effect on em cells

Upload: haider-ali

Post on 03-Jun-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Effect on EM cells

    1/9

    Pergamon

    Chemi al Engineering Sctence. Vol. 52. Nos. 21.'22, pp. 3843 3851. 1997

    , 1997 Elsevier Science Ltd. All rights reserved

    Printed in Great

    Britain

    P I I : S0009-2509(97)00090-0 ooo9 2509.'97 $17.00 + 0.(~

    Effect s o f baf f le des ign on the l iqu id mix ing

    in an aerated s t irred tank wi th s tandard

    Rushton turb ine impe l l er s

    Wei-Ming Lu,* Hong-Zhang Wu a nd Ming-Ying Ju

    De par tm ent o f Chem ica l Enginee r ing , Na t iona l Ta iw an U nive r s i ty , Ta ipe i , Ta iw an 10617,

    R.O .C.

    (Accepted 1 Ju ly 1997)

    Abstract-

    Th e ef fects of width and nu m be r of baf fles in mec hanica l ly agi ta ted vesse ls wi th

    s tand a rd Ru sh ton tu rb ine impe l le rs a r e exam ined fo r sys tems w i th and w i thou t ae r a t i on . The

    inse r t ion o f the appro pr i a te num ber o f baf fles c lea r ly imp roves the ex ten t o f li qu id mixing .

    How eve r , excess ive ba f f li ng (i .e . nb > 8 o r

    B / T

    >0.2) and spa rg ing gas th rough the impe l le r

    would in te r rup t l i qu id mixing and leng then the mixing time. Th i s s tudy found tha t spa rg ing gas

    th ro ugh the impe l le r le ads to an inc r ea se in the mixing time o f mo re than 20% because i t

    r educes the l iqu id pu mp ing capac i ty o f the impel le r. A numer i ca l t e chn iq ue was appl i ed to

    exam ine the same e f fec t on seve ra l ex t r eme ba ff le con d i t i ons an d the ca se s o f h ighe r ga s f low

    ra te s and ro ta t i ona l speeds . To gene ra l i ze our r e su l t s ob ta ined , the numer i ca l t e chn ique was

    appl i ed to s imula te fo r a sys tem w i th t r ip le impe ller s. The t r ends o f the m ixing t ime w ere found

    to be ve ry s imi lar to the s ing le impe l le r sys tem. By cor r e la t i ng the m ixing t ime w i th nb ,

    B / T ,

    Q0 and N , the fo l lowing cor r e la t i on i s ob ta ined fo r the sys tem wi th s ing le Rush ton tu rb ine

    impe l le r unde r non-gassed and ae r a ted sys tems .

    N t M = 5 5 . 7 ( n b ) - o . 3 o ( B / T

    )- o.1 s35

    ( Q g / N D 3 ) 2 9 6

    and the s imi la r co r r e la t i on fo r the t r i p le impe l le r sys tem can be g iven a s

    N t M

    = 46.5(nb)- o

    29 5(B /T ) - o.327(Qg/ND3)O.OlO

    ( 1997 Elsevier Science Ltd.

    K e y w o r d s :

    Liquid mixing; baf f le design; mixing t ime; mult iple impellers : s t i r red tank; power

    c o n s u m p t i o n .

    I N T R O D U C T I O N

    Th e role o f baf fles in a me chan ica l ly agi ta ted Vessel i s

    t o p r o m o t e t h e s ta b i li ty o f p o w e r d r a w n b y t h e i m p e l-

    ler and to p r even t sw i r li ng and vor tex ing o f l iqu id ,

    thus , g r ea t ly im prov ing the m ixing o f l iqu id . I n the

    com me rc i a l l a rge sca le tanks , the i nse r t i on o f ex t r a

    baf f les to obta in more heat t ransfer area i s a very

    common prac t i ce . Howeve r , excess ive ba f f l i ng may

    cause a r ed uc t ion o f mass f low and loca l i z ing f low

    wi th in the sys tem. By ex tend ing Na ga ta ' s ( 1975)

    w o r k , N i s h i k a w a

    et a l .

    (1979) presented a re la t ionship

    be tween the n um ber o f ba ff le s and m ixing t ime fo r

    a s ingle four- and s ix-blade f la t-paddle impeller . They

    a lso de f ined the prod uc t o f mixing t ime and pow er

    draw n b y the impe l le r a s mixing ene rgy as an index to

    cha rac te r i ze the mixing in a mechan ica l ly ag i ta ted

    vesse l . From thei r results , Nishikawa

    et al .

    (1979)

    *Corresponding author. T el. : 008862 3622707 . Fax:

    00 886 2 362 3040.

    3843

    poin ted ou t tha t i f the w id th o f the ba ff le i s l arge r than

    0.1 T, the ful ly baf fled co ndi t ion w i ll be obta ined as

    nb - -3 o r m ore .

    Sano and H i romoto (1987) have s tud ied the r e la -

    t i onsh ip be tween c i r cu la t i on r a te and mixing t ime fo r

    va r ious padd le impe l le r s and have r e la ted the mixing

    t ime w i th the o the r ope ra t ion va r i ab le s a s

    NtM = (NtMjF.B.C/ ( I

    --0 .62 e -6 8~) (1)

    whe re

    ~ = n b B / T

    a n d

    ( N t . ~ t) F H c = 2 . 3 ( D / T ) - 1 ~ 7

    ( w / T )

    0.7 4 n~;-0.4~.

    Pand i t and Josh i ( 1982) , ex tend ing the mode l pro-

    p o s e d b y J o s h i et a l . ( 1982), e s t ima ted the mixing t ime

    of the gassed s ti r red tan k and o bta ined the fo l lowing

    equa t ion to pr ed i c t mix ing t ime in such a sys tem

    N tM = 2 0.4 1 ( ~ - f - ) ( T ) t 3 ' 6 ( W ) ( N ~ ) ' 2

    / 2 1

  • 8/11/2019 Effect on EM cells

    2/9

    3844 W.-M.

    where the constant

    'a

    depended on the size of the

    circu latio n loop and was equal to 1 for a centrally

    located impeller.

    In retrospect, we see that little research has been

    done on the effect of baffle design on mixing time in

    the gassed stirred tank with Rushton impellers in the

    previous works. In this study, both tracer technique

    and computational fluid dynamic approach are used

    to discuss how the baffle width, baffle number, rota-

    tional speed, aeratio n rate an d impel ler numbe r affect

    the extent of liquid mixing in a mechanical ly agitated

    tank with Rushton turbine impellers.

    DETERMINATION OF MIXING rIME AND ENERGY

    Tr ac e r t e s t t o de t e r mi ne t he m i x i ny t i m( ,

    Tracer test was carried out in a fiat-bottomed

    transpar ent acrylic tank. The maj or dimensions of the

    vessel and the equipment used in this study are both

    shown in Fig. 1. The power drawn by the impeller

    under various conditions was det ermined carefully by

    a torsion angle-type torque meter. Baffles were fixed

    in a multislot ring which enabled us to change the

    number and width of the baffles. The tracer used in

    L u et al.

    this study was 100 ml 40% NaCI sol ution for each

    measurement and was added into stirred vessel along

    the shaft ins tanta neous ly. To detect the mixing time,

    an electrode as proposed by Lamb et al . (1960) was

    located at various positions, from which the longest

    time was chosen as the mixing time under the given

    condition. The error indu ced by the dosing time was

    found to be less than 0.5 s which was qui te small

    compared to most of the measured mixing time and

    was neglected in this study. The termination point of

    the tracer experiment or the cut point for mixing time

    was taken when the response curve has reached

    c ( t ) - ( ,

    i - - C

    - - ~< 5 % ( 3 )

    where c~, q and

    c ( t )

    are tracer equilib rium concentra-

    tion, initial concen tratio n and concent ration at time t,

    respectively.

    S i m u l a t i o n q f m i x i n y t i m e s

    To determine the mixing time under extreme

    baffle conditions, other rotational speeds (N = 5 and

    6.66 rps) and the mixing time for multiple impeller

    l.motor 2.torque meier

    4.tracer inlet 5.gas inlet

    3.mixing time measured instrument

    6.water inlet

    (~ ~

    ] J

    a v

    e 1

    i | i

    ' I

    r: [] = ~ ( ~)

    t ~

    ho

    =

    T/3

    D=T/3

    C=2T/3

    L=D/4

    W = D/5

    B =case by case

    T=0.288m

    c

    a

    -'-0 ~I,,,

    '~1.

  • 8/11/2019 Effect on EM cells

    3/9

    Effects of baffle design on the liquid mixing in an aerated stirred tank

    3845

    s y s t e m , a n u m e r i c a l s i m u l a t i o n p r o g r a m w a s d e v i s e d

    t o e s t i m a t e t h e m i x i n g ti m e o f t h e s y s t em w i t h a n d

    w i t h o u t a e r a t i o n . T h e c o m m e r c i a l ly a v a i l a b l e c o m -

    p u t e r s o f t w a r e ' F l u e n t ' w a s u s e d t o c a l c u l a t e t h e

    s ing le -phas e f low f ie ld o f the ag i t a t ed ves s e l . Du r ing

    t h e s i m u l a t i o n , t h e i m p e l l e r w a s a l w a y s c o n f i n e d i n

    a b l a c k b o x a n d t h e b o u n d a r y c o n d i t i o n s w e r e s e t o n

    t h e e d g e s o f t h i s b o x . T h e b o u n d a r y c o n d i t i o n s i n -

    c l u d i n g t h e k i n e t i c e n e r g y , r a d i a l v e l o c i t y , t a n g e n t i a l

    ve loc i ty and ver t i c a l ve loc i ty were s e t a f t e r the l a s e r

    d o p p l e r a n e m o m e t e r ( L D V ) m e a s u r e m e n t s , h o w ev e r ,

    t h e e n e r g y d i s p a s s i o n r a t e w e r e e s t i m a t e d f r o m a n

    e x p r e s s i o n p r o p o s e d b y W u a n d P a t t e r s o n ( 1 9 8 9 )

    c , = A K 3 / 2 / L , ~ ) .

    T h e x - ~ t u r b u l e n t m o d e l w a s a d o p t -

    e d t o d e t e r m i n e t h e R e y n o l d s s t r e s s e s . O n c e t h e

    s ing le -phas e f low f ie ld be de te rmined , the l iqu id

    v e l o c i t y w i t h a e r a t i o n c a n b e c a l c u l a t e d f r o m t h e

    r e s u l t s o f B a k k e r a n d V a n d e n A k k e r ( 1 9 9 4 ) a s

    fo l lows :

    U . g

    =

    U t . ~ x

    P g / P o ) ~

    (4)

    wher e U t .g and U~. , a re the l iqu id -pha s e ve loc i ty w i th

    a n d w i t h o u t a e r a t i o n , P0 a n d P o a r e t h e p o w e r c o n -

    s u m p t i o n w i t h a n d w i t h o u t a e r a t i o n , r e s p e c t i v e l y .

    T h e n t h e l i q u i d v o l u m e t r i c fl o w r a t e c a n b e c a l c u l a t e d

    as fo l lows :

    q,,t .g = UJ.o x (aerai , pro) x (1 - % ) (5)

    w h e r e

    q~a,g

    w a s t h e l i q u i d v o l u m e t r i c f l o w r a t e b e t -

    ween ce l l s in the i d i rec t ion , ae ra i.p ,o was the p ro jec -

    t ive a rea in the i d i rec t io n and eg i s the va lue o f loca l

    g a s h o l d - u p w h i c h a r e o b t a i n e d f r o m J i a n ( 1 9 92 ) a n d

    Lin (1994) . By u s ing the numer ica l s imu la t ion p ro -

    g r a m , t h e m i x i n g ti m e o f t h e s y s te m u n d e r g a s s e d

    a n d u n g a s s e d c o n d i t i o n s c a n b e e s t i m a t e d . T h e m o s t

    s u i t a b l e e x p o n e n t ' / / ' w a s d e t e r m i n e d b y c o m p a r i n g

    t h e s i m u l a t e d m i x i n g t i m e w i t h t h e e x p e r i m e n t a l

    v a l u e . T h e p r o c e d u r e s o f t h i s s i m u l a t i o n i s d e p i c t e d i n

    F ig . 2 . and the de ta i l s c an b e found in Wu 's thes i s

    (1996). Tab le 1 com par es the s im u la ted res u l t s w i th

    t h e e x p e r i m e n t a l d a t a , f r o m w h i c h i t c a n b e s e e n t h a t

    t h e s i m u l a t i o n r e s u l t s c a n a g r e e w i t h t h e e x p e r i m e n t a l

    d a t a w i t h i n a r a n g e o f 1 0 % d e v i a t i o n u n d e r g a s s e d

    a n d u n g a s s e d c o n d i t i o n s .

    /

    Y e s

    Input the s ingle phase ~ .

    flow field data from

    /

    esult obtained hrough

    P l u e m

    D iv iding the stiffed / "

    tank into several

    zones and input he

    local gas holdup

    data, s

    _ L

    Input the power

    consumptionvaluc , ~

    with and without

    aeratiou,Po , Po_~

    ca lcu la t ing l iqu id ~

    ~ / ve locity ata from

    / / f o l l o w i n g :

    /

    Calculalino he volume

    f lo w r a t e from folow~g:

    t'U~x(areal~)x(l as)

    I Ee~ , l t~g mix~g ime rom mass

    i r a

    balanceequd on of each cells B

    RESULTS AND DISCUSSION

    F i g . 3 s ho w s h o w t h e w i d t h a n d t h e n u m b e r o f

    baf f l e a f fec t the ex ten t o f l iqu id mix ing o f the s ing le

    i m p e l l e r s y st e m u n d e r u n g a s s e d c o n d i t i o n s f o r

    N = 3 . 3 3 r p s i n t e r m s o f ' m i x i n g t i m e ' . T h e r e s u lt s

    c lea r ly ind ica te tha t in s e r t ion o f ba f f l es in the s ys tem

    c a n g r e a t l y i m p r o v e t h e l i q u i d m i x i n g e v e n w h e n t h e

    r a t i o o f

    B / T

    i s l e s s than 0 .05 . However , the fu l ly

    baf f l ed cond i t ion i s d i f f icu l t to ach ieve i f the ba f f l e

    number i s l e s s than th ree , wh ich can be s een f rom the

    deca y cu rves fo r nb = 2 and 3 in th i s f igu re. Th is res u l t

    i s d i f f e r e n t f r o m w h a t w a s o b s e r v e d b y N i s h i k a w a

    et a l .

    (1979) fo r padd le imp e l l e r s ys tem w h ich s t a t es

    tha t i f n~ > /2 , the fu l ly ba f f l ed cond i t ion can be

    o b t a i n e d . I n t h e s y s t e m s f o r w h i c h t h e b a f f le n u m b e r

    Fig. 2. The f low diagram of the simulated procedure for

    estimating the mixing time in gas-liquid agitated vessel.

    i s m o r e t h a n f o u r, t h e m i x i n g t im e d e c r e a s e s s t e e p l y

    wi th the inc re as e o f the w id th o f the ba f f l e f i r st , t hen i t

    s o o n r e a c h e s a c o n s t a n t v a l u e a s

    B / T

    exce eds 0 .1 . I t is

    in te res t ing to no te tha t th i s l eve l ing of f va lue t end s to

    dec reas e as the number o f ba f f l es inc reas es in the

    range o f nb < 8 and B / T < 0 . 2 0 . T h i s f a c t i m p l i e s th a t

    wi th in th i s range , the inc reas e o f nh and B / T wil l

    i m p r o v e t h e e x t e n t o f l i q u i d m i x i ng . H o w e v e r , t h e

    s imu la ted res u l t s a s s hown in the f igu re by do t t ed

    l i ne s a l s o p o i n t o u t t h a t t h e q u a l i t y o f l i q u id m i x i n g

    wi l l becom e w ors e i f n~ i s m ore than e igh t o r

    B / T

    is

  • 8/11/2019 Effect on EM cells

    4/9

    3846

    W.-M. Lu et al.

    Table 1 . Com par ison of mixing timc ( t~f ) be tween exper im cnta l and s im ula ted methods

    Baffle width

    Mixing t ime 0 .05T 0 .075T 0 . 1 T

    0.15T 0 .2T

    Single impeller

    system nh = 2

    Q~ = 0 L/rain

    Single impeller

    system nh = 2

    Qg = 5 L/m in

    Tr iple impe l le r

    sys tem B =0.15T

    Qg = 0 L ;min

    Tr iple impe l le r

    sys tem B =0.157 '

    Q~ = 13 L/m in

    Exper imenta l da ta

    (sl

    14.6 13.7 13.0

    Sim ulate d dat a (s) 14.8 14.2 13.4

    D evi atio n (% ) 1.30 3.60 3.(X1

    Ex per im enta l dat a (s) 17.2 16.1 15.2

    Sim ulated dat a (s) 18.4 17.3 16.6

    De viati on (%) 6.98 7.45 9.21

    Baffle width

    2 3 4

    Ex per im enta l dat a (s) 13.7 13.6 10. I

    Sim ulate d dat a (s) 13.3 13.2 10.3

    De viati on (%) 2.92 2.94 1.98

    Ex per im enta l dat a (s) 15.1 14.9 11.3

    Si m ula ted da ta (s) 14.0 14.11 1(I.2

    De viatio n (%) 7.28 6.04 9.73

    12.1 11.5

    12.0 11.7

    0.83 1.74

    14.7 13.5

    15.3 14.2

    4.(18 5.19

    6 8

    9.20 8.10

    9.(X) 8.40

    2.22 3.70

    10.4 9.20

    9.40 8.50

    9.62 7.61

    2

    E

    c

    .M

    E

    30

    _ _

    i

    25

    2 0 1

    15

    k ~

    .5

    0.00

    e x p e i m e n t a l d a t a

    s i m u l a t e d d a l a

    l.bartl~

    J.I,arne,

    4-l.alleo

    0 6-bame,

    X 1 1 - ' ~ t / l l ~

    1 / f +

    . . . .. _ . . _ . / / i

    c _ ~ 3 - . - ~

    I / / '

    L.... . .,_ ~ [ :

    0 .0 5 0 . 1 0 0 . 1 5 0 . 2 0 0 . 2 5 0 . 3 0

    B / T

    0.35

    Fig. 3. Effect of baffle width on t .~t for va rious num ber of

    baffles under ungassed condition for singlc impeller system

    with N =3.33 rps.

    11

    o

    E

    on

    E

    10

    ~ ~ 4-b~ m es

    Ra~U n, l s p e e

    3 33fUS

    5 oo

    7r~

    5

    0.05 0.10 0.15 0.20

    B / T

    Fig. 4. Effect of baffle width o11 tM with n~ =4 for various

    rotational speeds under ungassed condition.

    l a r g er t h a n 0 .2 5 . T h e t r e n d o f g r o w i n g w o r s e i n m i x i n g

    i s d u e t o t h e l o ca l i z in g e f f ec t o f e xce s s ive ba f f l in g .

    I f t h e s a m e p l o t s a r e d r a w n f o r N = 5 a n d 6 . 67 r p s ,

    i t w i l l b e f o u n d t h a t t h e t r e n d s o f m i x i n g t i m e a r e v e r y

    s i m i l a r to F i g . 3 . H o w e v e r , t h e c o n t i n u o u s d e c a y o f

    t h e m i x i n g t i m e w i t h t h e i n c r e a s e o f b a f fl e w i d t h s t i l l

    e x i s t s f o r n b = 4 a n d t h e m i x i n g t i m e d o e s n o t r e a c h

    a l e v e l i n g o f f v a l u e u n t i l

    B / T >

    0 . 15 a n d n h > /6 . F ig . 4

    s h o w s t h e r e l a t i o n s h i p b e t w e e n t h e m i x i n g t i m e a n d

    b a f f le w i d t h f o r n b = 4 u n d e r v a r i o u s r o t a t i o n a l

    spe e d s . I t c l e a r l y in d ic a t e s t h a t ( 1} t h e in c r e a se o f

    r o t a t i o n a l s p e e d w i l l i n c r e a s e t h e l i q u i d p u m p i n g

    c a p a c i t y o f t h e im p e l l e r , t h u s t h e m i x i n g q u a l i t y w i l l

    b e i m p r o v e d ; ( 2) t h e c o n t i n u o u s d e c a y t r e n d o f m i x i n g

    t i m e w i t h t h e i n c r e a s e o f b a f f le w i d t h b e c o m e s m o r e

    e v i d e n t f o r l a r g e r r o t a t i o n a l s p e e d s a n d ( 3) t h e l e v e l i n g

    o f f v a l u e o f m i x i n g t i m e c a n b e s e e n o n l y f o r

    N = 3 . 33 rp s , imp ly in g t h a t i t w i l l be mo re d i f f i cu l t t o

    a t t a i n t h e f u l ly b a f f le d c o n d i t i o n i f t h e r o t a t i o n a l

    s p e e d i s h i g h e r . T h i s p h e n o m e n o n i s c o n s i s t e n t w i t h

    t h e e x p e r i m e n t a l r e s u l t s o f t h e f u l ly b a f f le d c o n d i t i o n

    f o r v a r i o u s r o t a t i o n a l s p e e d s o b t a i n e d b y t h e a u t h o r s

    w h i c h i n d i c a t e t h a t t h e f ul l y b a f f le d c o n d i t i o n f o r

    N = 3 . 3 3 , 5, 6 . 6 7 r p s a r e n b B / T ) 12 = 0 . 4 5 . 0 . 6 7 a n d

    0 . 74 , r e spe c t ive ly (L u et al. 19971.

    T o e x a m i n e h o w t h e m i x i n g e n e r g y ( P h t M ) i s a f f e c -

    t e d b y t h e i n c r e a s e o f b a f f le w i d t h a n d n u m b e r , t h e

    p l o t s o f PhtM a g a i n s t B / T f o r va r io u s n h wi th N =

    3 .3 3 r p s a r e s h o w n i n F i g . 5 . T h e t r e n d s o f th e s e p l o t s

    i s v e r y s i m i l a r t o w h a t i s s e e n i n F i g . 3 . T h e v a l u e o f

  • 8/11/2019 Effect on EM cells

    5/9

    Effects of baffle design on the liquid mixing in an aerated stirred tank 3847

    E

    II0

    100

    90

    80

    70

    6o

    50

    40

    30

    20

    0.00

    t

    ' I

    0.05 0.10

    (arrx-)

    Imlh

    t t-t.,,n~

    0.15 0.20

    110

    o o ~

    90

    8 0

    70

    ~ 6 o

    ~ 50

    40

    30

    20

    \

    b = m w i d t h

    B - 0.OST

    B - 0 075T

    B - O I T

    B OIST

    B 0 T

    I

    ]

    0 1 2 3 4 5 6 7 8 9 10 11 12

    nb

    Fig, 5. Effect of baffle width on PbtM for single impeller

    system with various number of baffles under ungassed condi-

    tion and N = 3.33 rps.

    Fig. 6. Effect of baffle number on PbtM for single impeller

    system with various width of baffles under ungassed condi-

    tion and N = 3.33 rps.

    mixin g energy decreases first an d soon reaches a level-

    ing off value for a given numbe r of baffles, except for

    nb ~

  • 8/11/2019 Effect on EM cells

    6/9

    3848 W.-M. Lu

    et

    a l .

    B = 0 . 1 5 T

    baffle umber

    2 ball]es

    3 barnes

    4 balTles

    O 6 barnes

    [ ] 8 - b a f f l e s

    ,1

    E

    ~

    e-,

    ~

    E

    0 . 0 0 E + 0

    16.00

    15.00

    14.00

    13.00

    12.00

    1 1 . 0 0

    10.00

    9 .00

    8 .00

    7 .00

    6 .00

    0

    i

    0 .00

    8 .33E-5 1 .67E-4 2 .50E-4 3 .33E-4 m J / s )

    r

    t

    ' F l o o d e d

    I

    I

    I

    / i

    r

    J ,

    5 I 0 15 20 (L/m in)

    , a i ' (vv m)

    0.26 0 .53 0 .79 1 .05

    Q g

    Fig. 7. Effect of gas f low rates on t .u for single impeller system with various width o f ba ffles and

    N = 3.33 rps.

    l o n g e r t h a n t h e o n e s o f s in g l e i m p e l l e r s y s t e m a n d t h e

    d i f fe r e n c e b e t w e e n t h e m b e c o m e s s m a l l e r a s t h e b a ff l e

    w i d t h b e c o m e l a r g e r . I t is a l s o i n t e r e s t i n g t o n o t e t h a t

    t h is d i f fe r e n c e i n c re a s e s t o a l m o s t d o u b l e a s i t r e a c h e s

    t h e f u l ly b a f f le d c o n d i t i o n i f i t is c o m p a r e d w i t h t h e

    c a s e o f

    nb

    is 2 or 3.

    T o o b t a i n a m o r e c o m p r e h e n s i v e a n d r e l i a b le re l a -

    t i o n s h i p f o r t h e o p e r a t i n g p a r a m e t e r s , t h e m i x i n g t im e

    d a t a o b t a i n e d e x p e r i m e n t a l l y a re c o r r e l a te d w i t h

    n b a n d B I T a n d Q g u n d e r v a r i o u s r o t a t i o n a l s p e e d s

    a n d a d i m e n s i o n l e s s c o rr e l a t i o n c a n b e g i v e n a s

    N t M = 5 5 . 7 ( n b ) - 3 ( B / T

    -

    I535(Qg./ND3) 29~ 6 )

    f o r th e s i n g l c R u s h t o n i m p e l l e r s y s t e m . I f t h e

    s i m u l a t e d v a l u e o f m i x i n g t i m e f o r t r i p l e i m p e l l e r

    s y s t e m a r e c o r r e l a t e d w i t h t h e s a m e p a r a m e t e r s a s t h e

    t h e s i n g l e i m p e l l e r s y s t e m , t h e n t h e s i m i l a r c o r r e l a t i o n

    f o r th e t r i p l e i m p e l l e r s y s t e m c a n b e g i v e n a s

    N tu 46 .5 (nh ) -o .295(B/TX-O.327 ,r l

    ;~rn31o.oH) (7 )

    T h e s t a n d a r d d e v i a t i o n o f t h es e t w o e q u a t i o n s a r e

    a b o u t 1 5 a n d 2 0 % , r e s p e c t i v e ly . F r o m t h e s e t w o

    e q u a t i o n s i t c a n b e s e e n t h a t t h e d i m e n s i o n l e s s m i x i n g

    t i m e d e c r e a s e s w i t h t h e i n c r e a s e o f n b , B / T a n d N ,

    h o w ever , i t i n c r eases as Q g in c r eases . Th e e f f ec t o f

    b a ff le n u m b e r o n m i x i n g t i m e i s m o r e s i g n if i c a nt th a n

    b a f fl e w i d t h i n t h e s i n g l e i m p e l l e r s y s t e m , h o w e v e r , t h e

    i n v e r s e s i t u a t i o n s a r e f o u n d i n t h e t r i p l e i m p e l l e r

    s y s t e m . F r o m t h e s e t w o e q u a t i o n s i t m a y b e m i s u n -

    d e r s t o o d t h a t t h e e ff ec t o f ga s f l ow r a t e o n m i x i n g t im e

    i s s m a l l , h o w e v e r , i f t h e d i m e n s i o n a l g r o u p s a r e u s e d ,

    t h e a b o v e t w o e m p i r i c a l e q u a t i o n s c a n b e r e w r i t te n a s

    N tM = 32 .4 (nh ) - z 75 (B/T )-o.14O(Q.)O.2O8 (6')

    a n d

    N t M = 31.1(n~) . . . . 2 8 9 ( B / T ) - O . a z o ( Q )o.171

    (7'),

    w h i c h w i l l l o o k m o r e r e a s o n a b l e t h a n t h e o r i g i n a l

    d i m e n s i o n l e s s e q u a t i o n s . W i t h t h e s e t w o c o r r e l a t io n s

    t h e m i x i n g q u a l i ty u n d e r a g i v e n o p e r a t i n g c o n d i t i o n

  • 8/11/2019 Effect on EM cells

    7/9

    E f f e c ts o f b af f le d e s i g n o n t h e l i q u id m i x i n g i n a n a e r a t e d s t i r r e d t a n k

    4-baftle,L B=0.1T

    3849

    l o o d i n g ~rated r a t e

    o b s e r v e d b y

    the

    r c s u h s o f I bi s t u d y

    csl im i~ d by Grcaves argl Kobbacy corrclation(198 I)

    Rota6o~al speed

    3 . 33q~s

    5 o o ~ , ,

    6 6 7 ~ s

    12 .00

    I 1 . 0 0

    lO.O0 / / /

    9 . 0 0 ' x

    : _ . . .

    I o . . . . . . . . < o < . > /

    .= 8 .00 / - , ' ~

    E 7 .00

    I

    6.00

    /

    5 0 0

    0 . 0 0 E + 0 8 . 3 3 E -5 1 . 6 7E - 4 2 . 5 0 E - 4 3 . 3 3 E - 4

    gas f low rate (m3/s)

    F i g 8 . E ff e ct o f g a s f lo w r a t e o n f o r s i ng l e i m p e l l e r s y s t e m w i t h % = 4 a n d B = 0 . I T u n d e r v a r i o u s

    r o t a t i o n a l s p e e d s a n d t h e c o m p a r i s o n o f th e f l o o d i n g a e r a t e d r a t e b e t w e e n t h i s s t u d y a n d o t h e r c o r r e l a t i o n .

    0

    e-

    x

    B 01~]

    2 balll~

    3 b a f f l e s

    4 . h a f l l e ~

    6 balll=~

    :~-ba:lles

    0.67 0.83 1.00 1.17

    i

    . . . . ~ . . . . t . - - - - ,

    0 .00 0 .17 0 .33 0 .50

    70

    65 -- ~- -- ,~,

    6 0 . . . . . . . . . . . . . . .

    s s - i - - ; -

    50

    4 5 ..

    --4.

    I

    4 0

    3 5

    i

    i i

    I T

    i

    . ;

    i . . . . . .

    I

    I - ~ - -

    133 (Xl 04)

    i ( mS / s )

    I i

    l 2 3 4 5 6 7 8 ( L /m in )

    L - - . . ~ . . . . . t . . . . . I I . . . . L I

    I

    0 . 0 0 0 0 . 0 5 3 0 10 5 0 . 1 5 8 0 . 2 1 0 0 .2 6 3 0 3 1 5 0 . 3 6 8 0 . 4 2 0 ( w i n )

    G as F lo w R a te Q ~

    Fig . 9 . E f f ec t o f g a s f lo w r a t e o n

    P~t

    f o r s i n g l e i m p e l l e r s y s t e m w i t h v a r i o u s w i d t h o f b a f f l e s u n d e r

    N = 3 .33 r ps .

  • 8/11/2019 Effect on EM cells

    8/9

    3850 W.-M. Lu et a l .

    16

    14

    12

    10

    6

    4.0

    ~ baffle number

    %-2

    0

    n b -

    ]

    nb- 4

    ] % - 6

    4.5 5.0 5.5 6.0 6.5

    Pg (J )

    Fig. 10. T he relation ship between Pg and t , , with v arious gas flow rates an d baffle num ber w ith a constant

    baff le wid th B =0.15 T.

    Table 2 . The c omp ar ison of mixing t ime ( t~) be tween the s ing le and t r ip le impe l le r sys tems under ungrassed condi t ions

    Baffle width

    nh Mixing t ime (s) 0 .05T 0 .075T 0 . I T 0 .15T 0 .2T

    2 Single im pe lle r system (I) 14.6 13.7 13.(I 12.1 11.5

    Tr iple im pelle r system (II) 18.6 16.2 14.5 13.3 12.6

    Difference (II/I ) 100% 27.4 18.2 11.5 9.92 9.57

    3 Single im pell er system (l) 14.5 13.8 12.8 12.0 11.6

    Tr iple im pell er system (I I) 18.7 16.3 14.4 13.2 12.6

    Difference (1I/I) x 100% 29.0 18. I 12.5 10.0 8.62

    4 Sing le im pell er system (I) 10.4 9.7 9.1 8.6 8.6

    Tr iple im pell er system (II) 16.5 14.1 12.0 10.3 9.7

    Difference (11/I) x 100% 58.7 45.4 31.9 19.8 12.8

    6 Sing le im pell er system (11 10.3 9.3 8.0 8.1 8.0

    Tr iple im pell er system (I1} 14.8 13.2 10.5 9.0 9.0

    Difference (II/I ) x 100% 43.7 41.9 31.3 11.1 12.5

    8 Single im pell er system (I) 7.9 7.2 7.3 7.0 6.9

    Tr iple im pell er system (II) 13.4 11.4 8.7 8.4 8.3

    Difference (II/I ) x 100% 69.6 58.3 19.2 20.0 20.3

    c a n b e p r e d i c t e d f o r t h e s i n g l e a n d t r i p l e R u s h t o n

    i m p e l l e r s y s t e m .

    CONCLUSIONS

    I n t h i s s t u d y , t h e e f fe c t s o f w i d t h a n d n u m b e r o f

    b a f f le s in m e c h a n i c a l l y a g i t a t e d v e s s e l s w i t h s i n g l e a n d

    t r i p le s t a n d a r d R u s h t o n t u r b i n e i m p e l l e rs a r e e x a m -

    i n e d f o r t h e s y s t e m s w i t h a n d w i t h o u t a e r a t i o n . T h e

    i n s e r t io n o f th e a p p r o p r i a t e n u m b e r o f b af f le s c l e a r ly

    i m p r o v e s t h e e x t e n t o f l iq u i d m i x i n g . H o w e v e r , t h e

    e x c e s s i v e b a f f l i n g a n d s p a r g i n g g a s t h r o u g h t h e i m p e l -

    l e r w o u l d i n t e r r u p t t h e l i q ui d m i x i n g a n d i n c r e as e t h e

    m i x i n g t i m e .

    B y c o r r e l a t i n g t h e m i x i n g t i m e w i t h n ~, B / T , Q y a n d

    N , a r e l i a b l e c o r r e l a t i o n a s

    N t M

    = 55.7(nb)-o .30

    ( B / T ) - ' I 5 3 5 ( Q y / N D 3 ) ' 2 96

    c a n b e o b t a i n e d f o r

    t h e s y s t e m w i t h a s i n g l e R u s h t o n t u r b i n e i m p e l l e r

    u n d e r n o n - g a s s e d a n d a e r a t e d s y s t e m s a n d t h e s i m i l a r

    c o r r e l a t i o n f o r t h e t r i p l e i m p e l l e r s y s t e m c a n b e g i v e n

    as

    N t M 46.5 (n~)-o 29s -o ~2v 3 o o lo

    = ( B / T ) ( Q , / N D ) .

  • 8/11/2019 Effect on EM cells

    9/9

    Effects of baffle design on the liquid mixing in an aerated stirred tank

    Acknowledgement

    The authors are very grateful for the financial support

    granted by the National Science Council NSC85-2214-E-

    tX)2-0()2 for this study.

    aerai ,

    pr o

    B

    (.

    Ci

    ( ' ~

    C

    D

    h o

    / /

    I

    l h

    N

    t h

    P , ,

    P I

    [ ) i . l . q

    ( 2

    7

    U i . u

    V

    NOT.~'IION

    constant used in eq. (21

    cell projective a rea in I direction, m 2

    baMe width, m

    tracer concentration, mol.l

    initial tracer concentrat ion, mol. 1

    tracer concentration at time t, mol,.l

    final tracer concentration, tool 1

    distance between impellers, m

    impeller diameter, m

    height of lower impeller from bottom, m

    liquid level of stirred tank, m

    length of impeller blade, m

    baffle number

    rotational speed of agitation impeller, l,s

    power con sumpti on with baffle, kg m2's ~

    power consum ption with aeration, kg m:, s~

    power consumption without aeration,

    kg m 2, s ~

    the volumetric ltow rate between cells in

    I direction, m~,s

    gas flow rate, m ~ s

    mixing time, s

    lank diameter, m

    liquid-phase velocity with aeration, m s

    liquid-phase velocity without aeration, m,'s

    liquid vo lume in the tank, m ~

    Greek letter.s

    1:~ exponent adopted in eq. (4l

    ~:,, local gas hold-up

    R K F ' E R E N ( ' Y S

    Greaves , M. and Kobba cy, K . A . H. (1981) Power

    con sum pti on and impeller efficiency in gas liquid

    3~51

    dispersion. In Fluid Mix ing , I. Chem. Eng. Symp.

    Set. No. 64, I. Chem. E., Rugby, Warks, England, l, 1.

    Jian, W. J. (19921 The effect of solid co ncen tra tion on

    bubble size distribution in a three phase stirred

    tank. M.S. thesis, National Taiwan University,

    Taiwan, ROC.

    Joshi, J. B., Pandit, A. B. and Sharma, M. M. (1982)

    Mechanically agitated gas-liquid reactors.

    Chem.

    lzmtn.q Sc i.

    37 (6), 813 -844.

    l,amb, D. E.. Manning, I-. S. and Wilhlem, R. H.

    (1960} Measurement of c oncentra tion fluctuations

    with an electrical conductivity probe. A . I . ( ' h . E . J .

    614), 682.

    l,in, L. C. (1994) This study of fluid flow, power and

    bubble size distribution in different dual-impeller

    stirred tanks. M.S. thesis, National Taiwan Univer-

    sity, Taiwan, ROC.

    Lu. W. M.. Wu, H. Z., Tasi, F. Y. and Wang, C. Y.

    (1997) F, fects of baffle design on the fully bafl%d

    condition in aerated stirred tanks with Rushton

    turbine impeller. C . I . ( ' h . E . J . 28(1L 69 72.

    Nagata, S. (19751 Mixinq principles and application.

    Kodansha. Tokyo. Japan.

    Nishikawa. M., Ashiwake, K., Hashimoto, N. and

    Nagata, S. I1979) Agitation power and mixing time

    in off-centering mixing.

    /nt . Chem. Em#tg

    19(1),

    153 159.

    Pandit, A. B. and Joshi, J. B. (1982) Mixing in mecha-

    nically agitated gas liquid contactors , bubble col-

    umns and modified bubble columns. ( 'hem. Engn 9

    Sci. 37(6), 1189 1215.

    Sano. Y. and I-liromoto, U. (1987) Effects of paddle

    dimensions and baffle conditions on the inter-

    relations among discharge flow rate, mixing power

    and mixing time in mixing vessels. J. Chem. Engnq

    J a p a n 20(4) . 399 404.

    Wu, It. Z. (1996) Effect of baffle design on the fully

    baffled con diti on and fluid mixing in aerated stirred

    tank. M.S. thesis. National Taiwan University,

    Taiwan, ROC.

    Wu, H. and Patterson, G. K. (1989) Laser doppler

    measurement of turbulent flow parameters

    in a stirred rnixer. Chem. En#n# Sci . 44(10),

    22O7-222 I.