ece2262 electric circuits chapter 2: resistive circuits...

101
1 ECE2262 Electric Circuits Chapter 2: Resistive Circuits ! ENG 1450

Upload: others

Post on 25-Mar-2020

71 views

Category:

Documents


1 download

TRANSCRIPT

1

ECE2262 Electric Circuits

Chapter 2: Resistive Circuits ! ENG 1450

2

3

2.1 Ohm’s Law

R1

4

The voltage across a resistance is directly proportional to the current flowing through it.

v = Ri

R = vi

- 1 ! (ohm) =1V1A

Conductance: G = 1R

- 1 S (siemens) =1A1V

5

The power absorbed by a resistor

p = vi = Ri2

= v2

R

6

R = vi

!

R = 0 ! “Short” Circuit ! v = 0

R = ! ! “Open” Circuit ! i = 0

7

Example

(a) determine the current and the power absorbed by the resistor (b) determine the voltage and the current in the resistor(c) determine the voltage of the source and the power absorbed by the resistor(d) determine the values of R and VS

8

! (d)

I = 4 !10"3A , P = 80 !10"3W

P = RI 2 ! R = PI 2

! R = 5 !103" = 5k!

VS = RI ! VS = 20V

9

2.2 Kirchhoff’s Laws

nodeloop/closed path

loop: closed path such that no node is visited more than once

loop: R2 ! v1! v2 ! R4 ! i1 ! 1" 4" 3" 5" 2"1

10

Kirchhoff’s Current Law - KCL

The algebraic sum of all currents entering any node is zero ! KCL is based on the principle of the conservation of charge !

Convention*: In writing KCL we consider the current that enters a node with a positive sign and the current that leaves a node with negative sign.

i1 > 0

i2 < 0

i3 > 0 i1 ! i2 + i3 = 0

Convention**: !i1 + i2 ! i3 = 0

11

iin! = iout!

The sum of all the currents flowing into a node equals the sum of all the currents flowing out

In applying this rule we just need to pay attention to the arrows indicating the flow directions of the element currents present at each node

12

Example

• Node 1: !i2 ! i1 + i5 = 0 ; • Node 2: i2 ! i3 + 50i2 = 0

• Node 3: i1 ! i4 ! 50i2 = 0 ; • Node 4: i3 + i4 ! i5 = 0

13

In writing these equations, a positive sign is used for a current leaving a node

14

SUPERNODE: we can make supernodes by aggregating nodes

node 2 : !i1 ! i6 + i4 = 0 node 3 : i2 ! i4 + i5 ! i7 = 0

Adding 2 and 3 : !i1 ! i6 + i2 + i5 ! i7 = 0 ! Supernode 2&3

15

Example: Write all KCL equations

16

17

Kirchhoff’s Voltage Law - KVL

The algebraic sum of all voltages in every loop of the circuit is zero ! KVL is based on the principle of the conservation of energy !

Convention: In writing KVL when we cross a component from positive to negative terminal we consider its voltage with a positive sign. When we cross a component from negative to positive terminal we consider its voltage with a negative sign.

+ !V > 0

+! V < 0

18

vdrop! = vrise!

The sum of all voltage rises encountered around any closed loop of elements in a circuit equals the sum of all voltage drops encountered around the same loop voltage rise ! loop moves from ! to + voltage drop ! loop moves from + to !

19

The voltage of a component can be labeled in different ways

The arrow notation is particularly useful since we may want to label the voltage between two points that are far apart in a circuit.

a

b

+

!

Vab

20

Example

21

Example Find Vad , Veb

• loop a!b!c!d!a: 24 ! 4 + 6 !Vad = 0 ! Vad = 26V

• loop a!b!e! f!a: 24 !Veb ! 8 ! 6 = 0 ! Veb = 10V

22

Example R1 , R2 , RC , RE , VCC , V0 , ! - known; (a) find the equations needed to determine the current in each element of this circuit; 6 unknown currents (b) Devise a formula for computing iB

23

• KCL for nodes a, b, c, d

1. Node a: !i1 ! iC + iCC = 0 ; 2. Node b: !iB ! i2 + i1 = 0

3. Node c: !iE + iB + iC = 0 ; • Node d: xxxxxx

24

• Dependent current source: 4. iC = !iB

25

• KVL loop b!c!d!b: 5. V0 + iERE ! i2R2 = 0

loop b!a!d!b: 6. !i1R1 +VCC ! i2R2 = 0

These six equations allow to determine the current in each element of the circuit and obtain

iB =VCCR2 / R1 + R2( )!V0

R1R2 / R1 + R2( ) + 1+ "( )RE

26

Example Find Vx

b!

6 ! 24 + I " (2 "103) + I " (5 "103) + I " (2"103 ) = 0

I

9 "103( ) " I =18

I = 2mA

Vx = 5 "103( )" I = 10V

KVL

27

2.3 Series and Parallel Combinations of Resistors

A. Series Connection - Single Loop Network

KVL: !vs + isR1 + ....+ isR7 = 0

vsis= Req = R1 + ....+ R7

28

Equivalent Circuit

Req = Rii!

Note: Req ! Ri

29

Multiple-Source/Resistor Networks

By KVL: R1i + R2i ! v1 + v2 ! v3 + v4 + v5 = 0 ! R1 + R2( )i = v

v = v1 + v3 ! v2 ! v4 ! v5

30

B. Parallel Connection - Single Node Network

KCL: is = i1 + ...+ i4

The voltage across each resistor is the same: i j =vsRj

is =vsR1

+ ...+ vsR4

! isvs

= 1R1

+ ...+ 1R4

Req =1

1R1

+ ...+ 1R4

31

Req =1

1Rii

! Combining Resistors in Parallel

Note: Req !mini Ri

Note: Two resistors in parallel Req =1

1R1

+ 1R2

= R1R2R1 + R2

Note: Nonparallel resistors

32

Multiple-Source/Resistor Networks

By KCL: i1 ! i2 ! i3 + i4 ! i5 ! i6 = 0 ! i1 ! i3 + i4 ! i6sources

! "## $## = i2 + i5

i0 = i1 ! i3 + i4 ! i6

33

Example Find is ,i1,i2

• Equivalent circuit

Req =18 ! 6 + 3( )18 + 6 + 3( ) = 6"

is =1204 + 6

= 12A! vxy = 12 " 6 = 72V ! i1 =vxy18

= 4A , i2 =vxy9

= 8A

34

Example (E2.14)

RAB = 22k!

35

Example Find v and the power delivered to the circuit by the current source.

P5A = 300W - delivered

36

Example (Mathematical Inequality)

a b

ab

A B

•Switch open ! RAB =a + b2

• Switch closed (short circuit) ! RAB =aba + b

+ aba + b

= 2aba + b

is smaller than before

2aba + b

! a + b2

2aba + b

= 121a+ 1b

!"#

$%&

'()

*+,

-1

! The arithmetic mean is greater than the harmonic mean

37

C. ! ! Y Equivalent Circuits

R2

R1 R3

Ra Rb

Rc

! Y

• Terminal c, a: Rca= R1 || R2 + R3( ) Rca = Ra + Rc

38

• Terminal b, c: Rbc= R3 || R1 + R2( ) Rbc = Rb + Rc

R2

R1 R3

Ra Rb

Rc

! Y

a

c

b b

c

aR3 R1

R2 Rb Ra

Rc

• Terminal a, b: Rab= R2 || R1 + R3( ) Rab = Ra + Rb

39

For a given ! network the equivalent Y network is obtained by setting

R2 R1 + R3( )R1 + R2 + R3

= Ra + Rb

R3 R1 + R2( )R1 + R2 + R3

= Rb + Rc

R1 R2 + R3( )R1 + R2 + R3

= Ra + Rc

40

Ra =R1R2

R1 + R2 + R3 ; Rb =

R2R3R1 + R2 + R3

; Rc =R1R3

R1 + R2 + R3

Note: R1 = R2 = R3 = R ! Ra ,Rb ,Rc = ?

41

Example Find the current and power supplied by the 40 V source.

We wish to replace the upper ! network by the equivalent Y network

42

Rc

Ra

Rb

Ra = 100 !125100 +125 + 25

= 50"

Rb = 125 ! 25100 +125 + 25

= 12.5"

Rc = 100 ! 25100 +125 + 25

= 10"

43

The equivalent circuits

Req = 55 +

10 + 40( )! 12.5 + 37.5( )10 + 40( ) + 12.5 + 37.5( ) = 55 + 50 ! 50

100 = 80!

! i40V = 4080

= 0.5A P40V = 40 ! 0.5 = 20W - supplied

44

2.5 Single-Loop (Voltage Division) and Single-Node (Circuit Division) Circuits

A. Voltage Division / Single-Loop Circuit

In electronic circuits it is often necessary to generate multiple voltage levels from a single voltage supply

45

KVL + Ohm’s L vs = iR1 + iR2 ! i = vs

R1 + R2

v1 = iR1 , v2 = iR2

v1 =R1

R1 + R2vs , v2 =

R2R1 + R2

vs

46

v2 =R2

R1 + R2vs

v1 =R1

R1 + R2vs

Given vs , we wish to specify v2 ! there is a large number of combinations of R1 and R2 yielding the proper ratio

R2R1 + R2

47

Example The resistors used in the voltage-divider circuit have a tolerance of ±10% . Find the maximum and minimum value of v0 .

v0 =R2

R1 + R2vs

v0 max( ) = R2 +10%R2

R1 !10%R1( ) + R2 +10%R2( ) vs = 11022.5 +110

!100 = 83.02V

v0 min( ) = R2 !10%R2R1 +10%R1( ) + R2 !10%R2( ) vs = 90

27.5 + 90!100 = 76.60V

The output voltage will lie in the interval 76.60,83.02[ ]

48

Multiple-Resistor Networks

i = vR1 + ....+ Rn

= vReq

vj = iRj =Rj

Reqv Voltage Division Equation

49

B. Current Division/ Single Node Circuit

v = i1R1 = i2R2 & v = R1R2

R1 + R2is

i1 =R2

R1 + R2

larger R2 larger i1

!"#$is , i2 =

R1R1 + R2

is

50

Example Find the power dissipated in the 6! resistor

P6! = i6! " v6! = 6 " i6!2

10 R4||6 = 2.4

R1.6!4||6 = 410

i4

R1.6+4||6 = 4"

CD : i4 =16

16 + 4!10 = 8A

51

8Ai6

CD : i6 =44 + 6

! 8 = 3.2A

P6! = 3.22 " 6 = 61.44W

52

Multiple-Resistor Networks

v = i ! Req ; Req =

11Rll

!

i j =vRj

! ij =ReqRj

i Current Division Equation

53

Example Use CD to find i0 and use VD to find v0

Req = 36 + 44( ) ||10 || (40 +10 + 30) || 24 = 6 !

CD: i0 =Req24

! 8 = 2A

54

The voltage drop across 40!10! 30

2A

v40!10!30 = 24 " 2 = 48VBy VD we have v0 =

3040 +10 + 30

v40!10!30 = 3080

! 48 = 18V

55

Example

56

+!

!

+

KCL: 16mA+I2 ! I1 = 0

CD: I1 =120

120 + 40!16 = 12 mA

! I2 = 12 !16 = !4 mA

! P40k! = I12 " 40k! = 5.76W

57

Example

58

+

I1

I2

I3

KCL: !6 ! I1 ! I2 + 4 ! I3 = 0 ! !2 = I1 + I2 + I3

4 ||12 = 3 k!

59

!2mA 3k"I2

CD: I2 =33+ 6

! "2mA( ) = " 23mA

P6k! = 6 "103( )" I22 = 6 !103( )! " 23

#$%

&'(2

!10"6 = 2.67mW

60

2.5. Measuring Resistance: The Wheatstone Bridge

Galvanometer µA( )

R1,R2 ,R3 - known resistors; Rx - unknown resistor

To find Rx we adjust R3 until there is no current in Galvanometer, i.e., ig = 0 .

61

Let ig = 0 , i.e., the bridge is balanced ! KCL: i1 = i3 , i2 = ix

By KVL (points a and b are at the same potential):

i3R3 = ixRx , i1R1 = i2R2

i1 = i3 , i2 = ix

62

i3R3 = ixRx , i1R1 = i2R2 ; i1 = i3 , i2 = ix ! i1R3 = i2Rx

i1R1 = i2R2 !

R3R1

= Rx

R2

!

Rx =R2R1

! R3

63

Rx =R2R1R3

• The range of Rx : 1! - 1 M!

• The range of R3 : 1! - 11 k!

64

2.6 ! ! Y ( ! ! T ) Transformations (Delta ! Wye)

v Req!

A resistive network generated by a Wheatstone bridge circuit

65

! (Delta) Resistance Network

R2

R1 R3

66

Y (Wye) Resistance Network

Ra Rb

Rc

67

! ! Y Equivalent Circuits

R2

R1 R3

Ra Rb

Rc

! Y

• Terminal c, a: Rca= R1 || R2 + R3( ) Rca = Ra + Rc

68

• Terminal b, c: Rbc= R3 || R1 + R2( ) Rbc = Rb + Rc

R2

R1 R3

Ra Rb

Rc

! Y

a

c

b b

c

aR3 R1

R2 Rb Ra

Rc

• Terminal a, b: Rab= R2 || R1 + R3( ) Rab = Ra + Rb

69

For a given ! network the equivalent Y network is obtained by setting

R2 R1 + R3( )R1 + R2 + R3

= Ra + Rb

R3 R1 + R2( )R1 + R2 + R3

= Rb + Rc

R1 R2 + R3( )R1 + R2 + R3

= Ra + Rc

70

Ra =R1R2

R1 + R2 + R3 ; Rb =

R2R3R1 + R2 + R3

; Rc =R1R3

R1 + R2 + R3

71

For a given Y network the equivalent ! network is obtained by setting

! Y

72

Example* Find the current and power supplied by the 40 V source.

We wish to replace the upper ! network by the equivalent Y network

73

Rc

Ra

Rb

Ra = 100 !125100 +125 + 25

= 50"

Rb = 125 ! 25100 +125 + 25

= 12.5"

Rc = 100 ! 25100 +125 + 25

= 10"

74

The equivalent circuits

Req = 55 +

10 + 40( )! 12.5 + 37.5( )10 + 40( ) + 12.5 + 37.5( ) = 55 + 50 ! 50

100 = 80!

! i40V = 4080

= 0.5A P40V = 40 ! 0.5 = 20W

75

Example

76

!

Ra =54 ! 36108

=18k"

Rb = 6k"Rc = 9k"

Ra = 18k"

Rb =18 ! 36108

= 6k"

Rc =18! 54108

= 9k"

RT = 6 +18 + 9 + 3( ) || 6 +18( ) + 2 = 34 k!

77

Example

!

78

4

4 4

1212

V0

V0 = 12k!" 4mA2

symmetry!

= 24V

79

Example

80

6

66

12 6I1

I1

CD : I1 =6 + 6( )

12 + 6( ) + 6 + 6( ) ! 3A = 1230

! 3A = 1.2A

I1 = !I1 = !1.2A

81

Electrical Safety

82

2.7 Circuits with Dependent Sources

83

Example

KVL: !12 + 3I1 !VA + 5I1 = 0 and VA = 2000I1 ! I1 = 2mA

V0 = 5k ! I1 = 10V

84

Example

KCL + OL: !10 "10!3 ! Vs

2 + 4! Vs3+ 4I0 = 0 and I0 =

Vs3

! Vs = 12V

VD: V0 =44 + 2

Vs = 8V

85

Example

KVL: !6 + 4I ! 2VA + 8I = 0 and VA = 4I ! I = 1.5mA

V0 = 1.5 ! 8 = 12V

86

Example

I2

The equivalent circuit source: I0 =V02!10"3 + 2 !10"3A

CD: I2 =63+ 6

! I0 =23I0 and V0 = 2k!" I2 ! V0 =

43!103 ! I0

V0 =43!103 ! V0

2!10"3 + 2 !10"3#

$%

&'(

! V0 = 8V

87

Example

I2I3

• The equivalent circuit source: I0 = 6 !10"3 + 0.5Ix A

• 6 ||12 = 4 k!

• CD: Ix =4

4 + 4! I0 ! Ix = 4mA ! I0 = 6 + 2 = 8mA

• CD: I2 =4

4 + 4! I0 = 4mA and I3 =

66 +12

! I2 =43mA

• V0 = 12 !43= 16V

88

2.8. Analyzing Circuits Containing V/C Sources and Interconnection of Resistors: Examples

Example

V0 = 2V

89

I I1

Req=60 ! 3060 + 30

= 20k"

• I = 12V20k + 20k

= 0.3mA

• CD : I1 =30

30 + 40 + 20( ) I = 0.1mA ! V0 = 20k!" I1 = 2V

90

Example

I1

• I1 =3V30k!

= 0.1mA

• CD: I1 =60

60 + 90 + 30( ) IS =13IS ! IS = 3I1 = 0.3mA

91

Example

I1 I2

• The equivalent circuit source: I0 = 10mA

• CD : I1 =6

6 + 3+ 6( ) I0 = 4mA

• V1 = 3k ! I1 = 12V

92

Example

I1

I2

• CD : I2 =12

3 || 6 + 4( )+12 ! 9mA = 6mA

• CD : I1 =63+ 9

I2 = 4mA ! I0 = !I1 = !4mA

93

Example

I1

I2 I3

94

• Equivalent Circuits

I3I2

I1

I1 Req = 10 || 20 + 5 ||10{ } || 4 +12 || 4 + 8( )

6! "# $#

!"#

$#

%&#

'#= 5

I1 =16V3k + 5k

= 2mA

95

I3I2

I1

10 || 20 + 5 ||10{ }= 10

4 +12 || 4 + 8( )6

! "# $#

= 10

By symmetry I2 = I3 =12I1 = 1mA

96

I3I2

I1 2mA

1mA1mA

CD: I5k! = 105 +10

I2 =23mA ! V0 = 5k ! I5k" = 3.33V

OL: V1 = 4k ! "I3( ) = "4V

97

I3I2

I1 2mA

1mA1mA

I4

CD : I4 =12

12 + 4 + 8( ) ! I3 = 0.5mA

V2 = 8k ! I4 = 4V

98

2.9 Summary of Chapter 2

99

100

101

2.10 Problems ! Tutorial