ecocardiografia 2015

Upload: sinziana2016

Post on 14-Oct-2015

44 views

Category:

Documents


0 download

DESCRIPTION

cardiologie sp

TRANSCRIPT

  • Dr Andreea Catarina Popescu Ecocardiografia- notiuni de baza -

  • Imaginea se formeaza ca urmare a fenomenului de reflexie a fasciculului de US la nivelul structurilor cardiace

    Diferena n impedana acustic (Z) a celor 2 medii

    Interactiunea cu tesuturile: atenuare, refractie, scattering

    Unghiul de incidenULTRASUNETELE (US)

  • EvolutieMod M

    2D

    Doppler pulsat, continuu, color

    Doppler tisular

    Speckle tracking

    3D

  • AvantajeAccesibila

    Repetabila

    Neinvaziva

    cost

  • DezavantajeOperator dependenta

  • IndicatiiEvaluarea FEVS

    Sufluri sistolice de gradul III

    Pacienti hipertensivi evaluarea afectarii organelor tinta

    Durerea toracica

    Dispneea

    Instabilitatea hemodinamica

    Surse de embolie

    Disectia de aorta

    Sincopa

  • Informatii obtinuteMorfologice: dimensiuni, defecte de substanta, mase (vegetatii, trombi, tumori)

    Cinetica parietala/sincronism

    Fractia de ejectie a ventriculului stang FEVS

    Hemodinamice: gradienti, estimare de presiuni

    Factori prognostici: FEVS, diametrul telesistolic, V telesistolic, MAPSE. WMSI (scorul cineticii parietale)

  • Eur J Echocardiogr 2001;Vol 2Ecocardiografia mod M

  • Feigenbaums Echocardiography, 2005. Lippincott Williams & Wilkins.

  • Feigenbaums Echocardiography, 2005. Lippincott Williams & Wilkins.

  • Ecocardiografia mod M

    Standardizarea masuratorilor

    Rezolutie in timp

    Mod M anatomic

    Mod M color

  • Feigenbaums Echocardiography, 2005. Lippincott Williams & Wilkins.

  • Potential problem with M-mode measurementsFeigenbaums Echocardiography, 2005. Lippincott Williams & Wilkins.

  • Anatomic M-mode Mele D, et al. Am J Cardiol 1998;81:82G-85G.

  • Jones CJH, et al. Br Heart J 1990;63:215-20.Functional importance of the long axis dynamics of the human left ventricle

  • MAPSEAlam M, et al. J Am Soc Echocardiogr 1992;5:427-432.

  • TAPSEHammarstrom E, et al. J Am Soc Echocardiogr 1991;4:131-138.

  • Schwammenthal E, et al. Circulation 1994;90:307-322.Pathophysiological insights into the mechanism of regurgitation

  • ParasternalSuprasternalSubcostalParasternal dreptApicalSectiuni standard

  • Incidente standard ecocardiografia 2D

    Parasternal ax lung ax scurt la baza marilor vase ax scurt planul valvei mitrale ax scurt medioventricular ax scurt apex tractul de intrare (inflow ) VDApical 4 camere 2 camere 3 camere 5 camere

    Subcostal ax lung ax scurtSuprasternal

  • Sectiunea parasternala ax lungSpatiul 3, 4, 5 parasternal stang, markerul sondei catre clavicula dreapta a pacientului

  • VS SIV anterior si perete posterior 2/3 bazale, tractul de ejectie VSValva aortica 2 cuspe din trei cea anterioara este intotdeauna cuspa dreapta, cea posterioara este cuspa noncoronariana/stangaAorta ascendentaVentriculul drept perete anterior

    Sectiunea parasternala ax lung

  • Sectiunea parasternala ax scurt

  • Sectiunea parasternala ax scurt la nivelul vaselor mari

  • Sectiunea parasternala ax scurt la nivelul vaselor mari

  • Sectiunea parasternala ax scurt la nivelul valvei mitrale

  • Sectiunea parasternala ax scurt la nivelul muschilor papilariVS contractilitate in segmentele medii, dimensiuni ale cavitatii, mod M ghidat 2D pentru dimensiuni VSMuschi papilari medial si lateralVD

  • Sectiunea parasternala ax scurt la nivelul apexului- contractilitate, continut apex VS

  • Sectiuni suplimentareSectiune ax lung pentru tractul de intrare V

    VTP VTA VD AD

  • Sectiuni suplimentareSectiune de ax lung pentru tractul de iesire VDVDAP

  • Pacientul in semidecubit lateral stang, transductorul se plaseaza cat mai posterior in general in spatiul 5 ic stg pe linia axilara anterioaraSectiunea apicala 4 camere

  • Sectiunea apicala 4 camere

  • Sectiunea apicala 5 camere ASADVDVSAo

  • Sectiunea apicala 2 camere

  • Sectiunea apicala 2 camere

  • Sectiunea apicala 3 camere

  • Sectiunea subcostala 4 camere

  • Sectiunea subcostala ax scurt

  • Sectiunea suprasternalaAoA TB AoD ACCStgASclStg APDr

  • Efectul DopplerDescris de Johann Christian Doppler in 1842

    Sunetul emis de un motorul unui automobil in miscare fata de unul stationat - se modifica in functie de viteza si in functie de directie

  • Profiluri de curgere a sangeluiFlux laminar curgere in straturi paralele in care eritrocitele au aceeasi directie de miscare si aproximativ aceeasi velocitateForte de frecare - fluxul este mai lent langa peretii vasului si cu velocitate maxima in centrul vasuluiIn general in cord si vase fluxul este laminar si depaseste rar 1.5 m/s

  • Profiluri de curgere a sangeluiFlux turbulent dezorganizarea profilului normal de curgere, vartejuri, velocitati si directii diferitePrezent de obicei in obstructii, Velocitati crescute

  • Ecocardiografia DopplerSe bazeaza pe schimbarea relativa a frecventei undei reflectate fata de unda transmisaSchimbarea frecventei se produce din cauza intalnirii intre frontul de unde emis de transductor cu frontul de unde generat de miscarea celulelor sanguine

  • Ecocardiografia DopplerFrecventa undei reflectate creste daca celulele sanguine se deplaseaza spre transductor si scade daca celulele sanguine se deplaseaza in sens opus

  • Ecuatia DopplerEfectul Doppler in tesuturi poate fi exprimat cu ajutorul unei ecuatii in care intra frecventa undei transmise si viteza de curgere a sangelui precum si unghiul pe care fasciculul de US il face cu directia de curgere

  • Din acesta ecuatie sistemele Doppler folosite in ecocardiografie deriva velocitatea de curgere a sangeluiEcuatia Doppler

  • Important Pentru a limita erorile de calcul unghiul dintre fasciculul de US si directia fluxului trebuie sa fie cat mai mic (paralel!) invers decat in eco 2D unde cea mai buna imagine se obtinea cu fasciculul perpendicular pe structura de examinat

  • Doppler continuu- Aparatul emite continuu fascicul de ultrasunete si receptioneaza continuu undele reflectate

  • Doppler continuuAvantaje:Poate masura velocitati mari cu acuratete frecvent fluxurile anormale din cord au velocitati mari peste 1,5-2 m/sDezavantaje:Lipsa discriminarii spatiale primeste informatia din toate punctele aflate pe directia fasciculului emis nu localizeaza sursavelocitatii mari pe care o inregistreaza

  • Doppler pulsat- Aparatul alterneaza transmiterea US cu receptia emite un puls de US apoi asteapta si receptioneaza unda reflectata Esantion de volum

  • Doppler pulsatAvantaje:Masoara velocitati dintr-o zona limitata prestabilita si fixata de operator care pozitioneaza esantionul de volum in locul de unde vrea sa obtina informatiaDezavantaje:Nu poate inregistra velocitati mari - fenomen de aliasing la peste 1,5-2m/s

  • Folosim Doppler continuu pentru masurarea velocitatilor mariFolosim Doppler pulsat pentru localizarea fluxurilor anormale si pentru interogarea fluxurilor normale, laminareDoppler continuu/Doppler pulsat

  • Valva aortica

  • Doppler pulsat in tractul de ejectie VS

  • Doppler pulsat la nivelul VMiUnda EUnda PUnda AE early fillingA atrial contraction

  • Doppler pulsat la nivelul valvei pulmonare

  • Doppler continuu CW

    Calcul gradienti estimare presiuni - cuantificare stenozeGradient transvalvular = 4v12- 4v22

    V1 = v max viteza obtinuta prin Doppler continuuV2 = viteza obtinuta prin Doppler pulsat

    V2

  • Doppler colorO aplicatie a Dopplerului pulsatCodificare rosu deplasare a sangelui spre transductor, albastru deplasare in sens opusVizualizarea fluxurilor intracavitare si ghidarea examenului Doppler spectral continuu/pulsatCuantificarea regurgitarilorDecelarea fluxurilor anormale

  • Doppler color - parast. ax lung VAo si VMi

  • Ecografia in urgenta

    Durerea toracica

    Evaluarea cauzei dispneei

    Evaluarea cauzei instabilitatii hemodinamice

    Evaluarea pacientilor cu sincopa

  • Ecografia

    Diagnostic pozitiv si diferential in

    Insuficienta cardiaca

    Infarctul miocardic

    Valvulopatii

    Pericardita lichidiana

    Cardiomiopatii

    Boli congenitale

    Proteze valvulare

  • Ecografia valvulopatii

    Leziuni regurgitante Doppler color grosimea jetului aria regurgitanta

    Stenoze valvulare aspect 2D, aria planimetrica gradient maxim, mediu Aria functionala

    Efectele asupra ventriculului stang sau drept, hipertensiunea pulmonara HTP

  • Stenoza mitrala

  • Stenoza mitrala degenerativaStenoza mitrala degenerativa

  • Stenoza mitrala

    Severitatea gradient mediu MVA (planimetrie, PHT)Normala : 4-6 cm2Stenoza larga: 1,6 2 cm2Stenoza moderata: 1 1,5 cm2Stenoza severa : < 1 cm2MVAStenoza larga: < 5 mmHgStenoza moderata: 5-10 mmHgStenoza severa : > 10 mmHgGradient mediu

  • Stenoza mitrala

  • Stenoza mitralaEcocardiografie: leziuni asociate- regurgitare mitrala- stenoza aortica, afectare reumatica tricuspidiana in leziunile reumatismale

  • Stenoza mitrala consecintele- dilatatia AS- hipertensiunea pulmonara- functia VD

  • Stenoza aortica

  • Stenoza aortica

  • Stenoza aorticaEcocardiografia severitatea stenozei- v maxima- gradient mediu- aria valvei aortice AVANormal : 2,5 3,5 cm2larga: 1,6 2 cm2Moderata AS: 1 1,5 cm2Severa : < 1 cm2AVAlarga : < 20 (30) mmHgmoderata : 20-40 (30-50) mmHgsevera : > 40 (50) mmHg

    Ghidul ACC/AHA (ESC) Gradient mediu

  • Stenoza aorticaEcocardiografia evaluarea consecintelor- hipertrofia VS- functia sistolica si diastolica a VS- presiunea pulmonara

  • Insuficienta mitralaIM reumatismale

  • Insuficienta mitralaIM degenerativa

  • Insuficienta mitralaIM prin prolaps VMP

  • Insuficienta mitralaIM ischemica

  • Insuficienta mitralaIM congenitala (cleft VMA)

  • Insuficienta mitralaEcocardiografic:Cuantificarea severitatii- calitativ: usoara/moderata/severa- semicantitativ: grade (1/2/3/4)- cantitativ: (calcularea AOR, VR, FR)

    - evaluarea dimensiunilor VS: (DTS VS > 40 mm)- evaluarea functiei sistolice VS: (FE < 60%)

  • Insuficienta mitralaEcocardiografic:Evaluarea consecintelor IM- dimensiuni VS, AS- functia VS (sistolica si diastolica)- HTP

  • Insuficienta aorticaIA degenerativa

  • Insuficienta aorticaIA reumatismala

  • Insuficienta aorticaEI pe valva Ao cu IA severa

  • Insuficienta aorticaAnevrism de Ao ascendenta cu IA

  • Insuficienta aorticaEcocardiografic:Cuantificarea severitatii- calitativ: usoara/moderata/severa- semicantitativ: grade (1/2/3/4), prin PHT- cantitativ: (calcularea AOR, VR, FR)- reflux holodiastolic in aorta descendenta

    - evaluarea dimensiunilor VS: (DTD VS > 75 mm, DTS VS > 55 mm)- evaluarea functiei sistolice VS: (FE < 55%)

  • Hipertensiunea pulmonaraEcocardiografic:Estimarea PAPs, PAPmEvaluarea consecintelor HTPDilatare cavitatilor drepteHVDDisfunctia de VD Eventual evidentierea cauzei HTPHTP este definita prin valori ale PAPm > 25 mmHg HTPSuprasolicitare de pres VD HVD Dilatare VD Dilatare AD Regurgitare Tr Disfunctie VD

  • Hipertensiunea pulmonaraEcocardiografic:Estimarea PAP- PAPs (pe baza vitezei maxime a jetului de regurgitare Tr utilizand ecuatia Bernouli simplificata)

    GradVD-AD = 4 x Vmax2PVD PAD = GradVD-AD PVD = GradVD-AD + PAD PAPs = PVD = GradVD-AD + PAD

    PAD se estimeaza in functie de diametrul si variatia cu inspirul a VCI

  • Hipertensiunea pulmonaraPAPs = PVD = GradVD-AD + PADPAPs = 112 + 15 = 127 mmHg

  • Hipertensiunea pulmonara

  • Diagnosticul de HTP ecografic

    HTP improbabila CW tricuspida v 2,8m/s, PAPs 36mmHg fara alte semne ecografice de HTP

    HTP posibila CW tricuspida v 2,8m/s, PAPs 36mmHg cu alte semne ecografice de HTP CW tricuspida v 2,9 3,4 m/s, PAPs 37-50mmHg cu/fara alte semne ecografice de HTP

    HTP probabilaCW tricuspida v > 3,4 m/s, PAPs > 50mmHg cu/fara alte semne ecografice de HTP RA pressure 5 mmHg

  • Ecografia

    Diagnostic pozitiv si diferential in

    Infarctul miocardic

    Tulburare de cinetica nou aparuta

  • Boala cardiaca ischemica

  • Boala cardiaca ischemicaAnevrism antero-septal cu tromb

  • Lang RM, Bierig M, Devereux RB & al Recommendations for chamber quantification Eur J Echocardiography (2006) 7, 79-108

  • Boala cardiaca ischemicaRuptura de SIV post IM inf

  • Cardiomiopatii

    Cardiomiopatiile au ca trstur dominant afectarea direct, primar a miocardului

    CM dilatativa, hipertrofica, restrictiva

    Rolul ecocardiografiei:stabilirea diagnosticului i tipului de cardiomiopatieevaluarea consecinelor funcionaleinformaii prognostice aprecierea eficienei tratamentului

  • Cardiomiopatia dilatativa

  • Cardiomiopatie restrictiva

  • Bolile pericarduluiPericardita = inflamatia pericardului

    Pericardita lichidianaTamponada pericardicaPericardita constrictivaPericardita efuziv constrictivaEcocardiografic:Revarsat pericardic de dimensiuni variabile (spatiu ecoliber)Ingrosarea pericardului +/- revarsat lichidianAspect ecografic normal

  • Pericardita lichidianaEcocardiografic: Revarsat pericardic de dimensiuni variabile (spatiu ecoliber) circumferential sau localizat Estimarea cantitatii de lichid pericardic- calitativ (vizual)- cantitativ (daca este distribuit uniform) in functie de distanta de separare dintre pericardul visceral si parietal < 5 mmcantitate mica (50-100 ml) 5-20 mmcantitate medie (100-500 ml) >20 mmcantitate mare (>500 ml)

  • Pericardita lichidiana

  • Tamponada cardiacaDiagnosticul este clinic! (simptome de DC scazut, hTA, tahicardie, jugulare turgescente, puls paradoxal)

    Ecocardiografic: identificarea lichidului pericardic evaluarea semnificatiei hemodinamice (semne de hipodiastolie) Colaps sistolic de AD Colaps diastolic de VD Modificari respiratorii ale umplerii diastolice (variatia amplitudinii > 25 %, expresie a interdependentei ventriculare crescute) excluderea altor afectiuni cu tablou clinic similar (TEP, disfunctie severa VS, pericardita constrictiva)

  • Tamponada cardiaca

  • Pericardita constrictivaEcocardiografic: ingrosare pericard (cresterea ecogenitatii) unghiul dintre VS si AS in parasternal ax lung < 150 ventriculi cu dimensiuni si functie normala atrii dilatate SIV saltaret

  • Pericardita constrictiva

  • Disectia de aortaDisectia clasica de AoLumen falsLumen adevaratFald intimalPorti de intrare/iesireEcocardiografic: dilatarea Ao evidentierea faldului de disectie evidentierea celor doua lumene (fals si adevarat) evidentierea portilor de intrare/iesire (mai bine la TEE) evaluarea posibilelor complicatii interesarea ramurilor aortei in procesul de disectie prezenta de lichid in pericard prezenta IAo

  • Disectia de aorta

  • Evaluarea functiei sistolice a ventriculului stang fractia de ejectie FEVS fractia de scurtare volumul telesistolic VS MAPSE LVOT VTI; debit bataie dP/dt (WMSI) scorul cineticii parietale

  • FEVS=(295-281)/295 = 5%

  • NormalComplianta redusaAlterarea relaxariiEADTAdurDoppler pulsat mitralE < AEDT > 240IVRT > 100E > AEDT 140 - 240IVRT 70 - 90E >> AEDT < 140IVRT 60 - 90

  • LV filling by transmitral PW-DopplerE/A ratioDisease severityvery goodgoodbadvery badvery, very badFilling pressureRelaxation

  • E/A ratio increases with filling pressureE/A ratioDisease severityvery goodgoodbadvery, very badFilling pressureRelaxationrestrictive filling pseudonormalimpaired relaxation

  • Ecografia - rol prognostic

    Parametrii ecografici - rol prognostic in

    Insuficienta cardiaca FE, E/Vp, Tei

    Infarctul miocardic FE, VSDTD

    Valvulopatii v max Ao

    Cardiomiopatii

    Boli congenitale PAP

  • Ecografia transesofagiana

    IndicatiiEvaluarea surselor embolice

    disectiei de aorta

    febrei

    Evaluarea si monitorizarea interventiilor sunturi intracardiace regurgitare mitrala prin prolaps VMir

  • Ecografia

    Indispensabila cardiologului pentru

    Diagnostic

    Prognostic

    Evaluarea complicatiilor

    Evaluarea rezultatelor terapiei

  • Ecografia

    Operator dependenta

    Este importanta evaluarea completa

  • *Basically, all ultrasound imaging is performed by emitting a pulse, which is partly reflected from a boundary between two tissue structures, and partially transmitted (fig. 2). The reflection depends on the difference in impedance of the two tissues. Blood flow through the heart and great vesselshas certain characteristics that can be measuredusing Doppler instruments designed formedical use. For the purpose of understandingflow patterns in the heart, it is important torecognize the difference between laminar flowand turbulent (or disturbed) flow. Laminarflow is flow that occurs along smooth parallellines in a vessel so that all the red cells in anarea are moving at approximately the samespeed and in the same direction (Fig. 1.2). Dueto friction, flow is always slightly slower nearthe walls of a vessel. With the pulsations of theheart, the red cells generally accelerate anddecelerate at approximately the same speed.Flow in most of the cardiovascular system,including the heart and great vessels, is normally laminar and rarely exceeds the maximum velocityof 1.5 m/sec.*turbulent or disturbed flow is present when there is some obstruction that results in adisruption of the normal laminar pattern. This causes the orderly movement of red blood cells tobecome disorganized and produces various whirls and eddies of differing velocities and directions.Obstruction to flow usually also results in some increase in velocity. Thus, turbulent flow ischaracterized by disordered directions of flow in combination with many different red cellvelocities. If the obstruction is significant,some of the red blood cells may be moving athigher velocities than normal and may reachspeeds of 7 m/sec. Turbulent flow is usually anabnormal finding and is considered indicativeof some underlying cardiovascular pathology.*Doppler echocardiography, on the other hand,depends entirely on measurement of therelative change in the returned ultrasoundfrequency when compared to the transmittedfrequency. Doppler systems are totally dependent on thechanges in the frequency of the transmittedultrasound that result from the encounter of thewavefront with moving red blood cells. Figure1.5 shows a transducer on the left that isemitting a given frequency of ultrasoundtoward the right and into the tissues. Thetransmitted sound waves encounter a group ofred cells moving toward the transducer and arereflected back at a frequency higher than that at*Figure1.5 shows a transducer on the left that is emitting a given frequency of ultrasound toward the right and into the tissues. The transmitted sound waves encounter a group of red cells moving toward the transducer and are reflected back at a frequency higher than that at which they were sent producing a positive Doppler shift. The opposite effect occurs when a given frequency sent into the tissues encounters red cells moving away. The result is the return of a frequency lower than that transmitted, and the Doppler shift is negative.*This Doppler effect in tissues maybe expressedas an equation as shown in Figure 1.6. Simplystated, the Doppler shift (Fd) of ultrasound willdepend on both the transmitted frequency (fo)and the velocity (V) of the moving blood. Thisreturned frequency is also called the "frequencyshift" or "Doppler shift" and is highly of ultrasound transmitted from the transducerand the moving red blood cells. The velocityof sound in blood is constant (c) and is animportant part of the Doppler equation.*Continuous wave (CW) Doppler is the older and electronically more simple of the two kinds. As the name implies, CW Doppler involves continuous generation of ultrasound waves coupled with continuous ultrasound reception.*Continuous wave (CW) Doppler is the older and electronically more simple of the two kinds. Asthe name implies, CW Doppler involves continuous generation of ultrasound waves coupled withcontinuous ultrasound reception.*Pulsed wave (PW) Doppler systems use atransducer that alternates transmission andreception of ultrasound in a way similar to theM-mode transducer (Fig. 1.18). One mainadvantage of pulsed Doppler is its ability toprovide Doppler shift data selectively from asmall segment along the ultrasound beam,referred to as the sample volume. Thelocation of the sample volume is operatorcontrolled.*Continuous wave (CW) Doppler is the older and electronically more simple of the two kinds. Asthe name implies, CW Doppler involves continuous generation of ultrasound waves coupled withcontinuous ultrasound reception.***