐‘›๐‘ง๐‘› =

โˆž

๐‘›=0

โ„Ž(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ง๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘ (โˆ‘๐‘๐‘›๐‘ง๐‘›

โˆž

๐‘›=0

)}}

The nonlinear part can be decomposed, as will be explained later, by

substituting system (3.17) in it as:

๐‘(๐‘ข) = ๐‘(โˆ‘๐‘๐‘›๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

๐‘(๐‘ค) = ๐‘(โˆ‘๐‘๐‘›๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘๐‘๐‘›๐พ๐‘›

โˆž

๐‘›=0

๐‘(๐‘ง) = ๐‘(โˆ‘๐‘๐‘›๐‘ง๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘๐‘๐‘›๐ฝ๐‘›

โˆž

๐‘›=0

Then the system (3.20) becomes:

โˆ‘๐‘๐‘›๐‘ข๐‘› =

โˆž

๐‘›=0

๐‘“(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ข๐‘›

โˆž

๐‘›=0

) โˆ’โˆ‘๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

}}

โˆ‘๐‘๐‘›๐‘ค๐‘› =

โˆž

๐‘›=0

๐‘”(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ค๐‘›

โˆž

๐‘›=0

) โˆ’โˆ‘๐‘๐‘›๐พ๐‘›

โˆž

๐‘›=0

}} (3.21)

โˆ‘๐‘๐‘›๐‘ง๐‘› =

โˆž

๐‘›=0

โ„Ž(๐‘ฅ, ๐‘ฆ) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘… (โˆ‘๐‘๐‘›๐‘ง๐‘›

โˆž

๐‘›=0

) โˆ’โˆ‘๐‘๐‘›๐ฝ๐‘›

โˆž

๐‘›=0

}}

By comparing the coefficient with the same power of p, in both sides of the

system (3.21) we have:

๐‘ข0 = ๐‘“(๐‘ฅ, ๐‘ฆ), ๐‘ค0 = ๐‘”(๐‘ฅ, ๐‘ฆ), ๐‘ง0 = โ„Ž(๐‘ฅ, ๐‘ฆ)

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘”1(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ข0) โˆ’ ๐ป0}},

Page 88: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

74

๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘”2(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ค0) โˆ’ ๐พ0}}

๐‘ง1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘”3(๐‘ฅ, ๐‘ฆ, ๐‘ก) โˆ’ ๐‘…(๐‘ง0) โˆ’ ๐ฝ0}}

๐‘ข2 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข1) + ๐ป1}},

๐‘ค2 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ค1) + ๐พ1}}

๐‘ง2 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ง1) + ๐ฝ1}}

๐‘ข3 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข2) + ๐ป2}},

๐‘ค3 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ค2) + ๐พ2}}

๐‘ง3 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ง2) + ๐ฝ2}}

And so on, therefor

๐‘ข๐‘›+1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ข๐‘›) + ๐ป๐‘›}}

๐‘ค๐‘›+1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ค๐‘›) + ๐พ๐‘›}}

๐‘ง๐‘›+1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{๐‘…(๐‘ง๐‘›) + ๐ฝ๐‘›}}

According to the series solution in system (3.17), when at p=1, we can get:

๐‘ข(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ข0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ข1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ = โˆ‘๐‘ข๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

Page 89: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

75

๐‘ค(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ค0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ค1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ =โˆ‘๐‘ค๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

๐‘ง(๐‘ฅ, ๐‘ฆ, ๐‘ก) = ๐‘ง0(๐‘ฅ, ๐‘ฆ, ๐‘ก) + ๐‘ง1(๐‘ฅ, ๐‘ฆ, ๐‘ก) + โ‹ฏ = โˆ‘๐‘ง๐‘›(๐‘ฅ, ๐‘ฆ, ๐‘ก)

โˆž

๐‘›=0

Example 3.6 [7]

Consider the following nonlinear system of inhomogeneous PDEs.

๐œ•๐‘ข

๐œ•๐‘กโˆ’๐œ•๐‘ง

๐œ•๐‘ฅ

๐œ•๐‘ค

๐œ•๐‘กโˆ’1

2

๐œ•๐‘ง

๐œ•๐‘ก

๐œ•2๐‘ข

๐œ•๐‘ฅ2= โˆ’4๐‘ฅ๐‘ก

๐œ•๐‘ค

๐œ•๐‘กโˆ’๐œ•๐‘ง

๐œ•๐‘ก

๐œ•2๐‘ข

๐œ•๐‘ฅ2= 6๐‘ก

๐œ•๐‘ง

๐œ•๐‘กโˆ’๐œ•2๐‘ข

๐œ•๐‘ฅ2โˆ’๐œ•๐‘ค

๐œ•๐‘ฅ

๐œ•๐‘ง

๐œ•๐‘ก= 4๐‘ฅ๐‘ก โˆ’ 2๐‘ก โˆ’ 2

Subject to the ICs:

๐‘ข(๐‘ฅ, 0) = ๐‘ฅ2 + 1 , ๐‘ค(๐‘ฅ, 0) = ๐‘ฅ2 โˆ’ 1 , ๐‘ง(๐‘ฅ, 0) = ๐‘ฅ2 โˆ’ 1

๐‘ข0(๐‘ฅ, 0) = ๐‘ฅ2 + 1 , ๐‘ค0(๐‘ฅ, 0) = ๐‘ฅ

2 โˆ’ 1 , ๐‘ง0(๐‘ฅ, 0) = ๐‘ฅ2 โˆ’ 1

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐œ•๐‘ง0๐œ•๐‘ฅ

๐œ•๐‘ค0๐œ•๐‘ก

+1

2

๐œ•๐‘ง0๐œ•๐‘ก

๐œ•2๐‘ข0๐œ•๐‘ฅ2

โˆ’ 4๐‘ฅ๐‘ก}} = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’4๐‘ฅ๐‘ก}}

= ๐•‹โˆ’1 {โˆ’4๐‘ฅ

๐‘ฃ2} = โˆ’2๐‘ฅ๐‘ก2

๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(

๐œ•๐‘ง0๐œ•๐‘ก

๐œ•2๐‘ข0๐œ•๐‘ฅ2

+ 6t)}} = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{6๐‘ก}} = ๐•‹โˆ’1 {

6

๐‘ฃ2} = 3๐‘ก2

Page 90: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

76

๐‘ง1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{(

๐œ•2๐‘ข0๐œ•๐‘ฅ2

+๐œ•๐‘ค0๐œ•๐‘ฅ

๐œ•๐‘ง0๐œ•๐‘ก

+ 4๐‘ฅ๐‘ก โˆ’ 2๐‘ก โˆ’ 2)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{4๐‘ฅ๐‘ก โˆ’ 2๐‘ก}} = ๐•‹โˆ’1 {

4๐‘ฅ

๐‘ฃ2โˆ’2

๐‘ฃ2} = 2๐‘ฅ๐‘ก2 โˆ’ ๐‘ก2

๐‘ข2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{(

๐œ•๐‘ง1๐œ•๐‘ฅ

๐œ•๐‘ค0๐œ•๐‘ก

+๐œ•๐‘ง0๐œ•๐‘ฅ

๐œ•๐‘ค1๐œ•๐‘ก) +

1

2(๐œ•๐‘ง1๐œ•๐‘ก

๐œ•2๐‘ข0๐œ•๐‘ฅ2

+๐œ•๐‘ง0๐œ•๐‘ก

๐œ•2๐‘ข1๐œ•๐‘ฅ2

)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{16๐‘ฅ๐‘ก โˆ’ 2๐‘ก}} = ๐•‹โˆ’1 {

16๐‘ฅ

๐‘ฃ2โˆ’2

๐‘ฃ2} = 8๐‘ฅ๐‘ก2 โˆ’ ๐‘ก2

๐‘ค2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {๐œ•๐‘ง1๐œ•๐‘ก

๐œ•2๐‘ข0๐œ•๐‘ฅ2

+๐œ•๐‘ง0๐œ•๐‘ก

๐œ•2๐‘ข1๐œ•๐‘ฅ2

}} = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{8๐‘ฅ๐‘ก โˆ’ 4๐‘ก}}

= ๐•‹โˆ’1 {8๐‘ฅ

๐‘ฃ2โˆ’4

๐‘ฃ2} = 4๐‘ฅ๐‘ก2 โˆ’ 2๐‘ก2

๐‘ง2 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(

๐œ•2๐‘ข1๐œ•๐‘ฅ2

+ (๐œ•๐‘ค1๐œ•๐‘ฅ

๐œ•๐‘ง0๐œ•๐‘ก

+๐œ•๐‘ค0๐œ•๐‘ฅ

๐œ•๐‘ง1๐œ•๐‘ก)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{8๐‘ฅ2๐‘ก โˆ’ 4๐‘ฅ๐‘ก}}

= ๐•‹โˆ’1 {8๐‘ฅ2

๐‘ฃ2โˆ’4๐‘ฅ

๐‘ฃ2} = 4๐‘ฅ2๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2

๐‘ข3 = 3๐‘ก4 โˆ’ 6๐‘ฅ๐‘ก2 + 12๐‘ฅ2๐‘ก2

๐‘ค3 = 8๐‘ฅ2๐‘ก2 โˆ’ 4๐‘ฅ๐‘ก2

๐‘ง3 = 8๐‘ฅ3๐‘ก2 โˆ’ 4๐‘ฅ2๐‘ก2

๐‘ข4 = โˆ’5๐‘ก4 + 16๐‘ฅ๐‘ก4 + 24๐‘ฅ3๐‘ก2 โˆ’ 12๐‘ฅ2๐‘ก2

Page 91: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

77

๐‘ค4 = 16๐‘ฅ3๐‘ก2 โˆ’ 8๐‘ฅ2๐‘ก2

๐‘ง4 = 8๐‘ก3 + 4๐‘ฅ๐‘ก4 โˆ’ 2๐‘ก4 + 16๐‘ฅ4๐‘ก2 โˆ’ 8๐‘ฅ3๐‘ก2

๐‘ข5 = 60๐‘ฅ2๐‘ก4 โˆ’ 10๐‘ก4 + 48๐‘ฅ4๐‘ก2 โˆ’ 24๐‘ฅ3๐‘ก2 + 8๐‘ก3

๐‘ค5 = 16๐‘ก3 + 32๐‘ฅ๐‘ก4 โˆ’ 16๐‘ก4 + 32๐‘ฅ4๐‘ก2 โˆ’ 16๐‘ฅ3๐‘ก2

๐‘ง5 = 64๐‘ฅ๐‘ก3 โˆ’ 8๐‘ก3 โˆ’ 32๐‘ฅ2๐‘ก4 โˆ’ 16๐‘ฅ๐‘ก4 + 2๐‘ก4 + 32๐‘ฅ5๐‘ก2 โˆ’ 16๐‘ฅ4๐‘ก2

And so on, thus

๐‘ข(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘ข๐‘›(๐‘ฅ, ๐‘ก) = ๐‘ฅ2 + 1 โˆ’ 2๐‘ฅ๐‘ก2 + 8๐‘ฅ๐‘ก2 โˆ’ ๐‘ก2 + 3๐‘ก4 โˆ’ 6๐‘ฅ๐‘ก2 +โˆž

๐‘›=0

12๐‘ฅ2๐‘ก2 โˆ’ 5๐‘ก4 +โ‹ฏ = ๐‘ฅ2 โˆ’ ๐‘ก2 + 1

๐‘ค(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘ค๐‘›(๐‘ฅ, ๐‘ก) = ๐‘ฅ2 โˆ’ 1 + 3๐‘ก2 + 4๐‘ฅ๐‘ก2 โˆ’ 2๐‘ก2 + 8๐‘ฅ2๐‘ก2 โˆ’โˆž

๐‘›=0

4๐‘ฅ๐‘ก2 +โ‹ฏ = ๐‘ฅ2 + ๐‘ก2 โˆ’ 1

๐‘ง(๐‘ฅ, ๐‘ก) = โˆ‘ ๐‘ง๐‘›(๐‘ฅ, ๐‘ก) = ๐‘ฅ2 โˆ’ 1 + 2๐‘ฅ๐‘ก2 โˆ’ ๐‘ก2 + 4๐‘ฅ2๐‘ก2 โˆ’ 2๐‘ฅ๐‘ก2 +โˆž

๐‘›=0

8๐‘ฅ3๐‘ก2 โˆ’ 4๐‘ฅ2๐‘ก2 +โ‹ฏ = ๐‘ฅ2 โˆ’ ๐‘ก2 โˆ’ 1

Example 3.7 [3]

Consider the generalized coupled Hirota Satsuma KdV type II.

๐œ•๐‘ข

๐œ•๐‘กโˆ’1

2

๐œ•3๐‘ข

๐œ•๐‘ฅ3+ 3๐‘ข

๐œ•๐‘ข

๐œ•๐‘ฅโˆ’ 3

๐œ•

๐‘ฅ(๐‘ค๐‘ง) = 0

๐œ•๐‘ค

๐œ•๐‘ก+๐œ•3๐‘ข

๐œ•๐‘ฅ3โˆ’ 3๐‘ข

๐œ•๐‘ค

๐œ•๐‘ฅ= 0

๐œ•๐‘ง

๐œ•๐‘ก+

๐œ•3๐‘ง

๐œ•๐‘ฅ3โˆ’ 3๐‘ข

๐œ•๐‘ง

๐œ•๐‘ฅ= 0

Page 92: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

78

Subject to IC:

๐‘ข(๐‘ฅ, 0) = โˆ’1

3+ 2 tanh2(๐‘ฅ) , ๐‘ค(๐‘ฅ, 0) = tanh(๐‘ฅ) , ๐‘ง(๐‘ฅ, 0) =

8

3tanh(๐‘ฅ)

๐‘1: ๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {

1

2

๐œ•3๐‘ข0

๐œ•๐‘ฅ3โˆ’ 3๐‘ข0

๐œ•๐‘ข0

๐œ•๐‘ฅ+ 3

๐œ•

๐œ•๐‘ฅ(๐‘ค0๐‘ง0)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{(8 tanh3(๐‘ฅ )sech2( ๐‘ฅ) โˆ’ 16 tanh(๐‘ฅ) sech4( ๐‘ฅ)) + (4 tanh ( ๐‘ฅ) sech2(๐‘ฅ) โˆ’

24 tanh3(๐‘ฅ )sech2( ๐‘ฅ)) + (16 tanh(๐‘ฅ) sech2(๐‘ฅ

2))}}

๐‘ข1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’16 tanh3(๐‘ฅ) sech2( ๐‘ฅ) + 20 tanh( ๐‘ฅ) sech2( ๐‘ฅ)

โˆ’ 16 tanh(๐‘ฅ )sech4(๐‘ฅ)}}

= ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{โˆ’16 tanh(๐‘ฅ) sech2( ๐‘ฅ) + 20 tanh(๐‘ฅ )sech2(๐‘ฅ)}}

= (4 tanh(๐‘ฅ) sech2(๐‘ฅ))๐‘ก

๐‘1: ๐‘ค1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’

๐œ•3๐‘ข0

๐œ•๐‘ฅ3+ 3๐‘ข0

๐œ•๐‘ค0

๐œ•๐‘ฅ}}

= โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{(โˆ’4 tanh2(๐‘ฅ )sech2( ๐‘ฅ) + 2 sech4( ๐‘ฅ)) + (โˆ’ sech2(๐‘ฅ) +

6 tanh2(๐‘ฅ )sech2( ๐‘ฅ))}}

๐‘ค1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{2 tanh2(๐‘ฅ) sech2( ๐‘ฅ) + 2 sech4( ๐‘ฅ) โˆ’ sech2(๐‘ฅ)}}

Page 93: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

79

= โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{2 sech2( ๐‘ฅ) โˆ’ sech2(๐‘ฅ)}} = (sech2(๐‘ฅ))๐‘ก

๐‘1: ๐‘ง1 = ๐•‹โˆ’1 {

1

๐‘ฃ๐•‹{โˆ’

๐œ•3๐‘ง0

๐œ•๐‘ฅ3+ 3๐‘ข0

๐œ•๐‘ง0

๐œ•๐‘ฅ}}

๐‘ง1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {(โˆ’

32

3tanh2(๐‘ฅ )sech2( ๐‘ฅ) +

16

3sech4( ๐‘ฅ)) +

(โˆ’8

9sech2(๐‘ฅ) +

16

3tanh2(๐‘ฅ )sech2( ๐‘ฅ))}}

๐‘ง1 = โˆ’๐•‹โˆ’1 {

1

๐‘ฃ๐•‹ {16

3tanh2(๐‘ฅ) sech2( ๐‘ฅ) +

16

3sech4( ๐‘ฅ) โˆ’

8

3sech2(๐‘ฅ)}}

= โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{

16

3sech2( ๐‘ฅ) โˆ’

8

3sech2(๐‘ฅ)}} = (

8

3sech2(๐‘ฅ)) ๐‘ก

And so on, so

๐‘ข = โˆ’1

3+ 2 tanh2(๐‘ฅ) + (4 tanh(๐‘ฅ) sech2(๐‘ฅ))๐‘ก + โ€ฆโ€ฆโ€ฆ

๐‘ค = tanh(๐‘ฅ) + (sech2(๐‘ฅ))๐‘ก + โ€ฆโ€ฆโ€ฆ

๐‘ง =8

3tanh(๐‘ฅ) + (

8

3sech2(๐‘ฅ)) ๐‘ก + โ€ฆโ€ฆโ€ฆ

The above series closed to exact solution as

๐‘ข = โˆ’ tanh(๐‘ก + ๐‘ฅ) , ๐‘ค = โˆ’1

6โˆ’1

2tanh2(๐‘ก + ๐‘ฅ) , ๐‘ง =

8

3tanh(๐‘ก + ๐‘ฅ)

Page 94: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

80

3.6. Convergence for the Series Solution

In this section the convergence of NTHPM for systems of nonlinear

PDEs is presented. The sufficient condition for convergence of the

method is addressed. Since mathematical modeling of numerous

scientific and engineering experiments lead to system of equations, it is

worth trying new methods to solve these systems. Here we show the

series solution for systems of previous sections closed to exact solution.

Definition 3.1 [33]

A Banach space is a complete, normed, vector space.

All norms on a finite-dimensional vector space are equivalent. Every finite-

dimensional normed space over R or C is a Banach space [50].

Definition 3.2 [34]

Let X is a set and let ๐‘“: ๐‘‹ โ†’ ๐‘‹ be a function that maps X into itself. Such

a function is often called an operator. A fixed point of ๐‘“ is an element x โˆˆ

X, for which f(x) = x .

Definition 3.3 [34]

Let (๐‘‹, ๐‘‘) be a metric space. A mapping ๐‘‡ โˆถ ๐‘‹ โ†’ ๐‘‹ is a contraction

mapping, or contraction, if there exists a constant ๐‘, with 0 โ‰ค ๐‘ < 1, such

that ๐‘‘(๐‘‡(๐‘ฅ), ๐‘‡(๐‘ฆ)) โ‰ค ๐‘๐‘‘(๐‘ฅ, ๐‘ฆ), ๐‘ฅ , ๐‘ฆ โˆˆ ๐‘‹ .

Page 95: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

81

Theorem 3.1 [46]

A contractive function ๐‘‡ on a Banach space ๐‘† has a unique fixed point

๐‘ฅโˆ— in R2. see [46]

Theorem 3.2 (Sufficient Condition of Convergence)

If X and Y are Banach spaces and ๐‘ โˆถ ๐‘‹ โ†’ ๐‘Œ is a contractive nonlinear

mapping, that is

โˆ€ ๐‘ค , ๐‘คโˆ— โˆˆ ๐‘‹ ; โ€–๐‘(๐‘ค) โˆ’ ๐‘(๐‘คโˆ—)โ€– โ‰ค ๐›พโ€–๐‘ค โˆ’ ๐‘คโˆ—โ€– , 0 < ๐›พ < 1 .

Then according to Banach's fixed-point theorem, N has a unique fixed-

point u, that is ๐‘(๐‘ข) = ๐‘ข .

Assume that the sequence generated by NTHPM can be written as:

๐‘ค๐‘› = ๐‘(๐‘ค๐‘›โˆ’1), ๐‘ค๐‘›โˆ’1 = โˆ‘๐‘ค๐‘–

๐‘›โˆ’1

๐‘–=0

, ๐‘› = 1,2,3,โ€ฆโ€ฆ

And suppose that ๐‘Š0 = ๐‘ค0 โˆˆ ๐ต๐‘Ÿ(๐‘ค) ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ ๐ต๐‘Ÿ(๐‘ค) = {๐‘คโˆ— โˆˆ ๐‘‹| โ€–๐‘คโˆ— โˆ’

๐‘คโ€– < ๐‘Ÿ}, then we have

i. ๐‘ค๐‘› โˆˆ ๐ต๐‘Ÿ(๐‘ค),

ii. lim๐‘›โ†’โˆž

๐‘Š๐‘› = ๐‘ค

Proof

(i) By inductive approach, for ๐‘› = 1, we have

โ€–๐‘Š1 โˆ’๐‘คโ€– = โ€–๐‘(๐‘Š0) โˆ’ ๐‘(๐‘ค)โ€– โ‰ค ๐›พโ€–๐‘ค0 โˆ’๐‘คโ€–

Page 96: Efficient Method for Solving Some Types of Partial

MTHPSolving System of PDEs by N Chapter Three

82

Assume that โ€–๐‘Š๐‘›โˆ’1 โˆ’๐‘คโ€– โ‰ค ๐›พโ€–๐‘ค๐‘›โˆ’1 โˆ’๐‘คโ€–

โ‰ค ๐›พ2โ€–๐‘ค๐‘›โˆ’2 โˆ’๐‘คโ€–

โ‰ค ๐›พ3โ€–๐‘ค๐‘›โˆ’3 โˆ’๐‘คโ€–

โ‰ค ๐›พ๐‘›โˆ’1โ€–๐‘ค0 โˆ’๐‘คโ€–

As induction hypothesis, then

โ€–๐‘Š๐‘› โˆ’๐‘คโ€– = โ€–๐‘(๐‘Š๐‘›โˆ’1) โˆ’ ๐‘(๐‘ค)โ€– โ‰ค ๐›พโ€–๐‘ค๐‘›โˆ’1 โˆ’๐‘คโ€– โ‰ค ๐›พ๐‘›โ€–๐‘ค0 โˆ’๐‘คโ€–

Using (i), we have

โ€–๐‘Š๐‘› โˆ’๐‘คโ€– โ‰ค ๐›พ๐‘›โ€–๐‘ค0 โˆ’๐‘คโ€– โ‰ค ๐›พ

๐‘›๐‘Ÿ < ๐‘Ÿ ๐‘Š๐‘› โˆˆ ๐ต๐‘Ÿ(๐‘ค)

Because of โ€–๐‘Š๐‘› โˆ’๐‘คโ€– โ‰ค ๐›พ๐‘›โ€–๐‘ค0 โˆ’๐‘คโ€– and

lim๐‘›โ†’โˆž

๐›พ๐‘› = 0, lim๐‘›โ†’โˆž

โ€–๐‘Š๐‘› โˆ’๐‘คโ€– = 0,

that is

lim๐‘›โ†’โˆž

๐‘Š๐‘› = ๐‘ค

Page 97: Efficient Method for Solving Some Types of Partial

Application Model

Page 98: Efficient Method for Solving Some Types of Partial

84

4.1. Introduction

To illustrate the importance of suggested method, we use it to solve

soil moisture equation that is equation describe rate of moisture content in

soil. The term moisture content is used in hydrogeology, soil sciences and

soil Mechanics. Here a model of moisture content is derived and used to

build up the one, two and three dimensional space 2nd order nonlinear

homogenous PDE. Then NTHPM is used to solve this equation. The

derivation of formulation model is illustrated in section 4.2. Basic idea

for suggested method that be used to solve the model equation is

introduced in section 4.3. Illustrating applicability is presented in section

4.4. While a convergence of the solution is proved in section 4.5.

4.2. Formulation Mathematical Model [22]

Moisture content is the quantity of water contained in a soil called soil

moisture. The saturated zone is one in which the space is occupied by

water. In the unsaturated zone only part of the space is occupied by water.

There is no moisture in the dry soil, so the value of moisture content is

1 when the porous medium is fully saturated by water and its value is 0 in

Chapter Four

Application Model

Page 99: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

85

the unsaturated porous medium. So, the range of moisture content is [0,

1]. The region of the unsaturated soil is called as unsaturated zone. In

typical soil profiles some distance separates the earthโ€™s surface from the

water table, which is the upper limit of completely water-saturated soil. In

this inverting zone the water saturation varies between 0 and 1 the rest of

the pore space normally being occupied by air. Water flow in this

unsaturated zone is complicated by the fact that the soilโ€™s permeability to

water depends on its water saturation. In many practical situations the

flow of water through soil is unsteady because the moisture content

changes as a function of time and it is slightly saturated because all the

spaces are not completely filed with flowing liquid.

In the formulation model, we assume that the diffusivity coefficient

will be small enough constant and regarded as a perturbation parameter

because of they are equivalent to their average value over the whole range

of moisture content. Additionally, the permeability of the medium is

varied directly to the square of the moisture content.

Darcyโ€™s law gives the motion of water in the isotropic homogeneous

medium as:

๐‘‰ = โˆ’๐พ โˆ‡โˆ… (4.1)

Page 100: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

86

Where V is volume flux of moisture content, K is coefficients of aqueous

the conductivity, is a total moisture potential and โˆ‡ is the gradient,

i.e., โˆ‡ = (๐œ•

๐œ•๐‘ฅ,

๐œ•

๐œ•๐‘ฆ,

๐œ•

๐œ•๐‘ง) .

In any unsaturated porous media, continuity equation governs the motion

of water flow given as (depending on [23]):

๐œ•(๐œŒ๐‘ ๐œƒ)

๐œ•๐‘ก= โˆ’โˆ‡. ๐‘€ (4.2)

where S : bulk density for medium on dry weight basis, : the moisture

content in any position (x, y, z) on a dry weight basis, and M : mass of

flux for moisture in any t โ‰ฅ 0.

From (4.1) and (4.2) we get:

๐œ•(๐œŒ๐‘ ๐œƒ)

๐œ•๐‘ก= โˆ’โˆ‡. ๐‘€ = โˆ’โˆ‡. (๐œŒ. ๐‘‰) = ๐›ป. (๐œŒ. ๐พ. โˆ‡๐œ™) (4.3)

Where indicate the flux density of the medium.

Now, depending on [21] we have ๐œ™ = ๐œ“ โˆ’ ๐‘”๐‘ง . Hence,

๐œ•(๐œŒ๐‘ ๐œƒ)

๐œ•๐‘ก= ๐›ป. (๐œŒ. ๐พ. โˆ‡(๐œ“ โˆ’ ๐‘”๐‘ง)) (4.4)

Where indicates the pressure (capillary) potential, g is the gravitation

constant, z is an elevation of the unit of mass for water above a consistent

datum (which is the level of saturation) and the positive direction of the

z-axis is the same as that of gravity. We find

Page 101: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

87

๐œŒ๐‘ ๐œ•๐œƒ

๐œ•๐‘ก= ๐›ป. (๐œŒ. ๐พ. โˆ‡๐œ“) โˆ’ ๐›ป. (๐œŒ. ๐พ. ๐›ป(๐‘”๐‘ง)) (4.5)

Since โˆ‡(๐‘”๐‘ง) = (๐œ•(๐‘”๐‘ง)

๐œ•๐‘ฅ,

๐œ•(๐‘”๐‘ง)

๐œ•๐‘ฆ,

๐œ•(๐‘”๐‘ง)

๐œ•๐‘ง) = (0,0, ๐‘”) and divided both sides of

equation (4.5) by S, we get:

๐œ•๐œƒ

๐œ•๐‘ก= ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ. โˆ‡๐œ“) โˆ’ ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ. (0,0, ๐‘”)) (4.6)

Consider and are single valued function, so equation (4.6) can be

written as

๐œ•๐œƒ

๐œ•๐‘ก= ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ.

๐œ•๐œ“

๐œ•๐œƒโˆ‡๐œƒ) โˆ’ ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ. (0,0, ๐‘”)) (4.7)

According to [21], we have ๐ท =๐œŒ

๐œŒ๐‘ . ๐พ.

๐œ•๐œ“

๐œ•๐œƒ is called the diffusivity

coefficient, which is constant as we assumed, so we get:

๐œ•๐œƒ

๐œ•๐‘ก= ๐›ป. (๐ท. โˆ‡๐œƒ) โˆ’ ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ. (0,0, ๐‘”)) (4.8)

Let Da is the average value of D over the whole range. According to [22]

we have ๐พ โˆ ๐œƒ2, i.e., ๐พ โˆ ๐พ0. ๐œƒ2,where K0 is a constant. Hence, equation

(4.8) becomes

๐œ•๐œƒ

๐œ•๐‘ก= ๐›ป. (๐ท๐‘Ž. โˆ‡๐œƒ) โˆ’ ๐›ป. (

๐œŒ

๐œŒ๐‘ . ๐พ0. ๐œƒ2. (0,0, ๐‘”)) (4.9)

So, equation (4.9) get:

Page 102: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

88

๐œ•๐œƒ

๐œ•๐‘ก+

๐œŒ

๐œŒ๐‘ 2๐‘”. ๐พ0. ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ง= ๐ท๐‘Ž(๐›ป. ๐›ป๐œƒ) (4.10)

Suppose ๐พ1 =๐œŒ

๐œŒ๐‘ . 2๐‘”. ๐พ0 and substituting it in equation (4.10) we get:

๐œ•๐œƒ

๐œ•๐‘ก+ ๐พ1. ๐œƒ.

๐œ•๐œƒ

๐œ•๐‘ง= ๐ท๐‘Ž(๐›ป. ๐›ป๐œƒ) (4.11)

Hence, the final form of the equation is

๐œ•๐œƒ

๐œ•๐‘ก+ ๐พ1. ๐œƒ.

๐œ•๐œƒ

๐œ•๐‘ง= ๐ท๐‘Ž [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2+

๐œ•2๐œƒ

๐œ•๐‘ง2] (4.12)

We can simplify equation (4.12), by supposing:

๏ฟฝ๏ฟฝ =๐‘ฅ

๐‘˜1 , ๏ฟฝ๏ฟฝ =

๐‘ฆ

๐‘˜1 , ๐‘ง =

๐‘ง

๐‘˜1 (4.13)

It is clear that:

๐œ•๐œƒ

๐œ•๐‘ฅ=

1

๐‘˜1

๐œ•๐œƒ

๐œ•๏ฟฝ๏ฟฝ ,

๐œ•๐œƒ

๐œ•๐‘ฆ=

1

๐‘˜1

๐œ•๐œƒ

๐œ•๏ฟฝ๏ฟฝ ,

๐œ•๐œƒ

๐œ•๐‘ง=

1

๐‘˜1

๐œ•๐œƒ

๐œ•๐‘ง

๐œ•2๐œƒ

๐œ•๐‘ฅ2=

1

๐‘˜12

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2 ,

๐œ•2๐œƒ

๐œ•๐‘ฆ2=

1

๐‘˜12

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2 ,

๐œ•2๐œƒ

๐œ•๐‘ง2=

1

๐‘˜12

๐œ•2๐œƒ

๐œ•๐‘ง2

(4.14)

Substituting equation (4.14) into equation (4.12), we get:

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ง=

๐ท๐‘Ž

๐‘˜12 [

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2+

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2+

๐œ•2๐œƒ

๐œ•๐‘ง2] (4.15)

Let ๐›ผ =๐ท๐‘Ž

๐‘˜12 , then equation (4.15) will be:

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ง= ๐›ผ [

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2+

๐œ•2๐œƒ

๐œ•๏ฟฝ๏ฟฝ2+

๐œ•2๐œƒ

๐œ•๐‘ง2] (4.16)

For simplification, the original symbols will be used instead of the

symbols in equation (4.16), i.e.,

Page 103: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

89

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ง= ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2+

๐œ•2๐œƒ

๐œ•๐‘ง2] (4.17)

4.3. Solving Model Equation by the NTHPM

The main purpose of this section is discuss the new implementation of

the combine NT algorithm with the HPM to solve the suggested model

equation (4.17).

To explain the NTHPM, firstly writes the nonlinear PDE (4.17) as follow:

๐ฟ[๐œƒ(๐‘‹, ๐‘ก)] + ๐‘…[๐œƒ(๐‘‹, ๐‘ก)] + ๐‘[๐œƒ(๐‘‹, ๐‘ก)] = ๐‘”(๐‘‹, ๐‘ก) (4.18)

Subject to IC: ๐œƒ(๐‘‹, 0) = ๐‘“(๐‘‹)

Where ๐‘‹ โˆˆ ๐‘…๐‘› , L is a linear differential operator (๐ฟ =๐œ•

๐œ•๐‘ก) , R is a

remained of the linear operator, ๐‘ is a nonlinear differential operator and

๐‘”(๐‘‹, ๐‘ก) is the nonhomogeneous part.

We construct a Homotopy as: (๐‘‹, ๐‘): ๐‘…๐‘› ร— [0,1] โ†’ ๐‘… , which satisfies

๐ป(๐œƒ(๐‘‹, ๐‘ก), ๐‘) = (1 โˆ’ ๐‘) โˆ— [๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐ฟ(๐œƒ(๐‘‹, 0))] +

๐‘ [๐ด ((๐œƒ(๐‘‹, ๐‘ก))) โˆ’ ๐‘”(๐‘‹, ๐‘ก)] = 0 (4.19)

Where ๐‘ โˆˆ [0,1] is an embedding parameter and the operator A defined

as ๐ด = ๐ฟ + ๐‘… + ๐‘.

Obviously, if ๐‘ = 0, equation (4.19) becomes ๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐ฟ(๐œƒ(๐‘‹, 0)).

Page 104: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

90

It is clear that, if ๐‘ = 1 then the homotopy equation (4.19) convert to the

main differential equation (4.18). Substitute IC in equation (4.19) and

rewrite it as:

๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘‹)) โˆ’ ๐‘๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) + ๐‘๐ฟ(๐‘“(๐‘‹)) + ๐‘๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) +

๐‘๐‘…(๐œƒ(๐‘‹, ๐‘ก)) + ๐‘๐‘(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐‘๐‘”(๐‘‹, ๐‘ก) = 0

Then

๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐ฟ(๐‘“(๐‘‹)) + ๐‘[๐ฟ(๐‘“(๐‘‹)) + ๐‘…(๐œƒ(๐‘‹, ๐‘ก)) + ๐‘(๐œƒ(๐‘‹, ๐‘ก)) โˆ’

๐‘”(๐‘‹, ๐‘ก)] = 0 (4.20)

Since ๐‘“(๐‘‹) is independent of the variable ๐‘ก and the linear operator ๐ฟ

dependent on t so, ๐ฟ(๐‘“(๐‘‹)) = 0, i.e., (4.20) becomes:

๐ฟ(๐œƒ(๐‘‹, ๐‘ก)) + ๐‘[๐‘…(๐œƒ(๐‘‹, ๐‘ก)) + ๐‘(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐‘”(๐‘‹, ๐‘ก)] = 0 (4.21)

According to the classical perturbation technique, the solution of equation

(4.21) can be written as a power series of embedding parameter p, in the

form

๐œƒ(๐‘‹, ๐‘ก) = โˆ‘ ๐‘๐‘›๐œƒ๐‘›(๐‘‹, ๐‘ก)

โˆž

๐‘›=0

(4.22)

For most cases, the series form (4.22) is convergent and the convergent

rate depends on the nonlinear operator ๐‘(๐œƒ(๐‘‹, ๐‘ก)).

Page 105: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

91

Taking the NT (with respect to the variable ๐‘ก) for the equation (4.21), we

have:

๐•‹{๐ฟ(๐œƒ)} + ๐‘๐•‹ {๐‘…(๐œƒ) + ๐‘(๐œƒ) โˆ’ ๐‘”} = 0 (4.23)

Now by using the differentiation property of LT, so equation (4.23),

becomes:

๐‘ฃ๐•‹{๐œƒ} โˆ’ ๐‘“(๐‘‹) + ๐‘๐•‹ {๐‘…(๐œƒ) + ๐‘(๐œƒ) โˆ’ ๐‘”} = 0

Hence:

๐•‹{๐œƒ} = ๐‘“(๐‘‹) + ๐‘1

๐‘ฃ๐•‹{๐‘” โˆ’ ๐‘…(๐œƒ) โˆ’ ๐‘(๐œƒ)} (4.24)

By taking the inverse of new transformation on both sides of equation

(4.24), to get:

๐œƒ(๐‘‹, ๐‘ก) = ๐‘“(๐‘‹)

+ ๐‘ ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”(๐‘‹, ๐‘ก) โˆ’ ๐‘…(๐œƒ(๐‘‹, ๐‘ก)) โˆ’ ๐‘(๐œƒ(๐‘‹, ๐‘ก))}} (4.25)

Then substitute equation (4.22) in equation (4.25) to obtain:

โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

= ๐‘“(๐‘‹) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”(๐‘‹, ๐‘ก) โˆ’ ๐‘… (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) โˆ’ ๐‘ (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

)}} (4.26)

The nonlinear part can be decomposed, as will be explained later, by

substituting equation (4.22) in it as:

๐‘(๐œƒ) = ๐‘ (โˆ‘ ๐‘๐‘›๐œƒ๐‘›(๐‘‹, ๐‘ก)

โˆž

๐‘›=0

) = โˆ‘ ๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

Then equation (4.26) becomes:

Page 106: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

92

โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

= ๐‘“(๐‘‹) + ๐‘๐•‹โˆ’1 {1

๐‘ฃ๐•‹ {๐‘”(๐‘‹, ๐‘ก) โˆ’ ๐‘… (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) โˆ’ โˆ‘ ๐‘๐‘›๐ป๐‘›

โˆž

๐‘›=0

}} (4.27)

By comparing the coefficient with the same power of p, in both sides of

the equation (4.27) we have:

๐œƒ0 = ๐‘“(๐‘‹)

๐œƒ1 = ๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘”(๐‘‹, ๐‘ก) โˆ’ ๐‘…(๐œƒ0) โˆ’ ๐ป0}}

๐œƒ2 = โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐œƒ1) + ๐ป1}}

๐œƒ3 = โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐œƒ2) + ๐ป2}}

โ‹ฎ

๐œƒ๐‘›+1 = โˆ’๐•‹โˆ’1 {1

๐‘ฃ๐•‹{๐‘…(๐œƒ๐‘›) + ๐ป๐‘›}}

According to the series solution in equation (4.22), and p converges to 1,

we get:

๐œƒ(๐‘‹, ๐‘ก) = ๐œƒ0(๐‘‹, ๐‘ก) + ๐œƒ1(๐‘‹, ๐‘ก) + โ‹ฏ = โˆ‘ ๐œƒ๐‘›(๐‘‹, ๐‘ก)

โˆž

๐‘›=0

(4.28)

4.4. Experiment Application

In this section, the suggested method will be used to solve the one;

two and three-dimensions model equation, with appropriate initial

condition:

Page 107: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

93

Problem 4.1

Here suggested method that can used to solve the 2D model equation

(1D space) i.e., equation governs the motion of water flow in 1D-

horizontal:

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ฅ= ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2]

๐‘“(๐‘ฅ) = ๐œƒ(๐‘ฅ, 0) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e๐œ‡

๐‘’๐œ‡+1

Where ๐œ‡ =๐›พ

๐›ผ(๐‘ฅ โˆ’ ๐œ†), , and are parameters dimension

We have

๐ฟ[๐œƒ(๐‘‹, ๐‘ก)] =๐œ•๐œƒ(๐‘ฅ,๐‘ก)

๐œ•๐‘ก , ๐‘…[๐œƒ(๐‘‹, ๐‘ก)] = โˆ’ ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2] ,

๐‘[๐œƒ(๐‘‹, ๐‘ก)] = ๐œƒ๐œ•๐œƒ

๐œ•๐‘ฅ and ๐‘”(๐‘‹, ๐‘ก)

First, compute ๐ป๐‘› to the nonlinear part ๐‘(๐œƒ) we get:

๐‘(๐œƒ) = ๐‘ (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (๐œ•

๐œ•๐‘ง[โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

]) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (โˆ‘ ๐‘๐‘›๐œ•๐œƒ๐‘›

๐œ•๐‘ฅ

โˆž

๐‘›=0

)

= ๐œƒ0

๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐‘ (๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ0

๐œ•๐‘ฅ) + ๐‘2 (๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ0

๐œ•๐‘ฅ)

+ ๐‘3 (๐œƒ0

๐œ•๐œƒ3

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ3

๐œ•๐œƒ0

๐œ•๐‘ฅ) + โ‹ฏ

Page 108: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

94

So,

๐ป0 = ๐œƒ0๐œ•๐œƒ0

๐œ•๐‘ฅ

๐ป1 = ๐œƒ1๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ฅ

๐ป2 = ๐œƒ2๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ฅ

๐ป3 = ๐œƒ3๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ3

๐œ•๐‘ฅ

And so on.

From IC, we can get

๐ป0 = โˆ’2 ๐›พ2 ๐‘’๐œ‡ (๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡)

๐›ผ (๐‘’๐œ‡+1)3

๐ป1 = ๐‘ก2 ๐›พ3๐›ฝ ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’4๐›พ ๐‘’๐œ‡+(๐›พโˆ’๐›ฝ)๐‘’2๐œ‡)

๐›ผ2 (๐‘’๐œ‡+1)4

๐ป2 = โˆ’๐‘ก2 ๐›พ4๐›ฝ2 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(11๐›พ+3๐›ฝ)๐‘’๐œ‡+(11๐›พโˆ’3๐›ฝ)๐‘’2๐œ‡+(๐›ฝโˆ’๐›พ)๐‘’3๐œ‡)

๐›ผ3 (๐‘’๐œ‡+1)5

๐ป3 = ๐‘ก3 ๐›พ5๐›ฝ3 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(26๐›พ+10๐›ฝ)๐‘’๐œ‡+66๐›พ๐‘’2๐œ‡โˆ’(26๐›พโˆ’10๐›ฝ)๐‘’3๐œ‡+(๐›พโˆ’๐›ฝ)๐‘’4๐œ‡)

3 ๐›ผ4 (๐‘’๐œ‡+1)6

And so on.

Moreover, the sequence of parts ๐œƒ๐‘› is:

๐œƒ0 =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡

(๐‘’๐œ‡+1)

๐œƒ1 = ๐‘ก2 ๐›พ2๐›ฝ ๐‘’๐œ‡

๐›ผ(๐‘’๐œ‡+1)2

๐œƒ2 = โˆ’๐‘ก2 ๐›พ3๐›ฝ2 ๐‘’๐œ‡ (1โˆ’๐‘’๐œ‡)

๐›ผ2 (๐‘’๐œ‡+1)3

Page 109: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

95

๐œƒ3 = ๐‘ก3 ๐›พ4๐›ฝ3 ๐‘’๐œ‡ (1โˆ’4 ๐‘’๐œ‡+๐‘’2๐œ‡)

3 ๐›ผ3 (๐‘’๐œ‡+1)4

๐œƒ4 = โˆ’๐‘ก4 ๐›พ5๐›ฝ4 ๐‘’๐œ‡ (1โˆ’11 ๐‘’๐œ‡+11๐‘’2๐œ‡โˆ’๐‘’3๐œ‡)

12 ๐›ผ4 (๐‘’๐œ‡+1)5

And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

๐œƒ(๐‘ฅ, ๐‘ก) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e

๐œ‡โˆ’ ๐›พ๐›ฝ๐›ผ

๐‘ก

e๐œ‡โˆ’

๐›พ๐›ฝ๐›ผ ๐‘ก

+1

Problem 4.2

Here suggested method will be used to solve the 3D model equation (2D

space) i.e., equation governs the motion of water flow in horizontal and

vertical:

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ฅ= ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2]

๐‘“(๐‘ฅ, ๐‘ฆ) = ๐œƒ(๐‘ฅ, ๐‘ฆ, 0) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e๐œ‡

๐‘’๐œ‡+1

Where ๐œ‡ =๐›พ

๐›ผ(๐‘ฅ + ๐‘ฆ โˆ’ ๐œ†), ๐›ผ, ๐›ฝ and ๐œ† are parameters dimension

We have

๐ฟ[๐œƒ(๐‘‹, ๐‘ก)] =๐œ•๐œƒ(๐‘ฅ,๐‘ฆ,๐‘ก)

๐œ•๐‘ก , ๐‘…[๐œƒ(๐‘‹, ๐‘ก)] = โˆ’ ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2] ,

Page 110: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

96

๐‘[๐œƒ(๐‘‹, ๐‘ก)] = ๐œƒ๐œ•๐œƒ

๐œ•๐‘ฅ and ๐‘”(๐‘‹, ๐‘ก) = 0

First, compute ๐ป๐‘› to the nonlinear part ๐‘(๐œƒ) we get:

๐‘(๐œƒ) = ๐‘ (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (๐œ•

๐œ•๐‘ง[โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

]) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (โˆ‘ ๐‘๐‘›๐œ•๐œƒ๐‘›

๐œ•๐‘ฅ

โˆž

๐‘›=0

)

= ๐œƒ0

๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐‘ (๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ0

๐œ•๐‘ฅ) + ๐‘2 (๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ0

๐œ•๐‘ฅ)

+ ๐‘3 (๐œƒ0

๐œ•๐œƒ3

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ3

๐œ•๐œƒ0

๐œ•๐‘ฅ) + โ‹ฏ

So,

๐ป0 = ๐œƒ0๐œ•๐œƒ0

๐œ•๐‘ฅ

๐ป1 = ๐œƒ1๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ฅ

๐ป2 = ๐œƒ2๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ฅ

๐ป3 = ๐œƒ3๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ0

๐œ•๐œƒ3

๐œ•๐‘ฅ

And so on.

From IC, we can get:

๐ป0 = โˆ’ ๐›พ2 ๐‘’๐œ‡ (๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡)

๐›ผ (๐‘’๐œ‡+1)3

๐ป1 = ๐‘ก ๐›พ3๐›ฝ ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’4๐›พ ๐‘’๐œ‡+(๐›พโˆ’๐›ฝ)๐‘’2๐œ‡)

2 ๐›ผ2 (๐‘’๐œ‡+1)4

๐ป2 = โˆ’๐‘ก2 ๐›พ4๐›ฝ2 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(11๐›พ+3๐›ฝ)๐‘’๐œ‡+(11๐›พโˆ’3๐›ฝ)๐‘’2๐œ‡+(๐›ฝโˆ’๐›พ)๐‘’3๐œ‡)

8 ๐›ผ3 (๐‘’๐œ‡+1)5

Page 111: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

97

๐ป3 = ๐‘ก3 ๐›พ5๐›ฝ3 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(26๐›พ+10๐›ฝ)๐‘’๐œ‡+66๐›พ๐‘’2๐œ‡โˆ’(26๐›พโˆ’10๐›ฝ)๐‘’3๐œ‡+(๐›พโˆ’๐›ฝ)๐‘’4๐œ‡)

48 ๐›ผ4 (๐‘’๐œ‡+1)6

And so on.

Moreover, the sequence of parts ฮธn is:

๐œƒ0 =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡

(๐‘’๐œ‡+1)

๐œƒ1 = ๐‘ก ๐›พ2๐›ฝ ๐‘’๐œ‡

๐›ผ(๐‘’๐œ‡+1)2

๐œƒ2 = โˆ’๐‘ก2 ๐›พ3๐›ฝ2 ๐‘’๐œ‡ (1โˆ’๐‘’๐œ‡)

4๐›ผ2 (๐‘’๐œ‡+1)3

๐œƒ3 = ๐‘ก3 ๐›พ4๐›ฝ3 ๐‘’๐œ‡ (1โˆ’4 ๐‘’๐œ‡+๐‘’2๐œ‡)

24 ๐›ผ3 (๐‘’๐œ‡+1)4

๐œƒ4 = โˆ’๐‘ก4 ๐›พ5๐›ฝ4 ๐‘’๐œ‡ (1โˆ’11 ๐‘’๐œ‡+11๐‘’2๐œ‡โˆ’๐‘’3๐œ‡)

192 ๐›ผ4 (๐‘’๐œ‡+1)5

And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

๐œƒ(๐‘ฅ, ๐‘ฆ, ๐‘ก) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e

๐œ‡โˆ’ ๐›พ๐›ฝ2๐›ผ

๐‘ก

e๐œ‡โˆ’

๐›พ๐›ฝ2๐›ผ๐‘ก

+1

Problem 4.3

Here suggested method will be used to solve the 4D model equation (3D

space):

๐œ•๐œƒ

๐œ•๐‘ก+ ๐œƒ

๐œ•๐œƒ

๐œ•๐‘ฅ= ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2+ +

๐œ•2๐œƒ

๐œ•๐‘ง2]

Page 112: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

98

๐‘“(๐‘ฅ, ๐‘ฆ, ๐‘ง) = ๐œƒ(๐‘ฅ, ๐‘ฆ, ๐‘ง, 0) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e๐œ‡

๐‘’๐œ‡+1

Where ๐œ‡ =๐›พ

๐›ผ(๐‘ฅ + ๐‘ฆ + ๐‘ง โˆ’ ๐œ†), ๐›ผ, ๐›ฝ and ๐œ† are parameters dimension

We have

๐ฟ[๐œƒ(๐‘‹, ๐‘ก)] =๐œ•๐œƒ(๐‘ฅ,๐‘ฆ,๐‘ง,๐‘ก)

๐œ•๐‘ก , ๐‘…[๐œƒ(๐‘‹, ๐‘ก)] = โˆ’ ๐›ผ [

๐œ•2๐œƒ

๐œ•๐‘ฅ2+

๐œ•2๐œƒ

๐œ•๐‘ฆ2+

๐œ•2๐œƒ

๐œ•๐‘ง2] ,

๐‘[๐œƒ(๐‘‹, ๐‘ก)] = ๐œƒ๐œ•๐œƒ

๐œ•๐‘ฅ and ๐‘”(๐‘‹, ๐‘ก) = 0

First, compute ๐ป๐‘› to the nonlinear part ๐‘(๐œƒ) we get:

๐‘(๐œƒ) = ๐‘ (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (๐œ•

๐œ•๐‘ง[โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

]) = (โˆ‘ ๐‘๐‘›๐œƒ๐‘›

โˆž

๐‘›=0

) (โˆ‘ ๐‘๐‘›๐œ•๐œƒ๐‘›

๐œ•๐‘ฅ

โˆž

๐‘›=0

)

= ๐œƒ0

๐œ•๐œƒ0

๐œ•๐‘ฅ+ ๐‘ (๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ0

๐œ•๐‘ฅ) + ๐‘2 (๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ0

๐œ•๐‘ฅ)

+ ๐‘3 (๐œƒ0

๐œ•๐œƒ3

๐œ•๐‘ฅ+ ๐œƒ1

๐œ•๐œƒ2

๐œ•๐‘ฅ+ ๐œƒ2

๐œ•๐œƒ1

๐œ•๐‘ฅ+ ๐œƒ3

๐œ•๐œƒ0

๐œ•๐‘ฅ) + โ‹ฏ

So,

๐ป0 = ๐œƒ0๐œ•๐œƒ0

๐œ•๐‘ง

๐ป1 = ๐œƒ1๐œ•๐œƒ0

๐œ•๐‘ง+ ๐œƒ0

๐œ•๐œƒ1

๐œ•๐‘ง

๐ป2 = ๐œƒ2๐œ•๐œƒ0

๐œ•๐‘ง+ ๐œƒ1

๐œ•๐œƒ1

๐œ•๐‘ง+ ๐œƒ0

๐œ•๐œƒ2

๐œ•๐‘ง

And so on.

From IC, we can get

Page 113: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

99

๐ป0 = โˆ’2 ๐›พ2 ๐‘’๐œ‡ (๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡)

3 ๐›ผ (๐‘’๐œ‡+1)3

๐ป1 = ๐‘ก2 ๐›พ3๐›ฝ ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’4๐›พ ๐‘’๐œ‡+(๐›พโˆ’๐›ฝ)๐‘’2๐œ‡)

9 ๐›ผ2 (๐‘’๐œ‡+1)4

๐ป2 = โˆ’๐‘ก2 ๐›พ4๐›ฝ2 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(11๐›พ+3๐›ฝ)๐‘’๐œ‡+(11๐›พโˆ’3๐›ฝ)๐‘’2๐œ‡+(๐›ฝโˆ’๐›พ)๐‘’3๐œ‡)

27 ๐›ผ3 (๐‘’๐œ‡+1)5

๐ป3 = ๐‘ก3 ๐›พ5๐›ฝ3 ๐‘’๐œ‡ (๐›พ+๐›ฝโˆ’(26๐›พ+10๐›ฝ)๐‘’๐œ‡+66๐›พ ๐‘’2๐œ‡โˆ’(26๐›พโˆ’10๐›ฝ)๐‘’3๐œ‡+(๐›ฝโˆ’๐›พ)๐‘’4๐œ‡)

243 ๐›ผ4 (๐‘’๐œ‡+1)6

And so on.

Moreover, the sequence of parts ฮธn is:

๐œƒ0 =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)๐‘’๐œ‡

(๐‘’๐œ‡+1)

๐œƒ1 = ๐‘ก2 ๐›พ2๐›ฝ ๐‘’๐œ‡

3๐›ผ(๐‘’๐œ‡+1)2

๐œƒ2 = โˆ’๐‘ก2 ๐›พ3๐›ฝ2 ๐‘’๐œ‡ (1โˆ’๐‘’๐œ‡)

9๐›ผ2 (๐‘’๐œ‡+1)3

๐œƒ3 = ๐‘ก3 ๐›พ4๐›ฝ3 ๐‘’๐œ‡ (1โˆ’4 ๐‘’๐œ‡+๐‘’2๐œ‡)

81 ๐›ผ3 (๐‘’๐œ‡+1)4

๐œƒ4 = โˆ’๐‘ก4 ๐›พ5๐›ฝ4 ๐‘’๐œ‡ (1โˆ’11๐‘’๐œ‡+11๐‘’2๐œ‡โˆ’๐‘’3๐œ‡)

972 ๐›ผ4 (๐‘’๐œ‡+1)5

And so on.

Substituting the above values in series form (4.28), hence the solution of

the problem is close to the form:

๐œƒ(๐‘ฅ, ๐‘ฆ, ๐‘ง, ๐‘ก) =๐›พ+๐›ฝ+(๐›ฝโˆ’๐›พ)e

๐œ‡โˆ’ ๐›พ๐›ฝ3๐›ผ

๐‘ก

e๐œ‡โˆ’

๐›พ๐›ฝ3๐›ผ๐‘ก

+1

Page 114: Efficient Method for Solving Some Types of Partial

lication ModelpAp Chapter Four

100

From problems 1, 2, 3, we can see that the proposed NTHPM is

applied to find the exact solution of the nonlinear 2nd order (2, 3, 4 โ€“ D)

model equations does not require any restrictive assumptions to deal with

nonlinear terms.

Page 115: Efficient Method for Solving Some Types of Partial
Page 116: Efficient Method for Solving Some Types of Partial

102

5.1. Conclusions

In this thesis, the combination of new transform suggested by Luma

and Alaa with HPM method is proposed to get exact solution of some

types of non-linear, non-homogenous PDEs; 1D, 2D, and 3D; 2nd or 3rd

order such as Klein-Gordan equation, wave-like equations, autonomous

equation, system of two or three non-linear equations, 2D-Burgers'

equations, coupled Hirota Satsuma KdV type II, and RLW equation.

Finally, the suggested method is used to solve application model such soil

moisture equation where traditional HPM leads to an approximate

solution. So, the results reveal that NTHPM is a powerful method for

solving those types of PDEs with initial conditions. The basic idea

described in this thesis is strong enough to be employed to solve other

types of equations. The advantage of suggested method is capability of

combining two powerful methods for obtaining exact solutions for those

types of PDEs, where the HPM was disability to get the exact solution for

the same problems and solved its approximately.

Chapter Five

Conclusions and Future Work

Page 117: Efficient Method for Solving Some Types of Partial

Chapter Five Conclusions and Future Work

103

Moreover, the research finding how the solution of PDE by MTHPM

provide the agreement with real life problems. The method attacks the

problem in a direct way and in a straightforward fashion without using

linearization, or any other restrictive assumption that may change the

physical behavior of the model under discussion.

The experimental results show that the NTHPM is computationally

efficient for solving those types of problems and can easily be

implemented without computer.

The suggested method is free of unnecessary mathematical complexities.

The fast convergence and simple applicability of NTHPM provid

excellent foundation for using these functions in analytical solution of

variety problems.

The obtained results show that our proposed method has several

advantages such like being free of using Adomian polynomials when

dealing with the nonlinear terms like in the ADM and being free of using

the Lagrange multiplier as in the VIM.

The results reveal that the presented methods are reliable, effective, very

accurate and applicable to solve other nonlinear problems.

The advantage of NTHPM is its capability of combining two powerful

methods for obtaining exact.

Page 118: Efficient Method for Solving Some Types of Partial

Chapter Five Conclusions and Future Work

104

5.2. Future Works

Based on the results of the proposed method and its illustrative, the

following future works may suggest:

1- Using NTHPM for solving high dimensions PDEs.

2- Use NTHPM to solve nonlocal problems.

3- Use NTHPM to solve integral and integro-differential equations.

4- Use NTHPM to solve system of integral or integro-differential

equations.

5- Use NTHPM to solve differential equations with fractional orders.

Page 119: Efficient Method for Solving Some Types of Partial
Page 120: Efficient Method for Solving Some Types of Partial

106

[1] Aasaraai, A., 2011, Analytic Solution for Newell-Whitehead-Segel Equation by

Differential Transform Method, Middle East J. Sci. Res. Vol.10, No.2, p: 270โ€“273.

[2] Adomian, G., 1994, Solving Frontier Problems of Physics: The Decomposition

Method, Kluwer Academic Publishers, Boston, MA.

[3] Alquran, M., and Mohammad, M., 2011, Approximate Solutions to System of

Nonlinear Partial Differential Equations Using Homotopy Perturbation Method,

International Journal of Nonlinear Science, Vol. 12, No. 4, p: 485-497.

[4] Ayaz, F., 2003, On the Two-Dimensional Differential Transform Method,

Applied Mathematics and Computation, Vol. 143, No. 2-3, p: 361โ€“374.

[5] Bataineh, A. S., Noorani, M. S. M., and Hashim, I., 2008, Approximation

Analytical Solution of System of PDEs by Homotopy Analysis Method,

Computers and Mathematics with Applications, Vol. 55, p: 2913-2923.

[6] Batiha, B., Noorani M. S. M., and Hashim, I., 2008, Numerical Simulations of

Systems of PDEs by Variational Iteration Method, Phys. Lett. A., Vol. 372, p:

822โ€“829.

References

Page 121: Efficient Method for Solving Some Types of Partial

References

107

[7] Biazar, J., and Eslami, M., 2011, A New Homotopy Perturbation Method for

Solving Systems of Partial Differential Equations, Computers and Mathematics

with Applications, Vol. 62, p: 225โ€“234.

[8] Biazar, J., Eslami, M., and Ghazvini, H., 2007, Homotopy Perturbation Method

for System of Partial Differential Equations, International Journal of Nonlinear

Sciences and Numerical Simulations, Vol. 8, No. 3, p: 411-416.

[9] Biazar, J., and Eslami, M., 2010, Analytic Solution for Telegraph Equation by

Differential Transform Method, Physics Letters, Vol. 374, p: 2904โ€“2906.

[10] Fadaei, J., 2011, Application of Laplaceโˆ’Adomian Decomposition Method on

Linear and Nonlinear System of PDEs, Applied Mathematical Sciences, Vol. 5,

No. 27, p: 1307โ€“1315.

[11] Ghazi, F. F., 2016, Employ Mathematical Model and Neural Networks for

Determining Rate of the Environmental Contamination, MSc. Thesis, College of

Education for Pure Science Ibn Alโ€“Haitham, University of Baghdad.

[12] He, J.H., and Wu, X.H., 2007, Variational Iteration Method: New

Development and Applications, Computers and Mathematics with Applications,

Vol. 54, p: 881โ€“894.

Page 122: Efficient Method for Solving Some Types of Partial

References

108

[13] He, J. H., 1999, Homotopy Perturbation Technique, Computer Methods in

Applied Mechanics and Engineering, Vol. 178, No. (3-4), p: 257-262.

doi:10.1016/s0045-7825(99)00018-3.

[14] He, J. H., 2000, A Coupling Method of Homotopy Technique and

Perturbation Technique for Nonlinear Problems. Int. J. Non- linear Mech., Vol. 35,

p: 37-43.

[15] He, J. H., 2004, The Homotopy Perturbation Method for Solving Non-Linear

Oscillators with Discontinuities, Appl. Math. Comp., Vol. 151, p: 287-292.

[16] He, J. H., Wu, G.C. and Austin, F., 2009, The Variational Iteration Method

Which Should be Followed, Nonlinear Science Letters A1. , p: 1โ€“30.

[17] Holmes, M. H., 1995, Introduction to Perturbation Methods, 1st edition,

Springer-Verlag, New York.

[18] Jabber, A. K., 2018, Design Mathematical Model for Groundwater and its

Application in Iraq, PhD Thesis, Department of Mathematics, College of

Education for Pure Science Ibn Al-Haitham, University of Bagdad, Bagdad, Iraq.

[19] Khan, Y., 2009, An Effective Modification of the Laplace Decomposition

Method for Nonlinear Equations, Journal of Nonlinear Sciences and Numer.

Simulation, Vol. 10, p: 1373โ€“1376.

Page 123: Efficient Method for Solving Some Types of Partial

References

109

[20] Massey, W. S., 1967, Algebric Topology, Harcourt, Brace Worl. Inc.

[21] Mehta, M. N., 1975, A Singular Perturbation Solution of One-Dimensional

flow in Unsaturated Porous Media with Small Diffusivity Coefficient, Proceeding

of the National Conference on Fluid Mechanics and Fluid Power (FMEP โ€™75), E1-

E4.

[22] Mehta, M. N., and Patel, T., 2006, A Solution of Burgerโ€™s Equation Type

One-Dimensional Groundwater Recharge by Spreading in Porous Media, The

Journal of the Indian Academy of Mathematics, Vol. 28, No. 1, p: 25-32.

[23] Moench, A. F., 1997, Flow to a Well of Finite Diameter in a Homogeneous,

Anisotropic Water Table Aquifer, Water Resources Research, Vol. 33, No. 6, p:

1397-1407. doi:10.1029/97wr00651.

[24] Mohammed Rabie, E. A., and Elzaki, T. M., 2014, Systems of Linear Partial

Differential Equation by Using Adomian and Modified Decomposition Methods,

African Journal of Mathematics and Computer Science Research, Vol. 7, No. 6, p:

61-67.

[25] Rahimi, E., Rahimifar, A., Mohammadyari, R., Rahimipetroudi, I. and

Rahimi, EM., 2016, Analytical Approach for Solving Two-Dimensional Laminar

Viscous Flow Between Slowly Expanding and Contracting Walls, ASEJ. , Vol. 7,

No. 4, p: 1089-1097. doi:10.1016/j.asej.2015.07.013.

Page 124: Efficient Method for Solving Some Types of Partial

References

110

[26] Rajnee, T. and Hradyesh, K. M., 2016, Homotopy Perturbation Method with

Laplace Transform (LTโ€‘HPM) for Solving Laneโ€“Emden Type Differential

Equations (LETDEs). Tripathi and Mishra Springer Plus, Vol. 5, No. 4, p: 1-21,

DOI 10.1186/s40064-016-3487-4.

[27] Rana, M. A., Siddiqui, A. M. and Ghori, Q. K., 2007, Application of Heโ€™s

Homotopy Perturbation Method to Sumudu Transform. International Journal of

Nonlinear Sciences and Numerical Simulation, Vol. 8, No. 2, p: 185โ€“190.

[28] Ravi Kanth, A. S. V. and Aruna, K., 2008, Differential Transform Method for

Solving Linear and Non-linear Systems of Partial Differential Equations, Physics

Letters A., Vol. 372, p: 6896โ€“6898.

[29] Salih, H., Tawfiq, L. N. M. , Yahya, Z. R. and Zin, S. M., 2018, Numerical

Solution of the Equation Modified Equal Width Equation by Using Cubic

Trigonometric B-Spline Method, International Journal of Engineering and

Technology, Vol. 7, No. 3.7, p: 340-344.

[30] Salih, H., Tawfiq, L. N. M., Yahya, Z. R. I. and Zin, S. M., 2018, Solving

Modified Regularized Long Wave Equation Using Collocation Method, Journal of

Physics: Conference Series, Vol. 1003, No. 012062, p: 1-10. doi :10.1088/1742-

6596/1003/1/012062.

Page 125: Efficient Method for Solving Some Types of Partial

References

111

[31] Saravanan, A., and Magesh, N., 2013, A Comparison Between the Reduced

Differential Transform Method and the Adomian Decomposition Method for the

Newell-Whitehead-Segel Equation, Egyptian Math. Soc., Vol. 21, p: 259โ€“265.

[32] Sedeeg, K. A. H. and Mahgoub, M. A. M., 2016, Aboodh Transform

Homotopy Perturbation Method for Solving System of Nonlinear Partial

Differential Equations, Mathematical Theory and Modeling, Vol. 6, No. 8.

[33] Steven, H. W., 2011, Advanced Linear Algebra, The Mathematical

Association of America, USA.

[34] Suhas, P., and Uttam, D., 2015, Random Fixed Point Theorems for

Contraction Mappings in Metric Space, International Journal of Science and

Research (IJSR), Vol. 23, No. 19, p: 64โ€“70.

[35] Sunil, K., Jagdev S., Devendra, K. and Saurabh, K., 2014, New Homotopy

Analysis Transform Algorithm to Solve Volterra Integral Equation, ASEJ., Vol. 5,

No. 2, p: 243โ€“246.

[36] Sweilam, N. H. and Khader, M. M., 2009, Exact Solutions of Some Coupled

Nonlinear Partial Differential Equations Using the Homotopy Perturbation

Method. Computers and Mathematics with Applications, Vol. 58, p: 2134โ€“2141.

Page 126: Efficient Method for Solving Some Types of Partial

References

112

[37] Tamer, A. A., Magdy, A. E. T. and El-Zoheiry, H., 2007, Modified

Variational Iteration Method for Boussinesq Equation, Computers and

Mathematics with Applications. , Elsevier Publisher, Vol. 54, p: 955โ€“965.

[38] Tawfiq, L. N. M. , Jasim, K. A. and Abdulhmeed, E. O., 2016, Numerical

Model for Estimation the Concentration of Heavy Metals in Soil and its

Application in Iraq, Global Journal of Engineering science and Researches, Vol. 3,

No. 3, p: 75-81.

[39] Tawfiq, L. N. M. and Hassan, M.A., 2018, Estimate the Effect of Rainwaters

in Contaminated Soil by Using Simulink Technique. In Journal of Physics:

Conference Series, Vol. 1003, No. 012057, p: 1-7.

[40] Tawfiq, L. N. M. and Hussein, A. A. T., 2013, Design Feed Forward Neural

Network to Solve Singular Boundary Value Problems, ISRN Applied

Mathematics, p: 1-8, http://dx.doi.org/10.1155/2013/650467.

[41] Tawfiq, L. N. M. and Hussein, R. W., 2013, On Solution of Regular Singular

Initial Value Problems. Ibn Al-Haitham Journal for Pure and Applied Sciences,

Vol. 26, No. 1, p: 257- 264.

[42] Tawfiq, L. N. M. and Hussein, R. W., 2014, Efficient Semi-Analytic

Technique for Solving Nonlinear Singular Initial Value Problems, Ibn Al-Haitham

Journal for Pure and Applied Sciences, Vol. 27, No. 3, p: 513-522.

Page 127: Efficient Method for Solving Some Types of Partial

References

113

[43] Tawfiq, L. N. M. and Jabber, A. K., 2016, Mathematical Modeling of

Groundwater Flow, GJESR. , Vol.3, No.10, p: 15-22. doi: 10.5281/zenodo.160914.

[44] Tawfiq, L. N. M. and Jabber, A. K., 2017, "Solve the Groundwater Model

Equation Using Fourier Transforms Method", Int. J. Adv. Appl. Math. and Mech.,

Vol. 5, No. 1, p: 75 โ€“ 80.

[45] Tawfiq, L. N. M. and Jabber, A. K., 2018, Steady State Radial Flow in

Anisotropic and Homogenous in Confined Aquifers, Journal of Physics:

Conference Series, Vol. 1003, No. 012056, p: 1-12, IOP Publishing.

[46] Tawfiq, L. N. M. and Rasheed, H. W., 2013, On Solution of Non Linear

Singular Boundary Value Problem, Ibn Al-Haitham Journal for Pure and Applied

Sciences, Vol. 26, No. 3, p: 320- 328.

[47] Tawfiq, L. N. M. and Rasheed, H. W., 2013, On Solution of Regular Singular

Ordinary Boundary Value Problem, Ibn Al-Haitham Journal for Pure and Applied

Sciences, Vol. 26, No. 2, p: 249-256.

[48] Tawfiq, L. N. M. and Yassien, S. M., 2013, Solution of High Order Ordinary

Boundary Value Problems Using Semi-Analytic Technique, Ibn Al-Haitham

Journal for Pure and Applied Sciences, Vol. 26, No. 1, p: 281-291.

Page 128: Efficient Method for Solving Some Types of Partial

References

114

[49] Tawfiq, L. N. M., 2016, Using Collocation Neural Network to Solve

Eigenvalue Problems, MJ Journal on Applied Mathematics, Vol. 1, No. 1, p: 1-8.

[50] Tawfiq, L. N. M., and Hilal, M. M., 2014, Solution of 2nd Order Nonlinear

Three-Point Boundary Value Problems By Semi-Analytic Technique, Ibn Al-

Haitham Journal for Pure and Applied Sciences, Vol. 27, No. 3, p: 501-512.

[51] Tawfiq, L. N. M., and Jabber, A. K., 2018, New Transform Fundamental

Properties and its Applications, Ibn Al-Haitham Journal for Pure and Applied

Science, Vol. 31, No. 1, p: 151-163, doi: http://dx.doi.org/10.30526/31.2.1954.

[52] Vahidi, J., 2016, The Combined Laplace-Homotopy Analysis Method for

Partial Differential Equations, Journal of Mathematics and Computer Science, Vol.

1, p: 95-112.

[53] Wazwaz, A. M., 2006, The Modified Decomposition Method for Analytic

Treatment of Differential Equations, Appl. Math. Comput, Vol. 173, No. 1, p:

165โ€“176.

[54] Wazwaz, A. M., 2007, The Variational Iteration Method for Solving Linear

and Nonlinear System of PDEs, Comput, Math, Appl., Vol. 54, p: 895 - 902.

[55] Wazwaz, A. M., 2009, Partial Differential Equations and Solitary Waves

Theory, 1st edition, Beijing and Berlin: Springer, ISBN 978-3-642-00250-2, e-

ISBN 978-3-642-00251-9.

Page 129: Efficient Method for Solving Some Types of Partial

References

115

[56] Wazwaz, A. M., 2017, Dual Solutions for Nonlinear Boundary Value

Problems by the Variational Iteration Method, International Journal of Numerical

Methods for Heat & Fluid Flow, Vol. 27, No. 1, p: 210-220, DOI 10.1108/HFF-10-

2015-0442.

[57] Wazwaz, A. M., 2000, The Decomposition Method Applied to Systems of

Partial Differential Equations and to the Reaction_Diffusion Brusselator

Model,Applied Mathematics and Computation, Vol. 110, No. 2-3, p: 251-264.

[58] Yusufoglu, E., 2006, Numerical Solution of Diffusing Equation by the

Laplace Decomposition Algorithm, Applied Mathematics and Computation, Vol.

177, p: 572โ€“580.

[59] Yusufoglu, E., 2009, An Improvment to Homotopy Perturbation Method for

Solving System of Linear Equations, Computers and Mathematic with

Applications, Vol. 58, p: 2231-2235.

[60] Zwillinger, D., 1997 Handbook of Differential Equations, 3rd edition,

Academic Press.

Page 130: Efficient Method for Solving Some Types of Partial

ุนู„ู‰ ุงู‚ุชุฑุงู† ุตูŠุบุฉ ุชุญูˆูŠู„ ุฌุฏูŠุฏ ู…ุน ุทุฑูŠู‚ุฉ ุชุณุชู†ุฏููŠ ู‡ุฐู‡ ุงู„ุฑุณุงู„ุฉ ุงู‚ุชุฑุญู†ุง ุทุฑูŠู‚ุฉ ุฌุฏูŠุฏุฉ

ุงู„ุญู„ ุงู„ู…ุถุจูˆุท ู„ุฅูŠุฌุงุฏู„ุญู„ ุจุนุถ ุงู†ูˆุงุน ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฌุฒุฆูŠุฉ ุงู„ุงุถุทุฑุงุจ ุงู„ู‡ูˆู…ูˆุชูˆุจูŠ

ุงูˆ ุงุนุงุฏุฉ ุชุฑุชูŠุจ ุชุฑุฏุฏ ุณูŠู…ุชู‚ูˆูŠู…ูƒู† ุงุณุชุฎุฏุงู… ุงู„ุทุฑูŠู‚ุฉ ู„ุญู„ ุงู„ู…ุณุงุฆู„ ุฏูˆู† ุฃูŠ ููŠ ู…ุฌุงู„ ุงูˆุณุน.

ุชู‚ูŠูŠุฏ ุจูุฑุถูŠุงุช ูˆ ู‡ูˆ ุญุฑ ู…ู† ุงุฎุทุงุก ุงู„ุชุฏูˆูŠุฑ. ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุชุณู…ู‰ ุทุฑูŠู‚ุฉ ุงู„ุชุญูˆูŠู„ ุงู„ุงู„ู…ุฌุงู„ ุงูˆ

ุงู„ุฌุฏูŠุฏ ู„ู„ุงุถุทุฑุงุจ ุงู„ู‡ูˆู…ูˆุชูˆุจูŠ.

ุณูŠูƒูˆู† ุงู„ุชุฑูƒูŠุฒ ุนู„ู‰ ุจุนุถ ุงู„ู…ูุงู‡ูŠู… ุงู„ุงุณุงุณูŠุฉ ู„ู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู‡ุฏู ุงู„ุงูˆู„ ููŠ ุงู„ุฑุณุงู„ุฉ

.ุงู„ุฌุฒุฆูŠุฉ

ุญู„ ุจุนุถ ุงู†ูˆุงุน ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ุงู„ู‰ ุจุงู„ุฅุถุงูุฉู‡ูˆ ุชุทุจูŠู‚ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ู‚ุชุฑุญุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ

ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฌุฒุฆูŠุฉ ุฐุงุช ุงู„ุดุฑูˆุท ุงู„ุงุจุชุฏุงุฆูŠุฉ ู…ุซู„

Klein-Gordan equation, wave-like equations, autonomous equation,

system of two or three non-linear equations, Burgers' equations, coupled

Hirota Satsuma KdV type II, and RLW equation.

ุงุฎูŠุฑุง ุงุณุชุฎุฏู…ุช ู„ุญู„ ู†ู…ูˆุฐุฌ ุชุทุจูŠู‚ูŠ ู…ุซู„ ู…ุนุงุฏู„ุฉ ุฑุทูˆุจุฉ ุงู„ุชุฑุจุฉ ุญูŠุซ ุงู† ุญู„ู‡ุง ุจุทุฑูŠู‚ุฉ ุงู„ุงุถุทุฑุงุจ

ุตูŠุบุฉุงู„ู‡ูˆู…ูˆุชูˆุจูŠ ุงู„ุชู‚ู„ูŠุฏูŠุฉ ูŠุคุฏูŠ ุงู„ู‰ ุงู„ุญู„ ุงู„ุชู‚ุฑูŠุจูŠ. ุงูŠุถุง ุงุซุจุชู†ุง ุชู‚ุงุฑุจ ู…ุชุณู„ุณู„ุฉ ุงู„ุญู„ ุงู„ู‰ ุงู„

ู…ูˆุซูˆู‚ูŠุฉ ูˆ ู‚ุงุจู„ูŠุฉ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ู‚ุชุฑุญุฉ. ุงูŠุถุง ุชุถู…ู†ุช ุจุนุถ ุงู„ุงู…ุซู„ุฉ ุงู„ุชูŠ ุชูˆุถุญ. ุฉุงู„ู…ุถุจูˆุท

ุงู„ู†ุชุงุฆุฌ ุงู„ุนู…ู„ูŠุฉ ุงุซุจุชุช ุงู† ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ู‚ุชุฑุญุฉ ุงุฏุงุฉ ูƒูุคุฉ ู„ุญู„ ุชู„ูƒ ุงู„ุงู†ูˆุงุน ู…ู† ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ

ุงู„ุฌุฒุฆูŠุฉ.

ุงู„ู…ุณุชุฎู„ุต

Page 131: Efficient Method for Solving Some Types of Partial

ุฌู…ู‡ูˆุฑูŠุฉ ุงู„ุนุฑุงู‚

ูˆุฒุงุฑุฉ ุงู„ุชุนู„ูŠู… ุงู„ุนุงู„ูŠ ูˆุงู„ุจุญุซ ุงู„ุนู„ู…ูŠ

ุจุบุฏุงุฏ ุฌุงู…ุนุฉ

/ุงุจู† ุงู„ู‡ูŠุซู…ู„ู„ุนู„ูˆู… ุงู„ุตุฑูุฉ ูƒู„ูŠุฉ ุงู„ุชุฑุจูŠุฉ

ูƒูุคุฉ ู„ุญู„ ุจุนุถ ุฃู†ูˆุงุน ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฌุฒุฆูŠุฉ ุฉู‚ูŠุทุฑ

ุฑุณุงู„ุฉ ุฌุงู…ุนุฉ ุจุบุฏุงุฏ ,ุงุจู† ุงู„ู‡ูŠุซู… -ู„ู„ุนู„ูˆู… ุงู„ุตุฑูุฉ ุงู„ุชุฑุจูŠุฉ ูƒู„ูŠุฉ ุฏู…ุฉ ุฅู„ู‰ู€ู…ู‚

ู„ูˆู… ู€ุดู‡ุงุฏุฉ ู…ุงุฌุณุชูŠุฑ ุนูˆู‡ูŠ ุฌุฒุก ู…ู† ู…ุชุทู„ุจุงุช ู†ูŠู„ ููŠ ุงู„ุฑูŠุงุถูŠุงุช

ู…ู€ู† ู‚ุจู€ู„

ู…ูŠุณุฑ ุนุจูŠุฏ ุนู†ุงุฏูŠ

ุฑุงูู€ุฅุดู€ุจ ุฃ . ุฏ. ู„ู…ู€ู‰ ู†ุงุฌู€ูŠ ู…ุญู€ู…ู€ุฏ ุชูˆูู€ูŠู‚

ู… 2019 ู‡ู€ 1440