ealing(with( cean(acidification the(problem … · 2015]&...

70
Electronic copy available at: http://ssrn.com/abstract=2633051 DEALING WITH OCEAN ACIDIFICATION: THE PROBLEM, THE CLEAN WATER ACT, AND STATE AND REGIONAL APPROACHES Robin Kundis Craig * ABSTRACT Ocean acidification is often referred to as climate change’s “evil twin.” As the global ocean continually absorbs much of the anthropogenic carbon dioxide produced through the burning of fossil fuels, its pH is dropping, causing a plethora of chemical, biological, and ecological impacts. These impacts immediately threaten local and regional fisheries and marine aquaculture and pose a longerterm risk of a global mass extinction event. As with climate change itself, the ultimate solution to ocean acidification is a worldwide reduction in carbon dioxide emissions. In the interim, however, the Center for Biological Diversity has worked long and hard to apply the federal Clean Water Act to ocean acidification, while states and coastal regions are increasingly pursuing more broadly focused responses to its local and regional impacts. This Article provides a first assessment of these relatively nascent legal efforts to address ocean acidification, concluding that ocean acidification should prompt renewed Clean Water Act attention to stormwater runoff and nutrient pollution but also that more comprehensive adaptation law and policy will become and increasingly necessary part of coastal state and regional responses to ocean acidification. I. INTRODUCTION Ocean acidification is often referred to as climate change’s “evil twin.” 1 As a natural part of the Earth’s carbon dioxide (also referred to as CO2) cycle, the * William H. Leary Professor of Law, University of Utah S.J. Quinney College of Law, Salt Lake City, UT. My thanks to the editors of the University of Washington Law Review for inviting me to contribute this article. I may be reached at: [email protected].

Upload: others

Post on 25-Jul-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

Electronic copy available at: http://ssrn.com/abstract=2633051

DEALING  WITH  OCEAN  ACIDIFICATION:  THE  PROBLEM,  THE  CLEAN  WATER  ACT,  AND  STATE  AND  REGIONAL  

APPROACHES    

Robin  Kundis  Craig*        

ABSTRACT

Ocean  acidification  is  often  referred  to  as  climate  change’s  “evil  twin.”   As   the   global   ocean   continually   absorbs   much   of   the  anthropogenic   carbon   dioxide   produced   through   the   burning   of   fossil  fuels,  its  pH  is  dropping,  causing  a  plethora  of  chemical,  biological,  and  ecological   impacts.   These   impacts   immediately   threaten   local   and  regional   fisheries  and  marine  aquaculture  and  pose  a   longer-­‐term  risk  of   a   global   mass   extinction   event.   As   with   climate   change   itself,   the  ultimate   solution   to   ocean   acidification   is   a   world-­‐wide   reduction   in  carbon   dioxide   emissions.   In   the   interim,   however,   the   Center   for  Biological  Diversity  has  worked  long  and  hard  to  apply  the  federal  Clean  Water  Act   to   ocean   acidification,  while   states   and   coastal   regions   are  increasingly   pursuing  more   broadly   focused   responses   to   its   local   and  regional   impacts.   This   Article   provides   a   first   assessment   of   these  relatively   nascent   legal   efforts   to   address   ocean   acidification,  concluding   that   ocean   acidification   should   prompt   renewed   Clean  Water   Act   attention   to   stormwater   runoff   and   nutrient   pollution   but  also   that  more   comprehensive   adaptation   law   and   policy  will   become  and  increasingly  necessary  part  of  coastal  state  and  regional  responses  to  ocean  acidification.

I. INTRODUCTION

Ocean  acidification  is  often  referred  to  as  climate  change’s  “evil  twin.”1  As  a  natural   part   of   the   Earth’s   carbon   dioxide   (also   referred   to   as   CO2)   cycle,   the  

                                                                                                               *  William  H.  Leary  Professor  of  Law,  University  of  Utah  S.J.  Quinney  College  of  Law,  Salt   Lake  City,  UT.  My   thanks   to   the   editors   of   the  University  of  Washington  Law  Review   for   inviting   me   to   contribute   this   article.   I   may   be   reached   at:  [email protected].    

Page 2: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

Electronic copy available at: http://ssrn.com/abstract=2633051

  WASHINGTON  LAW  REVIEW   [DRAFT  2  

world’s  ocean2  has  been  absorbing  much  of  the  “extra”  carbon  dioxide  that  humans  have  been  producing,  especially  since  the  Industrial  Revolution  and  the  large-­‐scale  burning   of   fossil   fuels.  3  However,   once   absorbed   into   the   ocean,   carbon   dioxide  chemically  reacts  to  form,  essentially,  carbonic  acid4  —the  same  reaction  that  gives  sodas  both  their  fizz  and  their  ability  to  dissolve  tooth  enamel.  This  acid-­‐forming  reaction  is  lowering  the  ocean’s  pH.5    

 The  result,  potentially,  is  world-­‐wide  marine  ecological  havoc.6  Most  life  on  

Earth   is   sensitive   to   small   changes   in   pH.   In   humans,   for   example,   a   change   in  blood   pH   outside   of   our   very   narrow   healthy   range   (7.35   to   7.457)   leads   to  disease—acidiosis  when  blood  pH  goes  below  7.4  and  alkalosis  when  it  rises  above  

                                                                                                                                                                                                                                                                                                                                   1  E.g.,   ARC   Center   of   Excellence   in   Coral   Reef   Studies,   “Ocean   acidification:   ‘Evil  twin’   threatens   world’s   oceans,   scientists   warn,”   ScienceDaily,  http://www.sciencedaily.com/releases/2010/03/100330092821.htm   (April   1,  2010).  2  While  people,  both  laypeople  and  scientists,  commonly  divide  the  world’s  ocean  into   five   geographic   regions—the   Pacific   Ocean,   the   Atlantic   Ocean,   the   Indian  Ocean,   the   Arctic   Ocean,   and   the   Southern   Ocean—it   is   increasingly   recognized  that   all   of   the  world’s  marine   realms   are   physically,   chemically,   and   biologically  interconnected.   For   example,   the  National  Ocean  Service  of   the  National  Oceanic  and  Atmospheric  Administration  (NOAA)  declares  that  “[t]here  is  only  one  global  ocean.”   National   Ocean   Service,   NOAA,   How   many   oceans   are   there?,  http://oceanservice.noaa.gov/facts/howmanyoceans.html   (as   revised   April   13,  2015   and   viewed   June   29,   2015)   (emphasis   in   original).   To   emphasize   this  interconnectedness,   this   Article   purposely   refers   to   the   world’s   “ocean”   in   the  singular   unless   specific   research   results   are   restricted   to   particular   geographic  regions  of  that  ocean.  3  Peter  M.  Cox,  Richard  A.  Betts,  Chris  D.  Jones,  Steven  A.  Spall,  &  Ian  J.  Totterdell,  Acceleration  of  global  warming  due  to  carbon-­‐cycle   feedbacks   in  a  coupled  climate  model,  408  NATURE  184,  184  (Nov.  9,  2000).  4  National   Geographic,   Ocean   Acidification:   Carbon   Dioxide   Is   Putting   Shelled  Animals  at  Risk,  http://ocean.nationalgeographic.com/ocean/critical-­‐issues-­‐ocean-­‐acidification/  (as  viewed  Feb.  14,  2015).  5  See  discussion  infra  Part  II.A.  6  See  discussion  infra  Part  II.C.  7  MedicineNet.com,   “Definition   of   Blood   pH,”  http://www.medicinenet.com/script/main/art.asp?articlekey=10001   (as   viewed  June  26,  2015).  

Page 3: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

Electronic copy available at: http://ssrn.com/abstract=2633051

2015]   Dealing  with  Ocean  Acidification   3  

7.45.8  At  the  levels  of  pH  change  projected  for  the  oceans—0.3  to  0.4  pH  units  on  average  by  the  end  of  the  century9—humans  die.10    

 Ocean  life  is  similarly  sensitive  to  the  changes  in  pH  that  ocean  acidification  

is  causing,11  especially  because  that  change  is  not  uniform;  some  places  are  ocean  acidification   “hot   spots.” 12  Indeed,   ocean   acidification   has   already   become   a  problem  for  commercial   fishing  and  shellfish  aquaculture  enterprises  around  the  world,  including  in  the  United  States  in  Maine  and  all  along  the  West  Coast.13  

 The   question,   of   course,   is   what   the   law   can   do   to   address   ocean  

acidification.  Most  of  the  cause  of  ocean  acidification  is  emissions  of  anthropogenic  carbon   dioxide   into   the   air. 14  Moreover,   like   climate   change   itself,   ocean  acidification   occurs   in   response   to   carbon   dioxide   emissions   from   all   over   the  world.15  Ultimately,   therefore,   the   solution   to   ocean   acidification   is   largely   the  same  as  the  solution  to  climate  change:  a  world-­‐wide  reduction  in  anthropogenic  carbon  dioxide  emissions.16                                                                                                                  8  Harper   College,   “Blood   pH,”   http://www.harpercollege.edu/tm-­‐ps/chm/100/dgodambe/thedisk/bloodbuf/zback.htm  (as  viewed  June  26,  2015).  9  The   Ocean   Acidification   Network,   How   is   ocean   acidity   changing?,  http://www.ocean-­‐acidification.net  (last  viewed  March  9,  2009).  10  Harper   College,   “Blood   pH,”   http://www.harpercollege.edu/tm-­‐ps/chm/100/dgodambe/thedisk/bloodbuf/zback.htm  (as  viewed  June  26,  2015).  11  For  example,  in  the  lab,  “a  decrease  of  0.2  to  0.3  units  in  seawater  pH  inhibits  or  slows  calcification   in  many  marine  organisms,   including  corals,   foraminifera,  and  some   calcareous   plankton.”   Richard   E.   Zeebe,   et   al.,   Carbon   Emissions   and  Acidification,  321  SCIENCE  51,  52  (4  July  2008).  12  For  example,  “The  rate  of  acidification  is  50%  faster  at  high  latitudes  compared  to  sub-­‐tropical  waters  because  of  the  effects  of  temperature  on  ocean  chemistry.”  INTERNATIONAL  PROGRAMME  ON  THE  STATE  OF  THE  OCEAN,   INTERNATIONAL  UNION  FOR  THE  CONSERVATION   OF   NATURE,   THE   STATE   OF   THE   OCEAN   2013:   PERILS,   PROGNOSES   AND  PROPOSALS   3   (3   Oct.   2013),   available   at  http://www.stateoftheocean.org/pdfs/IPSO-­‐Summary-­‐Oct13-­‐FINAL.pdf  [hereinafter  2013  IPSO  STATE  OF  THE  OCEAN  REPORT].  13  See  infra  Part  IV.  14  INTERGOVERNMENTAL  PANEL  ON  CLIMATE  CHANGE,  CLIMATE  CHANGE  2013:  THE  PHYSICAL  SCIENCE   BASIS   294   (2013),   available   at  https://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml  [hereinafter  2013  IPCC  PHYSICAL  SCIENCE  REPORT].  15  Id.  16  Notably,  however,  climate  change  is  a  response  to  an  increasing  concentration  of  a   variety  of   greenhouse   gases   in   the   atmosphere,   including   methane   and   water  

Page 4: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  4  

 Nevertheless,  while  we  wait   for   an   effective   global   treaty   to   reduce   those  

carbon   dioxide   emissions,   coastal   states   and   environmental   organizations   are  pursuing  local,  regional,  and  national  legal  means  of  addressing  ocean  acidification,  and  the  goal  of  this  Article  is  to  describe  and  begin  to  assess  those  emerging  legal  approaches.   The   Article   begins   in   Part   II   by   more   thoroughly   describing   ocean  acidification  itself,  concentrating  on  the  basics  of  the  carbon  cycle,  the  chemistry  of  ocean   acidification,   the   biological   and   ecological   impacts   of   ocean   acidification,  projections   for   the   future,   and   current   impacts   on   marine   fisheries   and  aquaculture.   Part   III   then   examines   the   Center   for   Biological   Diversity’s   (CBD’s)  pursuit  of  a  national  and  federally-­‐driven  approach  to  ocean  acidification  through  the   Clean   Water   Act,   focusing   on   the   Section   304   national   recommended  (reference)  marine  pH  water  quality   criterion   and   the   Section  303  programs   for  water   quality   standards,   identification   and   listing   of   impaired   waters,   and   total  maximum   daily   loads,   or   TMDLs.   Part   IV,   in   turn,   examines   nascent   state   and  regional  responses  to  ocean  acidification,  focusing  on  the  states  of  Washington  and  Maine   and   the   growing   collection  of   regional   ocean   acidification  programs  along  the  West  Coast.  The  Article  concludes  that  ocean  acidification  should   in   fact  spur  renewed   Clean   Water   Act   interest   in   stormwater   runoff   and   nutrient   pollution  control,  particularly  along  the  East  Coast  and  Gulf  of  Mexico,  but  also  that—as  the  acting   states   have   recognized—the   global   causes   of   most   ocean   acidification  demand   creative   adaptation   law  and  policy,   the  ocean  acidification  equivalent  of  climate  change  adaptation  efforts.

II. OCEAN ACIDIFICATION, CLIMATE CHANGE, MARINE ECOSYSTEMS, AND MARINE AQUACULTURE

  To   understand   the   legal   importance   of   ocean   acidification,   it   is   necessary  first   to   understand   what   ocean   acidification   is   and   why   it   matters   to   marine  environments   (and   human   uses   of   those   environments).   This   Part   begins   by  explaining  what   role   the   ocean  plays   in   the   global   carbon   cycle   and  how  human  burning   of   fossil   fuels   is   affecting   the   ocean’s   role   as   a   carbon   sink.   It   then  examines   the   chemistry   of   ocean   acidification   before   translating   that   chemistry  into   biological   and   ecological   consequences   for   marine   ecosystems,   both   short-­‐term  and  long-­‐term.    A.   The   Earth’s   Carbon   Cycle,   the   Oceans,   and   Absorption   of   Carbon  

Dioxide                                                                                                                                                                                                                                                                                                                                      vapor.   Ocean   acidification,   in   contrast,   is   driven   almost   entirely   by   increasing  concentrations  of  carbon  dioxide.  

Page 5: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   5  

 The   ocean   is   the   world’s   largest   carbon   sink   for   carbon   dioxide   gas.17  

However,   it   is   also   important   to   remember   that   the   ocean   is   part   of   the   Earth’s  larger   carbon   cycle,   different   components   of  which   operate   on   a   variety   of   time  scales.18  Fast  components  of  this  cycle  move  carbon  biologically  through  life  forms  and  ecosystems,  while  the  slowest  components  take  millions  to  tens  of  millions  of  years   to   cycle   carbon   through   rocks   and   the   planetary   crust   and   then   into  volcanoes,  which  return  the  carbon  to  the  atmosphere.19  The  ocean’s  gas  exchange  with   the   atmosphere   and   its   absorption   of   carbon   dioxide   is   one   of   the   faster  elements  of  the  slow  carbon  cycle:  “At  the  surface,  where  air  meets  water,  carbon  dioxide  gas  dissolves  in  and  ventilates  out  of  the  ocean  in  a  steady  exchange  with  the  atmosphere.”20    

 Rocks,   the  ocean,  and   the  atmosphere  are  all   carbon  reservoirs,  balancing  

the   location   and   reactivity   of   carbon   on   Earth   at   any   given   time.   Importantly,  “[a]ny  change  in  the  cycle  that  shifts  carbon  out  of  one  reservoir  puts  more  carbon  in  the  other  reservoirs.  Changes  that  put  carbon  gases  into  the  atmosphere  result  in   warmer   temperatures   on   Earth.”21  Viewed   from   this   global   earth   science  perspective,  the  human  burning  of  fossil  fuels  actively  disrupts  the  normal  balance  of  carbon  cycle  components,  accelerating  the  return  of  carbon  to  the  atmosphere  from  oil  and  coal  deposits  through  the  very  fast  processes  of  mining,  drilling,  and  burning,   compared   to   the   very   slow   geological   processes   that   would   normally  govern  those  deposits.  

 In  terms  of  anthropogenic  climate  change,  therefore,  the  ocean  is  important  

because   it  absorbs  the  carbon  dioxide  “prematurely”  returned  to  the  atmosphere  and   sequesters   it   in   slower   carbon   cycle   component   processes.   As   the   National  Aeronautics  and  Space  Administration  (NASA)  has  explained,  

 Before   the   industrial   age,   the   ocean   vented   carbon   dioxide   to   the  atmosphere   in   balance  with   the   carbon   the   ocean   received   during  rock   weathering.   However,   since   carbon   concentrations   in   the  atmosphere  have  increased,  the  ocean  now  takes  more  carbon  from  

                                                                                                               17  FRED   PEARCE,   WITH   SPEED   AND   VIOLENCE:   WHY   SCIENTISTS   FEAR   TIPPING   POINTS   IN  CLIMATE  CHANGE  86  (2007).  18  Holli  Riebeek,  Earth  Observatory,  National  Aeronautics  &  Space  Administration  (NASA),   The   Carbon   Cycle,  http://earthobservatory.nasa.gov/Features/CarbonCycle/  (June  16,  2011).  19  Id.  20  Id.  21  Id.  

Page 6: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  6  

the   atmosphere   than   it   releases.   Over   millennia,   the   ocean   will  absorb  up  to  85  percent  of  the  extra  carbon  people  have  put  into  the  atmosphere  by  burning  fossil  fuels,  but  the  process  is  slow  because  it  is   tied   to   the   movement   of   water   from   the   ocean’s   surface   to   its  depths.    

In   the   meantime,   winds,   currents,   and   temperature   control  the   rate   at   which   the   ocean   takes   carbon   dioxide   from   the  atmosphere.22    

At   the   beginning   of   the   21st   century,   the   ocean   and   land   ecosystems   (mostly  plants)   were   absorbing   about   half   of   the   anthropogenic   emissions   of   carbon  dioxide23—roughly   25%   by   land   plants   and   25%   by   the   ocean.24  According   to  oceanographers  at  the  National  Oceanic  and  Atmospheric  Administration  (NOAA)  in   2006,   “Over   the   past   200   years   the   oceans   have   absorbed   525   billion   tons   of  carbon   dioxide   from   the   atmosphere,   or   nearly   half   of   the   fossil   fuel   carbon  emissions  over  this  period.”  The  oceans  continue  to  uptake  about  22  million  tons  of  carbon  dioxide  per  day.25    

However,  because  of  continuing  and  increasing  climate  change  impacts,  the  ocean   appears   to   be   losing   its   immediate   ability   to   act   as   a   carbon   sink.   As   a  general  matter,  the  cold  water  at  ocean  depths  can  sequester  more  carbon  dioxide  than  warmer  waters  at   the  surface.26  As  a  result,  any  process   that  circulates  cold  water   to   the  surface  reduces  the  ocean’s  ability   to  act  as  a  carbon  sink.  Research  published  in  2009  indicates  that,  as  a  result  of  climate  change,  the  Southern  Indian                                                                                                                  22  Id.  23  Cox,  et  al.,  supra  note  3,  at  184.  24  “The  Ocean  Carbon  Cycle,”  Harvard  Magazine   (Nov.-­‐Dec.  2002),  as  published  at  http://harvardmagazine.com/2002/11/the-­‐ocean-­‐carbon-­‐cycle.html.   Some  scientists,   however,   conclude   that   the   ocean’s   absorption   contribution   is   even  greater:   “Over   the   past   200   years,   the   oceans   have   taken   up   ~40%   of   the  anthropogenic  CO2  emissions.”  Zeebe,  et  al.,  supra  note  11,  at  52.  The  most  recent  summary  report  published  in  Science  declares  that  the  global  ocean  has  “captured  28%  of  anthropogenic  CO2  emissions  since  1750,  leading  to  ocean  acidification  .  .  .  .”   J.P.   Gattuso,   et  al.,  Contrasting   futures   for  ocean  and  society   from  difference  CO2  emissions  scenarios,  349  SCIENCE  45,  46  (3  July  2015).  25  Richard  A.  Feely,  Christopher  L.  Sabine,  &  Victoria  J.  Fabry,  NOAA,  Carbon  Dioxide  and   Our   Ocean   Legacy   1   (April   2006),   available   at  http://www.pmel.noaa.gov/pubs/PDF/feel2899/feel2899.pdf.    26  “The  Ocean  Carbon  Cycle,”  Harvard  Magazine   (Nov.-­‐Dec.  2002),  as  published  at  http://harvardmagazine.com/2002/11/the-­‐ocean-­‐carbon-­‐cycle.html.  

Page 7: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   7  

Ocean   is   being   subjected   to   stronger   winds.   The   winds,   in   turn,   mix   the   ocean  waters,  bringing  up  carbon  dioxide  from  the  depths  and  preventing  the  ocean  from  absorbing  more   carbon  dioxide   from   the   atmosphere.27  For   similar   reasons,   “the  CO2   sink   diminished   by   50%   between   1996   and   2005   in   the   North   Atlantic.”28  Overall,   “the   open   ocean   is   projected   to   absorb   a   decreasing   fraction   of  anthropogenic  CO2  emissions  as  those  emissions  increase,”  leaving  30%  to  69%  of  21st-­‐century  emissions  of  CO2   in  the  atmosphere,  depending  on  future  emissions  scenario.29  

 The   loss  of   the  ocean’s   full   capacity  as  a   carbon  sink,   at   least   in   the   short  

term,   could   have   significant   implications   for   the   progress   of   climate   change  everywhere.   If   the   ocean   reaches   its   immediate   capacity   as   a   carbon   reservoir,  carbon   dioxide   will   accumulate   more   quickly   in   the   atmosphere   over   the   next  decades,  potentially  accelerating  the  process  of  climate  change  even  from  what  has  been  observed  to  date.    B.   The  Chemistry  of  Ocean  Acidification  

 While   important   to   the   progress   of   climate   change   generally,   the   ocean’s  

absorption   of   anthropogenic   carbon   dioxide   comes   at   a   price:   Absorbed   carbon  dioxide   changes   the   ocean’s   chemistry,   a   process   known   colloquially   as   “ocean  acidification.”   The   absorbed   carbon   dioxide   undergoes   a   series   of   complex  chemical   reactions   in   ocean   waters,   essentially   becoming   carbonic   acid.30     More  specifically,  “Once  in  the  ocean,  carbon  dioxide  gas  reacts  with  water  molecules  to  release   hydrogen,   making   the   ocean   more   acidic.   The   hydrogen   reacts   with  carbonate   from   rock  weathering   to   produce   bicarbonate   ions.”31  Three   chemical  results  of  the  ocean’s  absorption  of  carbon  dioxide  are  critically  important:  (1)  the                                                                                                                  27  CNRS   (Délégation   Paris   Michel-­‐Ange),   “Ocean   Less   Effective   At   Absorbing  Carbon   Dioxide   Emitted   By   Human   Activity,”   ScienceDaily   (Feb.   23,   2009),  available   at   http://www.sciencedaily.com-­‐  /releases/2009/02/090216092937.htm.  28  Id.  29  Gattuso,  et  al.,  supra  note  24,  at  50.  30  National   Geographic,   Ocean   Acidification:   Carbon   Dioxide   Is   Putting   Shelled  Animals  at  Risk,  http://ocean.nationalgeographic.com/ocean/critical-­‐issues-­‐ocean-­‐acidification/   (as   viewed   Feb.   14,   2015).  More   specifically,   as   the   IPCC   explains,  “Dissolved  CO2   forms  a  weak  acid  (H2CO3)  and,  as  CO2   in  seawater   increases,   the  pH,   carbonate   ion   (CO32–),   and   calcium   carbonate   (CaCO3)   saturation   state   of  seawater   decrease  while   bicarbonate   ion   (HCO3–)   increases.”   2013  IPCC  PHYSICAL  SCIENCE  REPORT,  supra  note  14,  at  293  (2013).    31  Riebeek,  supra  note  18.  

Page 8: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  8  

ocean’s  pH  drops;  (2)  the  concentration  of  carbonate  ions  in  seawater  drops;  and  (3)   “saturation  states  of  biologically   important  calcium  carbonate  minerals”   such  as  calcite  and  aragonite  are  reduced.32  

 The  ocean  is  naturally  basic,  with  an  average  pH  of  about  8.16,  and  that  pH  

level   has   been   remarkably   stable   over   geological   time.33     However,   since   the  Industrial   Revolution,   the   average   ocean   surface   water   pH   has   dropped   by   0.1  unit;34  the   largest  changes  in  pH,  according  to  the  IPCC  in  2013,  have  been  in  the  northern   North   Atlantic   Ocean,   while   the   smallest   have   been   in   the   subtropical  South   Pacific   Ocean. 35  While   this   change   may   seem   small,   the   pH   scale   is  logarithmic,  so  that  a  pH  decrease  of  0.1  unit  means  that  the  oceans  have  become  26%  more   acidic   in   the   last   250   years.36     The   problem   is   only   likely   to   become  worse   over   time.   The   IPCC   reported   in   2014   that   the   ocean’s   average   pH   is  expected  to  drop  by  0.13  to  0.42  pH  units  by  the  end  of  the  century,  depending  on  emissions   scenario, 37  while   NOAA   reports   that   “[e]stimates   of   future   carbon  dioxide  levels,  based  on  business  as  usual  emission  scenarios,  indicate  that  by  the  end  of   this   century   the   surface  waters   of   the  ocean   could  be  nearly  150  percent  more  acidic,  resulting  in  a  pH  that  the  oceans  haven’t  experienced  for  more  than  20  million  years.”38                                                                                                                    32  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  33     “Ocean  Acidification:  Another  Undesired  Side  Effect  of  Fossil  Fuel-­‐burning,”  Science   Daily,  http://www.sciencedaily.com/releases/2008/05/080521105151.htm   (May   24,  2008).  However,  pH  does  vary  from  location  to  location.  According  to  the  IPCC,  for  example,  “the  mean  pH  (total  scale)  of  surface  waters  [currently]  ranges  between  7.8  and  8.4  in  the  open  ocean  .   .   .   .”  2013  IPCC  PHYSICAL  SCIENCE  REPORT,  supra  note  14,  at  293.  34  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  35  2013  IPCC  PHYSICAL  SCIENCE  REPORT,  supra  note  14,  at  294.  36  Id.  37  INTERGOVERNMENTAL   PANEL   ON   CLIMATE   CHANGE,   CLIMATE   CHANGE   2014:   IMPACTS,  ADAPTATION,   AND   VULNERABILITY   418   (2014),   available   at  https://www.ipcc.ch/publications_and_data/publications_and_data_reports.shtml  [hereinafter  2014  IPCC  ADAPTATION  REPORT].      38  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  

Page 9: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   9  

 The   ocean,   therefore,   is   approaching   a   chemical   state   of   being  

unprecedented   in   human   experience—and   it   is   changing   quickly.   According   to  NOAA  scientists,  “[a]t  present,  ocean  chemistry  is  changing  at  least  100  times  more  rapidly   than   it   has   changed   during   the   650,000   years   preceding   our   industrial  era.”39    

 Moreover,   this   altered   chemical   state   is   likely   to   be   of   long   duration—at  

least  from  a  human  and  ecological  perspective.  As  reported  in  Science,  “It  takes  the  ocean  about  1000  years  to   flush  carbon  dioxide  added  to  surface  waters   into  the  deep  sea  where  sediments  can  eventu��ally  neutralize  the  added  acid.”40  

 C.   Biological  and  Ecological  Impacts  from  Ocean  Acidification    

Such  unprecedented  changes  in  ocean  chemistry,  especially  when  combined  with   the   other   impacts   on   the   ocean   from   climate   change   like   rising   water  temperatures,   have   significant  negative   implications   for  marine   life,   biodiversity,  and  ecosystems.  Of  course,  not  every  species  will   react   to  ocean  acidification   the  same  way.  As  NOAA  has  summarized:    

Photosynthetic   algae   and   seagrasses   may   benefit   from   higher   CO2  conditions  in  the  ocean,  as  they  require  CO2  to  live  just  like  plants  on  land.   On   the   other   hand,   studies   have   shown   that   a   more   acidic  environment   has   a   dramatic   effect   on   some   calcifying   species,  including  oysters,  clams,  sea  urchins,  shallow  water  corals,  deep  sea  corals,  and  calcareous  plankton.  When  shelled  organisms  are  at  risk,  the  entire   food  web  may  also  be  at  risk.  Today,  more  than  a  billion  people   worldwide   rely   on   food   from   the   ocean   as   their   primary  source  of  protein.41    

                                                                                                               39  Feely,   Sabine,   &   Fabry,   supra   note   25,   at   2.   See   also   Richard   A.   Kerr,   Ocean  Acidification   Unprecedented,   Unsettling,   328   SCIENCE   1500,   1500   (18   June   2010)  (emphasizing  the  speed  of  current  ocean  acidification).  40  Richard  A.  Kerr,  Ocean  Acidification  Unprecedented,  Unsettling,  328  SCIENCE  1500,  1500-­‐01  (18  June  2010).  41  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  

Page 10: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  10  

There  are  also  considerable  uncertainties  regarding  how  various  forms  of  marine  life  will  respond  to  ocean  acidification,42  and  research  lags  regarding  the  effects  of  ocean  acidification  “on  communities  and  ecosystems.”43  Nevertheless,  even  under  low-­‐emissions   scenarios,   and   taking   into   account   all   of   the   impacts   of   climate  change,   “warm-­‐water   corals   and  mid-­‐latitude   bivalves   [two-­‐shelled   shellfish   like  clams  and  oysters]  will  be  at  high  risk  by  2100.”44  Moreover,  a  variety  of  marine  organisms   have   already   been   affected   by   the   combination   of   ocean   acidification  and  warming  ocean  waters,   including  warm-­‐water  corals,   “mid-­‐latitude  seagrass,  high-­‐latitude  pteropods  and  krill,  mid-­‐latitude  bivalves,  and  fin  fishes.”45    

Scientific   research   regarding   the   impacts   of   ocean   acidification   tends   to  concentrate   on   various   kinds   of   shell-­‐forming   animals,   especially   pteropods,  shellfish,  and  coral  reefs.  These  animals  build  their  shells  from  calcium  carbonate  and   hence   are   directly   impacted   by   the   chemical   effects   of   ocean   acidification,  particularly   in   terms   of   reduced   saturation   of   calcium   carbonate   minerals   in  seawater.  As  NOAA  explains:    

Calcium  carbonate  minerals  are  the  building  blocks  for  the  skeletons  and  shells  of  many  marine  organisms.  In  areas  where  most  life  now  congregates   in   the   ocean,   the   seawater   is   supersaturated   with  respect   to   calcium   carbonate   minerals.   This   means   there   are  abundant   building   blocks   for   calcifying   organisms   to   build   their  skeletons   and   shells.   However,   continued   ocean   acidification   is  causing   many   parts   of   the   ocean   to   become   undersaturated   with  these  minerals,  which  is  likely  to  affect  the  ability  of  some  organisms  to  produce  and  maintain  their  shells.46    

                                                                                                               42  Roger   Harrabin,   “Shortages:   Fisheries   on   the   slide,”   BBC   NEWS   Science   &  Environment,   17   June   2012,   http://www.bbc.com/news/science-­‐environment-­‐18353964.   See   also   2013   IPSO   STATE   OF   THE   OCEAN   REPORT,   supra   note   12,   at   3  (“Biological  impacts  are  already  being  observed  as  acidification  is  a  direct  threat  to  all  marine  organisms  that  build  their  skeletons  out  of  calcium  carbonate,  including  reef-­‐forming  corals,  crustaceans,  molluscs  and  other  planktonic  species  that  are  at  the  lower  levels  of  pelagic  food  webs.”).    43  Gattuso,  et  al.,  supra  note  24,  at  50.  44  Id.  at  45.  45  Id.  46  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  

Page 11: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   11  

Decreasing  pH  is  projected  to  reduce  the  availability  of  calcium  carbonate  by  about  60%  by  the  end  of  the  century.47        

As   one   example   of   the   biological   impacts   of   reduced   calcium   carbonate,  pteropods   (also   known   as   sea   butterflies)   are   small   (pea-­‐sized)   shelled   sea  creatures   that   serve   as   a   food   source   for   everything   from   krill   to   North   Pacific  juvenile   salmon   to   mighty   whales. 48  In   laboratory   experiments,   pteropods  subjected   to   seawater   at   the  pH   levels  projected   for   the  ocean  by   the   end  of   the  21st   century   dissolved   in   45   days. 49  Field   studies,   in   turn,   have   revealed  “dissolution  of  live  pteropod  shells  in  the  California  Current  system  and  Southern  Ocean,  both  areas  that  experience  significant  anthropogenic  acidification.”50  As  the  BBC  has  summarized  the  potential  widespread  problems  resulting  from  pteropod  sensitivity   to   pH,   “[s]tudies   suggest   that   pteropods—tiny   swimming   snails—will  be   badly   hit   because   they   need   alkaline   water   to   make   their   shells.   That   could  matter   to  us  because  pteropods   feed   the   salmon,  herring,  mackerel   and   cod   that  we  like  to  eat.”  51         Shellfish,   especially   bivalves   like   clams   and   oysters,   are   also   victims   of  ocean   acidification,   and   effects   on   shellfish   have  been  documented   in   the  wild.52  Specifically,   ocean   acidification   and   the   resulting   undersaturation   of   calcium  carbonate  minerals  and  aragonite  interferes  with  the  ability  of  young  oysters  and  clams   to   form   shells.53  Beyond   clams   and   oysters,   a   number   of   other   marine  organisms   such   as  mussels,   snails,   sea   urchins,   and   certain   types   of  microscopic  plants  and  animals  (calcareous  phytoplankton  and  zooplankton,  respectively)  use  calcium   carbonate   to   build   their   shells,   and   lab   testing   has   demonstrated   that  

                                                                                                               47  2013  IPSO  STATE  OF  THE  OCEAN  REPORT,  supra  note  12,  at  3.  48  Id.  49  Id.  50  Gattuso,  et  al.,  supra  note  24,  at  50.  51  Harrabin,   supra   note   42.   See   also   2013   IPSO  STATE  OF   THE  OCEAN  REPORT,   supra  note  12,  at  3  (“Biological   impacts  are  already  being  observed  as  acidification   is  a  direct   threat   to   all   marine   organisms   that   build   their   skeletons   out   of   calcium  carbonate,   including   reef-­‐forming   corals,   crustaceans,   molluscs   and   other  planktonic  species  that  are  at  the  lower  levels  of  pelagic  food  webs.”).    52  Pacific  Marine   Environmental   Laboratory,   NOAA,  What   Is  Ocean  Acidification?,  http://www.pmel.noaa.gov/co2/story/What+is+Ocean+Acidification%3F   (as  viewed  June  29,  2015).  53  Id.  

Page 12: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  12  

many   species   cannot   survive   well   in   water   at   pH   levels   equal   to   the   projected  decreases.54       Coral   reefs  and   the  highly  productive  ecosystems   that   they  support  are  at  particularly  high  risk.55  “Coral  reefs  occupy  a  small  part  of  the  world’s  oceans  yet  harbor   a   hugely   disproportionate   amount   of   its   biodiversity.” 56  They   suffer  particularly   acutely   in   this   climate   change   era   because   of   past   abuses   and   a  sensitivity   to   rising   sea   temperatures,57  but   tropical   corals   are  also   shell-­‐forming  organisms  harmed  by  decreasing   concentrations  of   carbonate   ions.  58  As  a   result,  “within   decades,   rates   of   reef   erosion   will   exceed   rates   of   reef   accretion   across  much  of  the  tropics  and  subtropics.”59      

While   coral   species   exhibit   considerable   variation   in   their   ability   to   build  shells  despite  ocean  acidification   and   to   adapt   to  warming  waters,60  giving   some  cause  for  hope,  the  future  of  the  world’s  coral  reefs  is  far  from  certain.  As  marine  biologists   summarized   in   a   2011   article   in   Science,   “[t]he   most   pessimistic  projection   is   for   global-­‐scale   losses   of   coral   reefs   resulting   from   annual   mass  bleaching   events,”   and   both   the   corals’   own   adaptation   abilities   and   “aggressive  emissions  reduction”  will  be    “  necessary  to  avoid  extended  declines  in  coral  cover  to  very  low  levels.”61  More  recently,  however,  many  corals  appear  to  be  losing  the  battle:   Scientists   have   noted   that   “[d]ecreases   in   net   calcification,   at   least   partly  because  of  ocean  acidification,  have   .   .   .  been  observed   in  a   coral   reef   cover  over  1975   to   2008,   and   conditions   are   already   shifting   some   coral   reefs   to   net  erosion.”62    

 As   the   connections   to   marine   food   production   noted   above   suggest,   the  

impacts  of  ocean  acidification  on  marine  ecosystems—and  human  well-­‐being—are  likely  to  be  much  broader  than  just  the  effects  on  shell-­‐forming  organisms.  Recent                                                                                                                  54  Ocean   Acidification   Network,   How   will   ecosystems   be   affected?,  http://www.ocean-­‐acidification.net.  55  2013  IPSO  STATE  OF  THE  OCEAN  REPORT,   supra   note   12,   at   3-­‐4;   Joan  A.  Kleypas  &  Kimberly  K.  Yates,  Coral  Reefs  and  Ocean  Acidification,  OCEANOGRAPHY,  Dec.  2009,  at  108,  109.  56  John  M.  Pandolfi,  et  al.,  Projecting  Coral  Reef  Futures  Under  Global  Warming  and  Ocean  Acidification,  333  SCIENCE  418,  418  (22  July  2011).  57  Id.  at  418,  419.  58  Id.  at  418.  59  Id.  60  Id.  at  420.  61  Id.  at  421.  62  Gattuso,  et  al.,  supra  note  24,  at  50.  

Page 13: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   13  

scientific   studies   have   “begun   to   report   community-­‐level   responses   [to   ocean  acidification]  in  phytoplanktonic,  bacterial,  seagrass,  and  algal  communities.”63  At  the  biological  level,  ocean  acidification  can  cause  acidosis,  the  buildup  of  carbonic  acid   in   organisms’   bodily   fluids,   which   in   turn   can   cause   “lowered   immune  response,  metabolic  depression,  behavioural  depression,  affecting  physical  activity  and   reproduction,   and   asphyxiation.”64  At   the   level   of  marine   biochemistry,   “the  pH   gradient   across   cell   membranes   is   coupled   to   numerous   critical  physiological/biochemical  reactions  within  marine  organisms,  ranging   from  such  diverse   processes   as   photosynthesis,   to   nutrient   transport,   to   respiratory  metabolism.”65     At   the   physical   level,   decreasing   pH   levels   decrease   the   ocean’s  ability  to  absorb  sound,  and  the  resulting  increased  noise  in  the  ocean  may  impact  acoustically   sensitive   whales   and   dolphins,   while   decreasing   concentrations   of  calcium  carbonate  allow  for  more  light  penetration,  with  unknown  impacts.66      

 Given  emerging  marine  community  responses  to  ocean  acidification  and  its  

multitude   of   ancillary   impacts,   the   marine   ecosystem   impacts   from   ocean  acidification   could   be   tremendous,   resulting   in   loss   of   commercially   important  fisheries,   locally   important   fisheries,   and   coastal   protection   from   storms.67  The  economic  and  cultural  costs  for  humans,  especially  those  in  developing  nations  or  coastal   countries,   could   be   enormous.68  In   addition,   as   with   coral   reefs,   ocean  acidification   is   likely   to   interact   synergistically   with   other   impacts   of   climate  change  on  the  oceans  to  multiply  harms  to  marine  ecosystems.  

 Given   all   of   these   impacts,   moreover,   it   is   entirely   possible   that   ocean  

acidification   could   also   cause—or   at   least   contribute   significantly   to—the   next  global  mass   extinction   event.   As   reported   in  Science,   “[t]he   closest   analog   in   the  geologic   record   to   the   present   acidification   appears   to   be   the   Paleocene-­‐Eocene  Thermal   Maximum   (PETM)   55.8   million   years   ago.” 69  The   International                                                                                                                  63  Id.  (citations  omitted).  64  2013  IPSO  STATE  OF  THE  OCEAN  REPORT,  supra  note  12,  at  4.  65  Scott   C.   Doney   et   al.,   Ocean   Acidification:   A   Critical   Emerging   Problem   for   the  Ocean  Sciences,  Oceanography,  Dec.  2009,  at  16,  16.  66  Id.  67  Id.;   see   also   Sarah   R.   Cooley,   Hauke   L.   Kite-­‐Powell   &   Scott   C.   Doney,   Ocean  Acidification’s   Potential   to   Alter   Global  Marine   Ecosystem   Services,   OCEANOGRAPHY,  Dec.   2009,   at   172,   172–76   (detailing   these   ecosystem   impacts);   Gattuso,   et   al.,  supra  note  24,  at  45.  68  See  generally  Cooley,  Kite-­‐Powell,  &  Doney,  supra  note  67,  at  172–76  (detailing  the   value   of   marine   ecosystem   services   that   could   be   impacted   by   ocean  acidification).  69  Kerr,  supra  note  39,  at  1500.  

Page 14: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  14  

Programme   for   the   State   of   the   Ocean   (IPSO)   made   the   same   connection   in   its  2013  State  of  the  Ocean  report:    

[T]he   scale   and   rate   of   the   present   day   carbon   perturbation,   and  resulting   ocean   acidification,   is   unprecedented   in   Earth’s   known  history.   Today’s   rate   of   carbon   release,   at   approximately   30   Gt  [gigtons]  of  CO2  per  year,   is  at   least  10  times   faster   than  that  which  preceded   the   last   major   species   extinction   (the   Paleocene   Eocene  Thermal   Maximum   extinction,   or   PETM,   ca.   55   million   years   ago),  while   geological   records   indicate   that   the   current   acidification   is  unparalleled  in  at  least  the  last  300  million  years.  We  are  entering  an  unknown   territory   of   marine   ecosystem   change,   and   exposing  organisms   to   intolerable   evolutionary   pressure.   The   next   mass  extinction  event  may  have  already  begun.70      

Multiple   scientific   studies,   therefore,   conclude   that   ocean  acidification   is   both   an  immediate  and  long-­‐term  threat  to  both  marine  and  human  life,  warranting  a  much  stronger   global   commitment   to   reducing   anthropogenic   emissions   of   carbon  dioxide.71  Until   that   global   legal   commitment   is   in   place,   however,   coastal   states  and  regions  must  pursue  more  limited  legal  responses.    D.   Ocean  Acidification,  Marine  Food  Supply,  and  Marine  Aquaculture    

While  a  global  mass  extinction  event  remains  ocean  acidification’s  ultimate  threat,   it   is  ocean  acidification’s  more   immediate   impacts  on  marine   life   that  are  driving   interest   in  more   creative   legal   approaches   to   the   problem.   In   particular,  ocean  acidification  is  immediately  threatening  marine  food  supplies,  in  terms  both  of  natural  stocks  and  marine  aquaculture.  

 As  noted,  the  effects  of  ocean  acidification  on  shell-­‐forming  organisms  like  

bivalves   and   coral   reefs   has   already   been   documented.   In   2012,   environmental  NGO  Oceana  published  a  report  on  how  ocean  acidification  and  climate  change  are  impacting  global   food  security  as  a  result  of   the   impacts  on  marine  organisms.   It  noted   that   “[m]any   coastal   and   small   island   developing   nations   depend   more  heavily   on   fish   and   seafood   for   protein   than   developed   nations.   In   some   places,  such   as   the   Maldives,   well   over   half   of   the   available   food   protein   comes   from  seafood.   Other   countries   in  which   people   eat   large   amounts   of   fish   and   seafood  

                                                                                                               70  2013  IPSO  STATE  OF  THE  OCEAN  REPORT,  supra  note  12,  at  3.  71  E.g.,  Gattuso,  et  al.,  supra  note  24,  at  45.  

Page 15: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   15  

include   Iceland,   Japan,   Kiribati   and   the   Seychelles.”72  Ocean   acidification   poses   a  threat   to   many   of   these   nations.   As   one   example,   “The   decline   of   coral   reefs  threatens  many  fish  species  and  the  people  that  depend  on  those  fish  for  food  and  livelihoods.  About  a  quarter  of  all  marine  fish  species  live  on  coral  reefs  and  about  30  million  people  around  the  world  depend  heavily  on  these  fish  as  a  stable  source  of  protein.”73  Similarly,  shellfish  mollusks  “may  represent  only  a  small   fraction  of  all  available  protein  on  a  global  scale,  they  can  provide  50  percent  or  more  of  the  available   protein   in   places   like   Aruba,   Turks   and   Caicos   Islands   and   the   Cook  Islands.   Losses   in   mollusk   populations   could   impact   many   jobs   and   the   global  economy,  but  the  most  significant  hardships  may  be  felt  by  nations  that  are  most  heavily  reliant  on  mollusks  for  food.”74  Oceana  concluded  that  the  ten  nations  most  threatened  by  ocean  acidification  are  the  Cooks  Islands  (South  Pacific  Ocean),  New  Caledonia   (Southwest   Pacific   Ocean),   Turks   and   Caicos   Islands   (Caribbean),  Comoros  (Indian  Ocean),  Kiribati  (Central  Tropical  Pacific  Ocean),  Aruba  (southern  Caribbean),  Faroe   Islands   (North  Atlantic  Ocean),  Pakistan  (Arabian  Sea),  Eritrea  (Red  Sea),  and  Madagascar  (Indian  Ocean).75  

 However,   ocean   acidification   impacts   on   fisheries   and   food   supply  do  not  

need  to  rise  to  the   level  of  existential  vulnerability   for  nations  to  notice  them.  As  the  United  Nations  Environment  Programme  (UNEP)  observed  in  2010:  

 Productivity   ‘hotspots’   such  as  upwelling  regions  where  cold  water  is  rich   in  both  nutrients  and  CO2,  coastal  seas,   fronts,  estuaries  and  sub-­‐polar   regions   often   supply   the  main   protein   source   for   coastal  communities.  However,  many  of  these  areas  are  also  projected  to  be  very   vulnerable   to   ocean   acidification   this   century.   As   world  populations  rise  alongside  a  predicted  growth  in  coastal  populations  due  to  internal  migration,  the  demand  for  ocean  protein  products  is  also  likely  to  rise.  Fish  stocks,  already  declining  in  many  areas  due  to  

                                                                                                               72  Matthew  Huelsenbeck,  Oceana,  Ocean-­‐Based  Food  Security  Threatened  in  a  High  CO2   World:   A   Ranking   of   Nations’   Vulnerability   to   Climate   Change   and   Ocean  Acidification   3   (Sept.   2012)   (citations   omitted),   available   at  http://oceana.org/sites/default/files/reports/Ocean-­‐Based_Food_Security_Threatened_in_a_High_CO2_World.pdf.  73  Id.  at  6  (citations  omitted).  74  Id.  (citations  omitted).  75  Id.  at  8  tbl.  3.  

Page 16: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  16  

over-­‐fishing  and  habitat  destruction,  now  face  the  new  threats  posed  by  ocean  acidification.76  

 In  the  United  States,  for  example,  fisheries  in  Alaska,  “which  accounted  for  50%  of  the   United   States’   total   catch   in   2009,”   are   notably   vulnerable   to   ocean  acidification.77  Specifically,      

the   pH   levels   in   the   four   seas   that   ring   Alaska—the   Chukchi,  Beaufort,  Bering,  and  Gulf  of  Alaska—has  dropped  by  0.1  units  since  the  Industrial  Revolution  and  is  forecast  to  lower  about  another  0.4  units  by  the  end  of  the  century.  Alaska’s  cold  waters  naturally  absorb  more  carbon  dioxide  from  the  atmosphere  than  warmer  waters  do,  and   its  upwelling  currents  bring  more  acidic  waters   to   the  surface,  making  it  harder  for  organisms  like  mollusks  to  form  their  shells.78    

 The   effects   on   commercially   important   marine   species   are   already   occurring.  “Studies  have  found  that  more  acidic  water  in  Alaska  is  stunting  the  growth  of  red  king   crabs   and   tanner   crabs.”79  A  more   recent  NOAA   study   “found   rural   areas   in  southern   Alaska   are   at   high   risk   of   losing   hundreds   of   millions   of   dollars   in  commercial  and  subsistence  fishing  stocks.  Declining  seafood  harvests  will  impact  about   20   percent   of   Alaska’s   population,   which   relies   on   subsistence   fishing   for  significant  amounts  of  their  diet  .  .  .  .”80      

On   the   East   Coast,   runoff   of   nutrients   from   land   is   accelerating   ocean  acidification,   and   “[t]he   Chesapeake   Bay,   which   receives   runoff   from   one   of   the  most  densely  populated  watersheds  in  the  United  States,  is  acidifying  three  times  faster  than  the  rest  of  the  world’s  oceans.  Long  Island  Sound,  Narragansett  Bay  and  

                                                                                                               76  United  Nations   Environment   Programme   (UNEP),  Environmental  Consequences  of   Ocean   Acidification:   A   Threat   to   Food   Security   4   (2010),   available   at  http://www.unep.org/dewa/Portals/67/pdf/Ocean_Acidification.pdf.    77  Xochiti  Rojas-­‐Rochas,  “Worsening  ocean  acidification  threatens  Alaska  fisheries,”  Science   Insider   Daily   News,  http://news.sciencemag.org/climate/2014/07/worsening-­‐ocean-­‐acidification-­‐threatens-­‐alaska-­‐fisheries  (29  July  2014).  78  Id.  79  Reid   Wilson,   “Marine   industries   at   risk   on   both   coasts   as   oceans   acidify,”  Washington   Post,   July   30,   2014,  http://www.washingtonpost.com/blogs/govbeat/wp/2014/07/30/marine-­‐industries-­‐at-­‐risk-­‐on-­‐both-­‐coasts-­‐as-­‐oceans-­‐acidify/.  80  Id.  

Page 17: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   17  

the   Gulf   of  Mexico   are   all   showing   signs   of   rapid   acidification.”81  This   long-­‐term  acidification  may  be  contributing   to   the  drop   in  oyster  harvests   from   the  coastal  Atlantic   Ocean.82     In   addition,   mudflats   in   Maine   have   become   acidic   enough   in  some  spots  to  kill  young  clams.83    

 Ocean   acidification   “hot   spots”   are   also   proving   troubling   to   shellfish  

aquaculture.   In  the  Pacific  Northwest,   for  example,  “Puget  Sound  has  some  of  the  world’s   most   corrosive   waters.   Scientists   are   finding   that   marine   waters   in   the  Northwest   have   become   so   corrosive   that   they   are   eating   away   at   oyster   shells  before   they  can   form.”84  Natural  upwelling  patterns   in   this   region  exacerbate   the  ocean   acidification   occurring   in   Puget   Sound   and   off   the   coast   of   Oregon.85  Beginning  in  2008,  oyster  aquaculture  facilities  in  Puget  Sound  began  experiencing  drops  in  larvae  production,  from  7  billion  larvae  in  2006  and  2007  to  half  that  in  2008  and  one-­‐third  in  2009,  and  similar  drops  occurred  in  Oregon  facilities.86  The  Seattle   Times   reported   in   2013   that   oyster   aquaculturists   are   moving   their  

                                                                                                               81  Id.  82  Id.  83  Natural  Resources  Defense  Council,  Gulf  of  Maine:  Ocean  Acidification  1   (2008),  available   at   http://www.nrdc.org/oceans/acidification/files/ocean-­‐acidification-­‐maine.pdf.  84  Pacific  Marine  Environmental  Laboratory,  NOAA,  Acidifying  Water  Takes  Toll  on  Northwest   Shellfish,  http://www.pmel.noaa.gov/co2/story/Acidifying+Water+Takes+Toll+On+Northwest+Shellfish  (as  viewed  June  29,  2015).  85  Specifically,    

Regional   marine   processes   including   coastal   upwelling   exacerbate  the   acidifying   effects   of   global   carbon   dioxide   emissions.   Coastal  upwelling  brings  deep  ocean  water,  which   is  rich   in  carbon  dioxide  and   low   in   pH,   up   into   the   coastal   zone.   This   upwelled   water   has  spent  decades  circulating  deep  in  the  ocean,  out  of  contact  with  the  atmosphere  for  30  to  50  years.  This  means  that  the  waters  currently  upwelled   onto   the   coast   of   the   Pacific   Northwest   reflect   the  atmospheric  carbon  dioxide  concentrations  of  the  1970s  and  1980s.    

Northwest  Association  of  Networked  Ocean  Observing  Systems  (NANOOS),  Ocean  Acidification:   What   Is   Ocean   Acidification?,  http://www.nanoos.org/education/learning_tools/oa/ocean_acidification.php   (as  viewed  June  29,  2015).  86  Id.  

Page 18: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  18  

facilities   to   Hawai’i   because   young   Pacific   oysters   in   Washington   “stopped  growing.”87    

III. THE CLEAN WATER ACT AND OCEAN ACIDIFICATION

As   the   IPCC  noted   in  2013,   “Uptake  of  anthropogenic  CO2   is   the  dominant  cause   of   observed   changes   in   the   carbonate   chemistry   of   surface   waters.”88  Because  ocean  acidification  is  thus  largely  the  result  of  emissions  of  carbon  dioxide  into  the  air,  the  United  States’  source-­‐based  approach  to  environmental  regulation  underscores   the   domestic   need   to   use   the   Clean   Air   Act89  to   address   ocean  acidification.   As   such,   the   Environmental   Protection   Agency’s   (EPA’s)   increasing  efforts   to   address   greenhouse   gas   emissions   through   the   Clean   Air   Act   may  eventually   help   to   address   the   ocean   acidification   problem.   Indeed,  many   of   the  EPA’s   recent   greenhouse   gas   regulations   and   proposed   regulations   explicitly  mention   ocean   acidification   as   one   reason   for   imposing   increased   emissions  controls.90    

 Nevertheless,   there   is   no   disputing   the   fact   that   the   effects   of   ocean  

acidification   occur   in   the   water,   meaning   that   ocean   acidification   can   be   fairly  characterized  as  a  water  pollution  problem.  Moreover,  in  some  places  other  forms  of  water   pollution—like,   as   noted,   the   nutrient   runoff   pollution   into   Chesapeake  Bay—can   exacerbate   ocean   acidification.   Thus,   the   federal   Clean   Water   Act91  would   also   seem   to   be   relevant.   The   Center   for   Biological   Diversity   (CBD)   has  certainly  been  agitating  for  the  Clean  Water  Act  to  play  a  larger  role  in  addressing  ocean   acidification,   and   on   January   16,   2009,   the   EPA   agreed   to   respond   to   the  CBD’s   December   2007   petition   requesting   that   the   EPA   revise   its   water   quality                                                                                                                  87  Craig  Welch,  “Sea  Change:  Oysters  dying  as  coast  is  hit  hard,”  The  Seattle  Times,  Sept.   12,   2013,   http://apps.seattletimes.com/reports/sea-­‐change/2013/sep/11/oysters-­‐hit-­‐hard/.  88  2013  IPCC  PHYSICAL  SCIENCE  REPORT,  supra  note  14,  at  294  (2013).  89  42  U.S.C.  §§  7401-­‐7671q  (2012).  90  See,   e.g.,   U.S.   EPA,   Carbon   Pollution   Standards   for   Modified   and   Reconstructed  Stationary   Sources:   Electric   Utility   Generating   Units,   79   Fed.   Reg.   34,960,   34,967  (June  18,  2014)  (referencing  the  National  Research  Council’s  2010  report,  “Ocean  Acidification:   A  National   Strategy   to  Meet   the   Challenges   of   a   Changing  Ocean”);  U.S.   EPA,   Standards   of   Performance   for   Greenhouse   Gas   Emissions   from   New  Stationary  Sources:  Electric  Utility  Generating  Units,  79  Fed.  Reg.  1430,  1439  (Jan.  8,  2014)   (noting   that   ocean   acidification   is   one   reason   for   pursuing   reductions   in  carbon  dioxide  emissions  and  climate  stabilization).  91  33  U.S.C.  §§  1251-­‐1388  (2012).  

Page 19: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   19  

criteria  for  marine  pH  pursuant  to  the  federal  Clean  Water  Act92  to  reflect  current  knowledge  about  ocean  acidification.93    The  CBD  has  also  invoked  the  Clean  Water  Act’s   impaired   waters   listing   process   as   being   relevant   to   ocean   acidification,  leading  to  a  recent  federal  district  court  decision.  Nevertheless,  the  EPA  has  done  little   to  expand  the  role  of   the  Clean  Water  Act   in  addressing  ocean  acidification,  citing  natural  variability  and  lack  of  baseline  data  as  complicating  issues.  

 The  question,  of  course,  is  what  the  Clean  Water  Act  can  actually  contribute  

to  any  resolution  of  the  ocean  acidification  problem.  This  Part  begins  by  providing  an   overview  of   the  Clean  Water  Act’s   regulatory   provisions   in   light   of   the   CBD’s  2007   petition.   It   then   reviews   subsequent   administrative   responses   to   ocean  acidification  and  the  ocean  acidification   litigation  that  has  occurred  in  the  United  States,   emphasizing   the   2015   federal   district   court   decision   denying   the   CBD’s  challenge   to   the   EPA’s   approval   of   Washington’s   and   Oregon’s   2010   impaired  waters  lists.      

 A.   An  Overview   of   the   Clean  Water   Act’s   Regulatory  Regime   in   Light   of  

the  Center  for  Biological  Diversity’s  2007  Petition  to  the  EPA       The  CBD  has  spearheaded  a  multi-­‐faceted  effort  to  bring  ocean  acidification  within  the  ambit  of  state  and  federal  law.  For  example,  acknowledging  the  role  of  states   in  protecting  water  quality,   on  February  28,   2007,   the  CBD  petitioned   the  State   of   California   to   regulate   carbon   dioxide   pollution   under   the   Clean   Water  Act.94  Beginning  in  2009,  moreover,  the  CBD  began  working  to  have  many  species  of   coral   listed   for   protection   under   the   federal   Endangered   Species   Act   (ESA)95  because  of   the   twin   threats  of  ocean  acidification  and   climate   change.96  The  CBD                                                                                                                  92  33  U.S.C.  §§  1251-­‐1388  (2012).  93  Letter  from  Benjamin  H.  Grumbles,  Assistant  Administrator,  U.S.  Environmental  Protection   Agency,   to   Ms.   Miyoko   Sakashita,   Attorney,   Center   for   Biological  Diversity,   dated   Jan.   16,   2009,   at   1   available   at  http://www.biologicaldiversity.org/campaigns/ocean_acidification/pdfs/EPA_Response_to_  CBD_Ocean_  Acidification_Petition.pdf.  94  Center   for   Biological   Diversity,   “Conservation   Group   Petitions   to   Regulate  Carbon   Dioxide   Under   Clean   Water   Act,”  http://www.biologicaldiversity.org/news/press_releases/ocean-­‐acidification-­‐02-­‐28-­‐2007.html   (Feb.   28,   2007).   The   petition   itself   is   available   at  http://www.biologicaldiversity.org/campaigns/ocean_acidification/pdfs/acidification-­‐cwa-­‐petition.pdf.    95  16  U.S.C.  §§  1531-­‐1544  (2012).  96  Center   for   Biological   Diversity,   “Suit   Will   Be   Filed   to   Protect   83   Corals  Threatened   by   Global   Warming,   Ocean   Acidification,”  

Page 20: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  20  

later  also  pursued  ESA  protections  for  black  abalone,  orange  clownfish,  and  seven  species  of  damselfish.97    

With  respect  to  federal  efforts  under  the  Clean  Water  Act,  however,  the  CBD  has   concentrated   its   attention   on   the   EPA’s   criteria   for   marine   pH   and   alleged  violations   of   ocean   water   quality   standards   in   Washington   and   Oregon.   These  efforts   formally  began  on  December  18,  2007,  when   the  CBD   formally  petitioned  the   EPA   to   strengthen   the   federal   national   recommended   (or   reference)   water  quality  criterion  under  the  Clean  Water  Act  for  ocean  pH  and  to  provide  guidance  to   the   states   regarding   ocean   acidification   and  water   quality.98  More   specifically,  the  CBD  petitioned  the  EPA  to  revise,  pursuant  to  Section  304  of  the  Clean  Water  Act,99  the  EPA’s  water  quality  criterion  for  pH  to  acknowledge  and  address  ocean  acidification.100    

 The   CBD’s   petition   acknowledged   that   ocean   acidification   is   primarily   a  

result  of  carbon  dioxide  emissions  into  the  air,  but  it  also  stressed  how  significant  a  water  quality  problem  that  ocean  acidification  could  become:  

 Carbon  dioxide  pollution  has  already  lowered  average  ocean  

pH  by  0.11  units,  with  a  pH  change  of  0.5  units  projected  by  the  end  of   the   century   under   current   emission   trajectories.   These   changes  are  likely  to  have  devastating  impacts  on  the  entire  ocean  ecosystem.  The   primary   known   impact   of   acidification   is   impairment   of  calcification,  the  process  whereby  corals,  crabs,  abalone,  oysters,  sea  urchins,  and  other  animals  make  shells  and  skeletons.  Many  species  

                                                                                                                                                                                                                                                                                                                                   http://www.biologicaldiversity.org/news/press_releases/2010/corals-­‐01-­‐20-­‐2010.html  (Jan.  20,  2010).  97  Center  for  Biological  Diversity,  “Endangered  Oceans:  Ocean  Acidification  Action  Timeline,”  http://www.biologicaldiversity.org/campaigns/endangered_oceans/action_timeline.html  (as  viewed  July  3,  2015).  98  Center   for   Biological   Diversity,   “Lax   Standard   Fails   to   Prevent   Souring   Seas;  Group   Petitions   EPA   to   Address   the   Threat   of   Ocean   Acidification,”  http://www.biologicaldiversity.org/news/press_releases/ocean-­‐acidification-­‐12-­‐18-­‐2007.html  (Dec.  18,  2007).  99  33  U.S.C.  §  1314  (2012).  100  Center   for   Biological   Diversity,   Before   the   Environmental   Protection   Agency:  Petition  for  Revised  pH  Water  Quality  Criteria  under  Section  304  of  the  Clean  Water  Act,  33  U.S.C.  §  1314,  to  Address  Ocean  Acidification  i,  ii  (Dec.  18,  2007),  available  at  http://www.biologicaldiversity.org/campaigns/ocean_acidification/pdfs/section-­‐304-­‐petition-­‐12-­‐18-­‐07.pdf.    

Page 21: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   21  

of   phytoplankton   and   zooplankton,   which   form   the   basis   of   the  marine   food   web,   are   also   particularly   vulnerable   to   ocean  acidification.  Laboratory  studies  have  shown  that  at  carbon  dioxide  concentrations  likely  to  occur  in  the  ocean  in  the  next  few  decades,  the   shells   of   many   marine   species   deform   or   dissolve.   Scientists  predict  that  the  majority  of  coral  reefs  will  turn  to  rubble  before  the  end   of   the   century.   Absent   significant   reductions   in   carbon   dioxide  emissions,  ocean  acidification  will  accelerate,  likely  ultimately  leading  to  the  collapse  of  oceanic   food  webs  and  catastrophic   impacts  on  the  global  environment.101  

 The  petition   also   emphasized   that   the  Clean  Water  Act   is   “the  nation’s   strongest  law  protecting  water  quality”   and   that   “[b]ecause  ocean  acidification   is   changing  seawater  chemistry  and  degrading  water  quality,  EPA  needs  to  address  this  threat  before   it   harms   marine   life   and   resources.”102  It   argued   that,   in   light   of   ocean  acidification,  the  EPA’s  national  recommended  water  quality  criterion  for  ocean  pH  did  not  reflect  the  latest  scientific  knowledge.103    

Under  the  Clean  Water  Act,  the  EPA’s  Section  304  nationally  recommended  (reference)  water   quality   criteria   have   very   little   direct   legal   force   of   their   own;  instead,   they   function  primarily   to  provide   information  and   suggested   criteria   to  states  that  states  can  then  incorporate  into  their  own  Section  303(c)  water  quality  standards.104  Nevertheless,  the  Act  specifies  that  the  EPA’s  criteria  must  reflect:    

the   latest   scientific   knowledge   (A)   on   the   kind   and   extent   of   all  identifiable  effects  on  health  and  welfare,   including,  but  not   limited  to,   plankton,   fish,   shellfish,   wildlife,   plant   life,   shorelines,   beaches,  esthetics,  and  recreation  which  may  be  expected  from  the  presence  of   pollutants   in   any  body   of  water,   including   ground  water,   (B)   on  the   concentration   and   dispersal   of   pollutants,   or   their   byproducts,  through  biological,  physical,  and  chemical  processes,  and  (C)  on  the  effects  of  pollutants  on  biological  community  diversity,  productivity,  and  stability,   including   information  on   the   factors  affecting  rates  of  eutrophication  and  rates  of  organic  and  inorganic  sedimentation  for  varying  types  of  receiving  waters.105  

                                                                                                                 101  Id.  at  ii  (emphasis  added).  102  Id.  103  Id.  at  ii-­‐iii.  104  See  33  U.S.C.  §  1313(c)  (2012).  105  Id.  §  1314(a)(1).      

Page 22: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  22  

In   addition,   the   EPA   is   required   to   “develop   and   publish”   information   regarding  how   to   restore   and   maintain   water   quality,   how   to   protect   shellfish,   fish,   and  wildlife  in  various  kinds  of  waters,  how  to  measure  water  quality,  and  how  to  set  TMDLs.106        

Relying  on  the  EPA’s  national  recommended  (reference)  criteria,  states  set  water   quality   standards   for   all   of   the   navigable  waters,   including   the   first   three  miles   of   ocean,   within   their   boundaries.107     Water   quality   standards   have   two  components:  designated  uses—that  is,  the  uses  that  the  state  wants  the  waters  to  support,   including   all   existing   uses;   and   water   quality   criteria,   which   are   the  numeric  and  narrative  standards  for  various  pollutants—pH,  toxics,  temperature,  nutrients,   and   so   on—that   the   water   body   must   meet   in   order   to   support   the  designated   uses.108  In   addition,   the   Clean  Water   Act   explicitly   requires   states   to  consider,   inter   alia,   the   waters’   “use   and   value   for   .   .   .   propagation   of   fish   and  wildlife   .   .   .   .”109  As   a   result,   states   should   be   considering   the   effect   of   ocean  pollution  (like  ocean  acidification)  on  marine  life.  

 However,  the  roles  of  the  EPA’s  reference  water  quality  criteria  and  water  

quality  standards  also  must  be  appreciated   in  the   larger  context  and  structure  of  the   Clean   Water   Act.   The   Act’s   regulatory   programs   derive   from   the   statute’s  declaration  that,  except  as  in  compliance  with  the  Act  itself,  “the  discharge  of  any  pollutant   by   any   person   shall   be   unlawful.”110     Under   the   Act’s   definitions,   a  “discharge  of  a  pollutant”  is  “(A)  any  addition  of  any  pollutant  to  navigable  waters  from  any  point  source,  [and]  (B)  any  addition  of  any  pollutant  to  the  waters  of  the  contiguous  zone  or  the  ocean  from  any  point  source  other  than  a  vessel  or  other  floating  craft.”111    Thus,  for  Clean  Water  Act  jurisdiction  to  exist,  there  must  be:  (1)  an  addition;  (2)  of  a  pollutant;  (3)  to  jurisdictional  waters;  (4)  from  a  point  source.    

According  to   the  Act,   the  “navigable  waters”  are   the  “waters  of   the  United  States,   including   the   territorial   sea,”112  and   the   territorial   sea   is   the   first   three  

                                                                                                               106  Id.   §  1314(a)(2).  The  EPA’s   current  water  quality   criteria  are  available  at  U.S.  EPA,   National   Recommended   Water   Quality   Criteria,  http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm  (as  last  updated  June  29,  2015  &  viewed  June  30,  2015).  107  Id.  §  1313(a),  (c).      108  40  C.F.R.  §  131.3(b),  (f)  (2014).      109  33  U.S.C.  §  1313(c)(2)(A)  (2012).  110  33  U.S.C.  §  1311(a)  (2012).      111  Id.  §  1362(12).      112  Id.  §  1362(7).  

Page 23: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   23  

miles  of  ocean.113    The  Act’s  references  to  the  territorial  sea,  the  contiguous  zone,  and   the   ocean   make   it   clear   that   the   Clean   Water   Act   applies   to   discharges   of  pollutants   into   the   seas,   which   forms   one   legal   basis   for   the   CBD’s   ocean  acidification  petition.      

Federal   Clean   Water   Act   jurisdiction   also   requires   the   “addition”   of   a  “pollutant”   from  a   “point   source.”    A   “point   source”   is   “any  discernible,   confined,  and   discrete   conveyance,”   like   a   pipe,114  but   the   phrase   had   also   been   broadly  interpreted   to   apply   to   most   human-­‐controlled   conveyances   of   pollutants   to  waterways.115     Sources   of   water   pollution   such   as   runoff   that   do   not   qualify   as  point   sources   are   nonpoint   sources,   which   the   states   are   supposed   to   regulate  through  other  means.116    The  Act  also  defines  “pollutant”  broadly,  to  include:    

dredged   spoil,   solid   waste,   incinerator   residue,   sewage,   garbage,  sewage   sludge,   munitions,   chemical   wastes,   biological   materials,  radioactive  materials,   heat,  wrecked   or   discarded   equipment,   rock,  sand,   cellar   dirt,   and   industrial,   municipal,   and   agricultural   waste  discharged  into  water.117  

 Finally,  the  Act  does  not  define  “addition.”    Nevertheless,  case  law  has  defined  this  term  to  include  most  non-­‐natural  conveyances  of  pollutants  to  a  water  body.118                                                                                                                  113  Id.  §  1362(8).  114  33  U.S.C.  §  1362(14)  (2012).      115  E.g.,  Parker  v.  Scrap  Metal  Processors,  Inc.,  386  F.3d  993,  1009  (11th  Cir.  2004);  Dague   v.   City   of   Burlington,   935   F.2d   1343,   1354-­‐55   (2d   Cir.   1991)   (both  interpreting  “point  source”  broadly).  116  See  33  U.S.C.  §  1329  (2012)  (governing  state  nonpoint  source  pollution  plans).  117  Id.  §  1362(6).    However,  the  Act  also  specifies  that  “pollutant”      

does  not  mean  (A)  “sewage  from  vessels  or  a  discharge  incidental  to  the   normal   operation   of   a   vessel   of   the   Armed   Forces”   within   the  meaning   of   section   1322   of   this   title;   or   (B)   water,   gas,   or   other  material   which   is   injected   into   a   well,   if   the   well   used   either   to  facilitate   production   or   for   disposal   purposes   is   approved   by  authority  of   the  State   in  which  the  well   is   located,  and  if  such  State  determines   that   such   injection   or   disposal   will   not   result   in   the  degradation  of  ground  or  surface  water  resources.  

 Id.  118  See  generally,  e.g.,  Miccosukee  Tribe  of  Indians  of  Florida  v.  South  Florida  Water  Management  Dist.,  280  F.3d  1364  (11th  Cir.  2002)  (establishing  a  “but  for”  test  to  

Page 24: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  24  

   If   federal   jurisdiction  exists,   the  most  common  way  of  complying  with   the  

Clean   Water   Act   is   to   get   a   permit.     Persons   discharging   “dredged”   or   “fill”  material119  into   the  navigable  waters  must  obtain  a  Section  404   “dredge  and   fill”  permit  from  the  U.S.  Army  Corps  of  Engineers120  or,  in  limited  circumstances,  from  the   relevant   state.121     Persons   discharging   any   other   kind   of   pollutant   into   the  navigable   waters   or   the   ocean   must   generally   obtain   a   Section   402   National  Pollutant  Discharge  Elimination  System  (NPDES)  permit,   generally  now   from  the  relevant   state,122  although   the   EPA   has   NPDES   permitting   authority   in   non-­‐delegated  states  and  tribal  lands.123      

Water  quality  criteria  and  state  water  quality  standards  can  affect  the  exact  terms   of   a   particular   permit.   For   example,   for   Section   404   permits,   the   EPA   has  

                                                                                                                                                                                                                                                                                                                                   determine   whether   an   addition   of   pollutants   has   occurred);   Catskill   Mountains  Chapter  of  Trout  Unlimited,  Inc.  v.  City  of  New  York,  273  F.3d  481,  491-­‐93  (2d  Cir.  2001)   (invoking   a   “natural   flow”   test   for   whether   an   addition   of   pollutants   has  occurred);  Dubois  v.  U.S.  Department  of  Agriculture,  102  F.3d  1273  (1st  Cir.  1996)  (holding   that   waters   that   flow   non-­‐naturally   from   a   more   polluted   to   a   less  polluted  water  body  “add”  pollutants  for  purposes  of  the  Act).  119  “Dredged  material”  is  “material  that  is  excavated  or  dredged  from  waters  of  the  United   States.”     33   C.F.R.   §   323.2(c)   (2014).     “Fill  material,”   in   turn,   is   “material  placed   in   waters   of   the   United   States   where   the   material   has   the   effect   of:   (i)  Replacing   any   portion   of   a   water   of   the   United   States   with   dry   land;   or   (ii)  Changing  the  bottom  elevation  of  any  portion  of  a  water  of  the  United  States.”    33  C.F.R.  §  323.2(e)  (2014).  120  33  U.S.C.  §  1344(a),  (d)  (2012).  121  Id.   §   1344(g).     While   the   Act   allows   state   to   acquire   Section   404   permitting  authority,   however,   that   authority  does  not   extend   to   the   traditionally   navigable  waters.     Id.   §   1344(g)(1).    Moreover,   only   two   states,  Michigan   and  New   Jersey,  have   acquired   Section   404   permitting   authority.   U.S.   EPA,   State   or   Tribal  Assumption   of   the   Section   404   Permit   Program,  http://www.epa.gov/owow/wetlands/facts/fact23.html   (last   updated   Jan.   12,  2009).    As  a  result,  the  Army  Corps  issues  almost  all  Section  404  permits.  122  Id.  §  1342(b).    Unlike  for  Section  404  permits,  most  states  have  acquired  at  least  partial   NPDES   permitting   authority.     U.S.   EPA,   National   Pollutant   Discharge  Elimination   System   (NPDES):   State   Program   Status,  http://cfpub.epa.gov/npdes/statestats.cfm   (last   updated   April   14,   2003).    Therefore,  states  issue  most  NPDES  permits.  123  33  U.S.C.  §  1342(a)  (2012).  

Page 25: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   25  

issued  the  Section  404(b)(1)  Guidelines  under  the  Act.124    These  Guidelines  specify  that,  in  general:    

dredged   or   fill   material   should   not   be   discharged   into   the   aquatic  ecosystem,  unless  it  can  be  demonstrated  that  such  a  discharge  will  not   have   an   unacceptable   adverse   impact   either   individually   or   in  combination  with  known  and/or  probable  impacts  of  other  activities  affecting  the  ecosystem  of  concern.125  

 More   specifically,   inter   alia,   the   Guidelines   explicitly   prohibit   discharges   of  dredged  or  fill  material  that  cause  or  contribute  to  violations  of  state  water  quality  standards.126     State   water   quality   standards,   and   the   reference   water   quality  criteria   that   they   rely   on,   can   thus   directly   influence   both   the   issuance   and   the  terms  of  a  Section  404  permit.    

In   contrast,   the   terms   of   NPDES   permits   generally   derive   from   the   Act’s  various   technology-­‐based  effluent   limitations.127    An  effluent   limitation  under   the  Act  is:      

any   restriction   established   by   a   State   or   the   Administrator   on  quantities,  rates,  and  concentrations  of  chemical,  physical,  biological,  and  other  constituents  which  are  discharge  from  point  sources  into  navigable  waters,   the  waters   of   the   contiguous   zone,   or   the   ocean,  including  schedules  of  compliance.128  

 Technology-­‐based   effluent   limitations   are   generally   thus   numeric   limitations   on  the  amount  of  concentration  of  a  specific  pollutant  that  can  be  discharged  from  a  point   source,   based   on   the   technology   available   within   the   relevant   industry   to  control   that  discharge.  These  effluent   limitations  constitute   the  starting  point   for  discharge  limitations  in  an  NPDES  permit.      

However,  NPDES  permits  must  include  terms  that  are  more  stringent  than  what   the   applicable   technology-­‐based   effluent   limitations   would   require   when  addition  pollution  control   is  necessary  to  ensure  that  the  waterbody  meets  state-­‐set  water  quality   standards.129  Thus,   state  water  quality   standards   constitute   the                                                                                                                  124  33  U.S.C.  §  1344(b)(1)  (2012);  40  C.F.R.  Part  230  (2014).  125  40  C.F.R.  §  230.1(c)  (2014).  126  Id.  §  230.10(b).  127  33  U.S.C.  §  1311(b)  (2012).      128  Id.  §  1362(11).  129  Id.  §§  1312(a),  1313(c).  

Page 26: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  26  

regulatory   “backstop”   to   protect   specific   waters   even   when   the   industry-­‐wide  technology-­‐based  effluent  limitations  cannot  do  the  job.  

    State  water  quality  standards  also  drive  the  Section  303(d)  process,  which  is  designed  to  ensure  that  states  continue  to  make  progress  toward  their  ultimate  water   quality   goals.   Under   this   process,   states   are   supposed   to   identify   all   state  waters   that   do   not   meet   their   water   quality   standards,   generating   a   biennial  “impaired  waters”  or  Section  303(d)  list.130  States  then  rank  these  impaired  waters  in   order   of   priority131  and   begin   to   set   total   maximum   daily   loads   (TMDLs)   for  them.   Specifically,   the   state   sets   a   TMDL   for   each   pollutant   contributing   to   the  water   quality   standard   violation.132     A   TMDL   is   the   total   amount   of   a   specific  pollutant  that  can  be  added  to  the  water  body  on  a  daily  basis  without  violating  the  relevant  water  quality  standard.      

Setting   a  TMDL   can  be   time-­‐consuming   and   expensive,133  and  most   states  and  the  EPA  have  set  them  only  in  response  to  litigation.134    However,  setting  the  TMDL   is  only   the   first  step   in   the  process.    Once   the  TMDL  exists,   the  state  must  divvy   up   this   pollutant   allowance   among   the   point   sources   (the   waste   load  allocation,   or   WLA),   nonpoint   sources   (the   load   allocation,   or   LA),   and   natural  background   sources.135     Thus,   a   TMDL   can   lead   both   to   amendments   of   NPDES  permits  to  impose  more  stringent  discharge  requirements  and  to  revisions  in  state  nonpoint  source  regulation.  If  states  begin  settling  TMDLs  for  ocean  acidification,  nonpoint  source  regulation  is   likely  to  be  the  most  relevant  state  response,  given  that   carbon  dioxide  emissions   (a   form  of  atmospheric  deposition),  most  nutrient  pollution,   and   coastal   upwelling   all   qualify   as   nonpoint   source   or   background  pollution.  

 

                                                                                                               130  Id.  §  1313(d)(1).  131  Id.  §  1313(d)(1).      132  Id.      133  U.S.  EPA,  TMDL  DEVELOPMENT  COST  ESTIMATES:  CASE  STUDIES  OF  14  TMDLS  13  (May  1996)  (reporting  that  8  of  14  TMDLs  studied  in  the  1990s  cost  between  $100,000  and   over   $1  million   each   just   to   develop).     Virginia   expects   to   spend   over   $10.7  million  over  the  course  of  10  years  to  develop  and  implement  TMDLs  required  by  litigation.    Virginia  Department  of  Environmental  Quality,  TMDL  Program  Five  Year  Progress   Report   2   (Feb.   2005),   available   at  http://www.deq.state.va.us/export/sites/default/tmdl/pdf/04rptfs.pdf.    134 U.S.   EPA,   Litigation   Status:   TMDL   Litigation   by   State,  http://www.epa.gov/owow/tmdl/lawsuit.html  (last  updated  Feb.  23,  2009).  135  40  C.F.R.  §  130.2(g),  (h),  (i)  (2014).  

Page 27: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   27  

B.   The  National   Recommended   (Reference)  Water   Quality   Criterion   for  Ocean  pH  

    The  EPA  began  assembling  its  national  recommended  water  quality  criteria  even  before  the  Clean  Water  Act’s  passage,  in  the  1968  so-­‐called  “Green  Book.”  136  Immediately   after   the   Act’s   passage   in   1972,   the   EPA   published   its   1973   “Blue  Book”   of   water   quality   criteria.137  Most   of   the   current   nationally   recommended  water  quality  criteria,  however,  have  evolved  from  the  EPA’s  next  two  compendia,  the   1976   “Red   Book”138  and   the   1986   “Gold   Book,”   but   they   also   include   more  recent  additions  and  amendments.      

The  Red  Book’s  criterion  for  pH  in  marine  waters  was  based  on  the  water  quality  needs  of  aquatic  life  (rather  than,  say,  human  health)  and  was  set  at  6.5-­‐8.5,  a  narrower  range  than  for  freshwater139  but  still  a  fairly  broad  range.  140    The  EPA  limited   this   breadth,   however,   by   further   specifying   that   pH   changes   in   specific  waterways   could   be   “not   more   than   0.2   units   outside   of   normally   occurring  range.”141  The   recommended   criterion   thus   recognized   both   that   marine   waters  have  a  wide  range  of  “normal”  pH  statuses  and  that  small  changes  in  that  normal  range,  whatever  it  is,  are  likely  to  be  harmful  to  marine  organisms.  

 According  to  the  best  science  available  in  1976,  normal  seawater  pH  at  the  

surface   ranges   from   8.0   to   8.2,   but   ocean   pH   decreases   to   7.7   or   7.8   in   deeper  waters,142  a   reflection,  among  other   things,  of   the  greater  ability  of   cold  water   to  absorb  carbon  dioxide.  Tropical  and  subtropical  marine  waters  can  be  even  more  variable,   and   “in   the  shallow,  biologically  active  waters   in   tropical  or   subtropical  areas,   large   diurnal   pH   changes   occur   naturally   because   of   photosynthesis,”  ranging   from  a  pH  of  9.5   in  daytime   to  a  pH  of  7.3   just  before  dawn.143  The  EPA  also  concluded  that  the  science  indicated  that  marine  invertebrates  were  probably                                                                                                                  136  U.S.   EPA,   QUALITY   CRITERIA   FOR  WATER   1986,   at   ii   (May   1,   1986),   available   at  http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/2009_01_13_criteria_goldbook.pdf.  137  Id.  138  U.S.   EPA,   QUALITY   CRITERIA   FOR   WATER   (July   1976),   available   at  http://water.epa.gov/scitech/swguidance/standards/criteria/current/upload/2009_01_13_criteria_redbook.pdf.  139  The  EPA  noted  that  “[b]ecause  of  the  buffering  system  present  in  sea  water,  the  naturally  occurring  variability  of  pH  is  less  than  in  fresh  water.”  Id.  at  342.  140  Id.  at  337.  141  Id.  142  Id.  143  Id.  

Page 28: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  28  

more  sensitive  to  pH  changes  than  marine  fish,  and  it  suggested  that  oysters  and  oyster  larvae  would  be  adversely  affected  at  pH  levels  of  about  6.5  (acidic)  or  9.0  (basic).144  Moreover,   it   cautioned   states,   “rapid   pH   fluctuations   that   are   due   to  waste  discharges  should  be  avoided.”145       The   EPA   carried   the   1976  marine   pH   criterion   unchanged   into   the   1986  “Gold  Book,”146    and  these  Gold  Book  marine  pH  recommended  criteria  remained  in  place   for   the  1998  compilation  of  water  quality  criteria,  as  well.147  Indeed,   the  EPA’s  current  web  site  of  national  recommended  water  quality  criteria  still  relies  on   both   the   Red   Book   and   the   Gold   Book   as   the   sources   for   the   marine   pH  criterion.148  As  a  result,  when  the  CBD  filed  its  2007  petition  with  the  EPA,  the  EPA  had   not   amended   the   Section   304   national   recommended   marine   pH   criterion  since   at   least   1976.   Whether   the   science   of   ocean   acidification   is   yet   definitive  enough   to   force   either   set   of   regulators   to   alter   their   standards,   however,   is   a  complex  issue,  and  so  far  the  EPA,  the  states,  and  the  courts  are  not  convinced.    C.   The  CBD,  the  EPA,  NOAA,  and  the  Courts  on  Ocean  Acidification       The   CBD   and   the   EPA   have   now   engaged   in   an   eight-­‐years-­‐and-­‐counting  skirmish  over  ocean  acidification  and   the  Clean  Water  Act,  with   the  most  helpful  administrative   response   actually   coming   from  NOAA.  Moreover,   the   CBD’s   Clean  Water   Act   efforts   have   now   evolved   beyond   the   Section   304   reference   water  quality   criterion   issue   to   the   Section   303(d)   impaired   waters   lists   and   TMDL  process.       1.   Section  304  Reference  Water  Quality  Criteria  for  Marine  pH    

When   the  EPA   failed   to   respond   to   the  CBD’s  2007  petition,   the  CBD   filed  notice  of  its  intent  to  sue  for  failure  to  respond  on  November  13,  2008.149  The  CBD                                                                                                                  144  Id.  145  Id.  at  343.  146  U.S.   EPA,   QUALITY   CRITERIA   FOR   WATER   1986   (May   1,   1986),   available   at  http://water.epa.gov/scitech/swguidance/standards/criteria/aqlife/upload/2009_01_13_criteria_goldbook.pdf.    147  U.S.  EPA,  National  Recommended  Water  Quality  Criteria;  Republication,  63  Fed.  Reg.  68,354,  68,361  (Dec.  10,  1998).  148  U.S.   EPA,   National   Recommended   Water   Quality   Critieria,  http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm  (as  updated  June  29,  2015  and  viewed  July  3,  2015).  149  Center   for   Biological   Diversity,   “Environmental   Protection   Agency  Warned   to  Address   Ocean   Acidification   or   Face   Lawsuit,”  

Page 29: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   29  

alleged   in   this  notice  of   intent   that   “the  EPA’s  current  water-­‐quality  criterion   for  pH  is  outdated  and  woefully  inadequate  in  the  face  of  ocean  acidification.  A  decline  of   0.2   pH—allowed   under   the   current   standard—would   be   devastating   to   the  marine   ecosystem.”150  Thus,   the   CBD   directly   challenged   the   EPA’s   aquatic   life  protection   rationale   for   the  national   recommended  marine  pH   criterion,   alleging  that  the  permitted  variation  in  pH  was  already  too  much  for  organisms  to  handle.  Notably,  however,  the  CBD  also  emphasized  that  ocean  pH  has  already  changed  on  average   0.11   pH   units,151  meaning   that—even   under   the   EPA’s   current   water  quality   criterion—ocean   acidification   has   already   driven   ocean   pH,   on   average,  more  than  halfway  to  a  pervasive  Clean  Water  Act  violation.       In   response   to   the   CBD’s   notice   of   intent   to   sue,   in   April   2009   the   EPA  published  a  Notice  of  Data  Availability  in  the  Federal  Register,  which  both  solicited  additional   scientific   information   regarding   ocean   acidification   and   notified   the  public  of   the  EPA’s   “intent   to  review  the  current  aquatic   life  criterion   for  marine  pH  to  determine  if  a  revision  is  warranted  to  protect  the  marine  designated  uses  of  States   and   Territories   pursuant   to   Section   304(a)(1)   of   the   Clean  Water   Act.”152  The   EPA   later   stated   its   intent   to   respond   to   the   CBD’s   petition   by   spring   of  2010.153      

Nevertheless,  given  the  wide  variability  of  “normal”  marine  pH  values  and  insufficient  data  regarding  ocean  acidification  and   its   impacts  on  aquatic   life,   the  EPA   decided   in   2010   to   not   revise   the   Section   304   national   recommended  reference   marine   pH   water   quality   criterion. 154  This   decision   is   arguably  scientifically   vulnerable.   Ocean   science   has   evolved   considerably   since   1976,  especially   with   respect   to   the   more-­‐recently-­‐identified   phenomenon   of   ocean                                                                                                                                                                                                                                                                                                                                      http://www.biologicaldiversity.org/news/press_releases/2008/ocean-­‐acidification-­‐11-­‐13-­‐2008.html  (Nov.  13,  2008).  150  Id.  151  Id.  152  U.S.  EPA,  Ocean  Acidification  and  Marine  pH  Water  Quality  Criteria,  74  Fed.  Reg.  17,484,  17,484  (April  15,  2009).  153  U.S.   EPA,  Clean  Water  Act  Section  303(d):  Notice  of  Call   for  Public  Comment  on  303(d)  Program  and  Ocean  Acidification,   75   Fed.   Reg.   13,537,   13,538   (March   22,  2010).  154  Memorandum   from  Denise  Keehner,  Director,  Office  of  Wetlands,  Oceans,   and  Watersheds,   U.S.   EPA,   to  Water   Division   Directors,   Regions   1-­‐10,   on   “Integrated  Reporting   and   Listing   Decisions   Related   to   Ocean   Acidification,”   dated   Nov.   15,  2010,   at   4   available   at  http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/oa_memo_nov2010.pdf.  

Page 30: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  30  

acidification  and   its   actual   and  potential   impacts  on  marine  organisms.  As  noted  above,   current   ocean   acidification   science   suggests   that   shellfish   impacts   are  already  occurring  with  global  average  pH  changes  of  0.1,  suggesting  that  the  CBD  may   be   correct   that   the   0.2   average   deviation   is   not   in   fact   sufficient   to   protect  marine  aquatic  life.  Moreover,  as  will  be  discussed  in  more  detail  below,  nothing  in  the  EPA’s  national  water  quality  criterion  actually  requires  coastal  states  to  tailor  the   standard   to   their   own   coastal   waters—or,  most  maddeningly,   to   establish   a  baseline  “normal”  pH  for  those  specific  waters.    

 As   a   result,   both   the   EPA’s   criterion   and   the   states’   implementation   of   it  

have  become  problematic.  Nevertheless,  neither   the  EPA  nor   the  CBD  have   (yet)  pursued  this  specific  Clean  Water  Act  issue  further.    

2.   Section   303(d):   The   CBD’s   2009   Impaired  Waters   Litigation   and   Its  Aftermath  

 In  March  2009,   the  CBD  refocused   its  Clean  Water  Act/ocean  acidification  

attention  on  Section  303(d)   and  TMDLs,   filing   suit   against   the  EPA,   alleging   that  the  EPA  should  not  have  approved  the  State  of  Washington’s  2008  Section  303(d)  list   of   impaired   waters.   The   CBD   alleged   that   ocean   acidification   was   already  causing  pH  water  quality  standard  violations  in  Washington’s  territorial  sea,  which  Washington   had   failed   to   list   as   impaired.155  More   specifically,   according   to   the  CBD,  “Scientists  monitoring  waters  off  the  coast  of  Washington  reported  that  ocean  acidification   is   already   affecting   seawater   quality   and   marine   ecosystems.  According   to   the   2008   report   in   the   Proceedings   of   the   National   Academy   of  Sciences,  since  2000  the  pH  of  Washington’s  coastal  waters  has  declined  by  more  than  0.2  units,  violating  the  state’s  water-­‐quality  standard  for  pH.”156    

 The  EPA  described  this  first  round  of  impaired  waters  litigation  as  follows:      The   Center   for  Biological  Diversity   (CBD)   filed   a   complaint   against  EPA  on  May  14th,   2009   challenging  EPA’s   approval   of  Washington  State’s   2008   303(d)   list   citing   failure   to   include   coastal   waters   as  impaired  for  marine  pH.  In  addition,  CBD  has  sent  letters  to  14  States  and  2  Territories  requesting  that  they  list  under  CWA  Section  303(d)  

                                                                                                               155  Center   for   Biological   Diversity,   “Lawsuit   Filed   Against   Environmental  Protection   Agency   for   Failure   to   Combat   Ocean   Acidification,”  http://www.biologicaldiversity.org/news/press_releases/2009/ocean-­‐acidification-­‐05-­‐14-­‐2009.html  (May  14,  2009).  156  Id.  

Page 31: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   31  

all   ocean   waters   impaired   by   ocean   acidification,   and   revise   their  marine  pH  criteria.157    

The  lawsuit  settled  10  months  later,  with  the  EPA  agreeing  to  consider  “how  states  can  address  ocean  acidification  under  the  Clean  Water  Act.”158       As  part  of  fulfilling  its  settlement  promise,  the  EPA  in  March  2010  called  for  public   comment   on  how   the  Clean  Water  Act’s   Section  303(d)  program—that   is,  the   impaired   waters   and   TMDL   program—could   help   to   address   ocean  acidification.159  According   to   the   EPA,   “Ocean   acidification   presents   a   suite   of  environmental   changes   that   would   likely   negatively   affect   ocean   ecosystems,  fisheries,   and  other  marine   resources.”160  The  EPA  emphasized   impacts   on   shell-­‐forming  organisms  in  particular,  noting  that  “[c]alcifying  marine  organisms  may  be  adversely   affected  by   future   ocean   acidification   if   declining   carbonate   saturation  influences   their  ability   to  produce  shells  and  skeletons  out  of   calcium  carbonate.  For   instance,   ocean   acidification  would   likely   reduce   calcification   rates   in   corals,  and  may   affect   shellfish   species   such   as   oysters,   clams,   and   crabs.”161  The   EPA’s  notice   generated   about   30,000   comments   in   60   days,   most   of   which   supported  using  the  Clean  Water  Act  to  address  ocean  acidification.162       In  accordance  with  the  settlement  agreement,  moreover,  on  November  15,  2010,   the   EPA   issued   a   guidance   memorandum   to   the   ten   EPA   Regions   on                                                                                                                  157  U.S.   EPA,  Clean  Water  Act  Section  303(d):  Notice  of  Call   for  Public  Comment  on  303(d)  Program  and  Ocean  Acidification,   75   Fed.   Reg.   13,537,   13,538   (March   22,  2010)   (citing  Center   for  Biological  Diversity   v.   EPA,  No.   2:09cv670   (W.  D.  Wash.  2009)).  158  Center  for  Biological  Diversity,  “Legal  Settlement  Will  Require  EPA  to  Evaluate  How   to   Regulate   Ocean   Acidification   Under   Clean   Water   Act,”  http://www.biologicaldiversity.org/news/press_releases/2010/ocean-­‐acidification-­‐03-­‐11-­‐2010.html  (March  11,  2010).  159  U.S.   EPA,  Clean  Water  Act  Section  303(d):  Notice  of  Call   for  Public  Comment  on  303(d)  Program  and  Ocean  Acidification,   75   Fed.   Reg.   13,537,   13,537   (March   22,  2010).  160  Id.  (citations  omitted).  161  Id.  (citations  omitted).  162  Memorandum   from  Denise  Keehner,  Director,  Office  of  Wetlands,  Oceans,  and  Watersheds,   U.S.   EPA,   to  Water   Division   Directors,   Regions   1-­‐10,   on   “Integrated  Reporting   and   Listing   Decisions   Related   to   Ocean   Acidification,”   dated   Nov.   15,  2010,   at   2   available   at  http://water.epa.gov/lawsregs/lawsguidance/cwa/tmdl/upload/oa_memo_nov2010.pdf.  

Page 32: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  32  

“Integrated  Reporting  and  Listing  Decisions  Related  to  Ocean  Acidification.”163  The  EPA   noted   that,   “[a]s   a   result   of   absorbing   large   quantities   of   human-­‐made   CO2  emissions,   ocean   chemistry   is   changing,   which   is   likely   to   negatively   affect  important   marine   ecosystems   and   species,   including   coral   reefs,   shellfish,   and  fisheries.  In  addition,  [ocean  acidification]  could  cause  these  ecosystems  to  become  even   more   vulnerable   to   other   environmental   impacts,   especially   those   from  climate  change,  such  as  increases  in  sea  surface  temperatures.”164    In  terms  of  the  Clean  Water  Act,  it  also  noted  that  “all  23  coastal  States  and  5  Territories  .  .  .  have  marine   pH  water   quality   criteria   (WQC)   in   place   that   are   similar   to   EPA’s   CWA  304(a)(1)   recommended   national   criterion”   and   that   “more   than   half   the   States  have  coastal  monitoring  programs.”165  However,  “in  most  coastal  regions,  data  are  not   readily   available   to   characterize   short-­‐term  marine   pH   diurnal   and   seasonal  variability,  or  to  quantify  a  normally  occurring  pH  ‘baseline’  necessary  to  identify  variation  from  natural  and  any  long-­‐term  trends.”166      

In  other  words,  states  don’t  know  what  the  “normal”  pH  of  their  territorial  seas   actually   is,   making   quantifiable   assessment   of   ocean   acidification’s   impact  almost   impossible.  This   fact,   as  a  practical   if  not   legal  matter,   affects  what   states  can   do   with   their   Section   303(d)   listings   of   impaired   coastal   waters.   The   EPA’s  November   2010   guidance   reflects   the   increasing   tension   between   legal  requirements  and  scientific  knowledge:    

EPA  has  concluded  that  States  should  list  waters  not  meeting  water  quality  standards,   including  marine  pH  WQC,  on   their  2012  303(d)  lists,   and   should   also   solicit   existing   and   readily   available  information  on  [ocean  acidification]  using  the  current  303(d)  listing  program  framework.  This  Memorandum  does  not  elevate  in  priority  the   assessment   and   listing   of   waters   for   [ocean   acidification],   but  simply   recognizes   that   waters   should   be   listed   for   [ocean  acidification]   when   data   are   available.   EPA   recognizes   that  information  is  absent  or  limited  for  [ocean  acidification]  parameters  and   impacts   at   this   point   in   time   and,   therefore,   listings   for   ocean  acidification  may  be  absent  or  limited  in  many  States.167  

                                                                                                               163  Memorandum   from  Denise  Keehner,  Director,  Office  of  Wetlands,  Oceans,   and  Watersheds,   U.S.   EPA,   to  Water   Division   Directors,   Regions   1-­‐10,   on   “Integrated  Reporting   and   Listing   Decisions   Related   to   Ocean   Acidification,”   dated   Nov.   15,  2010.  164  Id.  at  1.  165  Id.  at  4.  166  Id.  (citation  omitted).  167  Id.  

Page 33: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   33  

 The   EPA   promised   more   guidance   when   more   scientific   information   becomes  available.168  In   the   interim,   it   recommended   that   coastal   states   regularly   solicit  information   about   ocean   acidification   in   their   individual   waters. 169  It   also  encouraged   states   to   develop   ocean   acidification   assessment   methods   for   their  territorial  seas,170  and,  “to  improve  implementation  of  the  marine  pH  criteria,  EPA  suggests   States   begin   requesting   information   on,   and   developing   methods   for,  interpreting   their   marine   pH   water   quality   standards   related   to   natural  condition,”171  particularly  with  respect  to  marine  life  like  coral  reefs.172  Finally,  the  EPA   again   emphasized   that   states   have   considerable   discretion   in   prioritizing  TMDL  development  for  impaired  waters,  and  it  clearly  conveyed  its  own  position  that   it   does   not   believe   that   enough   information   yet   exists   regarding   ocean  acidification   to  allow  coastal   states   to  develop  ocean  acidification-­‐related   carbon  TMDLs.173       The  clear  expectation  from  the  EPA’s  guidance  memorandum,  therefore,   is  that   states   will   not   be   rushing   to   generate   ocean   acidification-­‐based   TMDLs  anytime  in  the  near  future.  In  fact,  the  EPA’s  memorandum  implies  that  any  such  TMDLs   would   be   scientifically   indefensible.   Nevertheless,   as   the   EPA   also  acknowledged,   coastal   states   are  not  powerless   in   the   face  of   ocean  acidification  problems:    

States   could   address   [ocean   acidification]   impacts   immediately   by  evaluating   marine   waters   that   are   currently   listed   for   other  pollutants   and   that   are   considered   vulnerable   to   [ocean  acidification]  (e.g.,  waters  with  coral  reefs,  marine  fisheries,  shellfish  resources).   For   example,   researchers   have   demonstrated   that  nutrient  enrichment  can  also  lead  to  decreases  in  marine  pH  due  to  natural   respiration   processes   and   remineralizing   dead   organic  matter  back  to  CO2.  States  could   focus   their  efforts  on  these  [ocean  acidification]-­‐vulnerable   waters   to   promote   ecological  restoration.174    

                                                                                                               168  Id.  at  4-­‐5.  169  Id.  at  6.  170  Id.  at  7.  171  Id.  at  9.  172  Id.  at  11.  173  Id.  at  12.  174  Id.  (citation  omitted).  

Page 34: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  34  

Therefore,  the  EPA’s  advice  to  coastal  states,  in  essence,  is  to  learn  more,  measure  more,  start  keeping  long-­‐term  records,  and  take  care  of  other  pollution  problems  first.       While   the   EPA’s   November   2010   guidance   memorandum   is   hardly   the  ocean  acidification  “call  to  action”  that  the  CBD  was  probably  hoping  for,  it  is  also  probably  worthwhile  to  consider  ocean  acidification-­‐based  impaired  waters  listing  and   TMDL   development   in   the   context   of   the   Section   303(d)   program   more  generally.   A   perhaps   surprisingly   low   percentage   of   the   nation’s   waters   have  actually  been  subject  to  water  quality  assessments—only  about  19%  in  2002—and  of   those,   about   40%   are   assessed   to   be   impaired.175  Given   the   dearth   of   water  quality  assessment  even  in  freshwaters,  it  is  perhaps  unsurprising  that  states  have  not   been   assessing   coastal  waters   for   ocean   acidification.  Moreover,  while  more  information  about  ocean  acidification  would  certainly  be  helpful,  a  TMDL  is  highly  unlikely   to   be   the   most   efficient   way   to   address   the   relevant   sources—air  emissions  of  carbon  dioxide  and  mostly  nonpoint  (agricultural)  sources  of  nutrient  pollution  (as  in  the  Chesapeake  Bay  states).  As  Part  IV  will  discuss  in  more  detail,  motivated  coastal  states  have  in  fact  been  using  other  mechanisms  to  address  their  ocean  acidification  problems.    

3.   Section  303(d):  The  CBD’s  2013  Lawsuit       Despite   the   acknowledged   science   gaps   regarding   ocean   acidification,   the  CBD  contends  that  there  is  enough  scientific  data  about  ocean  acidification  in  some  coastal  waters  to  warrant  the  application  of  the  Clean  Water  Act’s  Section  303(d)  process.  In  2013,  the  CBD  filed  suit  against  the  EPA  in  the  U.S.  District  Court  for  the  Western  District   of  Washington,   challenging   the   EPA’s   approval   of  Washington’s  and   Oregon’s   2010   submissions   of   their   Section   303(d)   impaired   waters   lists—neither  of  which  included  coastal  waters  impaired  by  ocean  acidification.176       On   cross-­‐motions   for   summary   judgment,   the   Western   District   of  Washington   upheld   the   EPA’s   approval   of   the   two   states’   lists   as   not   being  arbitrary   and   capricious,   granting   the   EPA’s  motion   for   summary   judgment   and  denying   the  CBD’s.177  The  court  acknowledged  that  both  Washington  and  Oregon  have  water  quality  standards  that  implicate  ocean  acidification,178  and  it  found  the                                                                                                                  175  OLIVER   A.   HOUCK,   THE   CLEAN   WATER   ACT   TMDL   PROGRAM:   LAW,   POLICY,   AND  IMPLEMENTATION  4  (2d  ed.  2002).  176  Center   for   Biological   Diversity   v.   U.S.   Environmental   Protection   Agency,   -­‐-­‐-­‐   F.  Supp.  2d  -­‐-­‐-­‐,  2015  WL  9188686,  at  *1  (W.D.  Wash.  March  2,  2015).  177  Id.  at  *31.  178  Id.  at  *2-­‐*3.  

Page 35: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   35  

CBD   to   have   standing.179  On   the   merits,   the   CBD   raised   two   issues:   “(1)   EPA’s  explanation  for  its  decision  to  approve  Washington’s  and  Oregon’s  Section  303(d)  lists  runs  counter  to  the  evidence  before  the  agency  and  is   implausible  in  light  of  that  evidence,  and  (2)  Washington  and  Oregon   failed   to  consider  all  existing  and  readily  available  water  quality  data  when  creating  their  impaired  waters  lists.”180       With   respect   to  Washington,   the   CBD   relied   on   the  Wooten   study,   which  “analyzed   eight   years   of   pH   data   from   a   tidepool   on   Tatoosh   Island,   which   is  located  off  the  northwestern  tip  of  Washington’s  Olympic  Peninsula  at  the  mouth  of   the  Strait  of   Juan  de  Fuca.”181  According   to   the  CBD,   the  data  showed  a  steady  decline  in  pH  in  the  tidepool  amounting  to  a  decline  of  0.368  pH  units  over  eight  years—more   than   the  0.2  pH  unit   change  allowed  under  both   the  EPA’s  national  reference  marine  pH  criterion  and  Washington’s  own  water  quality  standards.182  Washington   rejected   the   study   for   three   reasons:   it   did   not   prove   that   the   pH  changes  were  from  anthropogenic  causes;  the  monitoring  site  was  located  within  the  Makah  Indian  Reservation,  out  of   the  state’s  regulatory   jurisdiction;  and  data  from  the  tidepool  could  not  be  extrapolated  to  the  larger  waters  beyond,  including  the   Strait   itself.183  The   EPA   also   independently   reviewed   the  Wooten   study   and  rejected   its   implications   for  waters  outside  of   the   tidepool   for  many  of   the   same  reasons. 184  The   court   upheld   both   Washington’s   and   the   EPA’s   reasoning,  emphasizing   that   the   Wooten   study   “did   not   take   into   consideration   natural  processes,   such   as   river   discharge   effects”185  and   concluding   that,   “even   if   the  Wooten  study  did  prove  violations  of  Washington’s  numerical  pH  standard  [in  the  tidepool  on   tribal   land],  EPA  was   justified   in  determining   that   the  study’s  results  did  not  require  listing  adjacent  waters,  such  as  the  Strait  of  Juan  de  Fuca.”186       The   CBD   also   claimed   that   ocean   acidification   is   causing   violations   of  Oregon’s   and   Washington’s   narrative   water   quality   standards   regarding  shellfish.187  For  example,  “[m]ost  of  Washington’s  coastal  waters  are  designated  as  ‘extraordinary   quality’   or   ‘excellent   quality’   for   aquatic   life   uses,   which   include  ‘clam,   oyster,   and  mussel   rearing   and   spawning;   crustaceans   and   other   shellfish  

                                                                                                               179  Id.  at  *6-­‐*13.  180  Id.  at  *13.  181  Id.  at  *17.  182  Id.  183  Id.  at  *18.  184  Id.  185  Id.  186  Id.  at  *19.  187  Id.  

Page 36: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  36  

(crabs,  shrimp,  crayfish,  scallops,  etc.)  rearing  and  spawning.’”188  In  addition,  “for  both  aquatic  life  uses  and  shellfish  harvesting,  ‘deleterious  material  concentrations  must  be  below  those  which  have  the  potential    .  .  .  to  adversely  affect  characteristic  water   uses   [or]   cause   acute   or   chronic   conditions   to   the   most   sensitive   biota  dependent   upon   those   waters.’” 189  Similarly,   “Oregon’s   coastal   waters   are  designated   for   the   beneficial   uses   of   ‘fish   and   aquatic   life,’   as  well   as   fishing.”190  Oregon’s  “[n]arrative  water  quality  criteria  provide  that  ‘[w]aters  of  the  state  must  be  of  sufficient  quality  to  support  aquatic  species  without  detrimental  changes  in  the  resident  biological  communities,’  and   that   the   ‘creation  of   .   .   .   conditions   that  that  deleterious  to  fish  or  other  aquatic  life  .  .  .  may  not  be  allowed.’”191  According  to  the  CBD,  based  primarily  on  laboratory  and  shellfish  aquaculture  studies,  ocean  acidification   is   clearly   having   detrimental   impacts   on   shellfish   in   Oregon   and  Washington.  However,  the  district  court  concluded  that  “CBD’s  evidence  regarding  observations   of   declining   wild   shellfish   populations   in   the   Pacific   Northwest   is  scant,”192  that  the  EPA  was  reasonable  in  its  conclusion  that  “laboratory  studies  did  not   reflect   natural   conditions,   and   therefore   could   not   be   extrapolated   to   show  harm  to  wild  populations,”193  and  that  the  EPA  reasonably  concluded  that  hatchery  studies   in  specific  bays  “could  not  be  extrapolated   to  require   listing  of  distant  or  dissimilar  Washington  and  Oregon  waters.”194       Nevertheless,  the  district  court  noted,  it  was  a  closer  question  as  to  whether  the   hatchery   studies   were   sufficient   to   require   listing   of   the   waters   actually  studied,  such  as  Netarts  Bay  in  Oregon,  and  it  chided  the  EPA  for  relying  solely  on  the   states’   numeric   water   quality   criteria   for   pH   to   reject   the   studies’  implications.195  Nevertheless,   deferring   to   the   EPA’s   “technical   expertise,”   the  court  accepted  the  EPA’s  explanation  of  why  oyster  hatchery  die-­‐offs   from  ocean  acidification  in  both  Oregon  and  Washington  did  not  require  those  states  to  list  the  local  waters  as   impaired,  because   those  die-­‐offs  demonstrated  nothing  about   the  effects   of   ocean   acidification   on   wild   and   natural   populations—an   analytical  limitation   the   court   accepted   for   both   states   even   though   Oregon’s   standards  (unlike   Washington’s)   do   not   clearly   exclude   effects   on   hatchery   or   farmed  shellfish  populations.196                                                                                                                  188  Id.  at  *2  (citing  WASH.  ADMIN.  CODE  §§  173-­‐201A-­‐612,  173-­‐201A-­‐210(1)(a)).  189  Id.  (citing  WASH.  ADMIN.  CODE  §  173-­‐201A-­‐260(2)(a)).  190  Id.  at  *3  (citing  OR.  ADMIN.  RULES  §  340-­‐041-­‐0220  et  seq.).  191  Id.  (citing  OR.  ADMIN.  RULES  §§  340-­‐041-­‐0011,  340-­‐041-­‐0007(10)).  192  Id.  at  *20.  193  Id.  at  *21.  194  Id.  at  *22.  195  Id.  196  Id.  

Page 37: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   37  

    As  for  the  CBD’s  second  argument,  the  district  court  could  identify  no  data  that  Oregon  had  not   considered   in   compiling   its  2010   impaired  waters   list.197  As  for  Washington,  the  court  upheld  Washington’s  reasoned  explanation  for  rejecting  long-­‐term  marine  monitoring  data   as  not   credible,198  and   it   concluded   that   there  was  “no  indication  in  the  record  that  marine  pH  data  from  the  USGS,  STORET,  and  NOAA  databases  were  submitted  to  [the  Washington  Department  of]  Ecology  (or,  later,  EPA)  for  consideration,  or  that  the  possibility  of  obtaining  additional  marine  pH   data   from   the   USGS   and   STORET   databases   was   otherwise   raised   before  Ecology  or  EPA  by  CBD  or  any  other  party.”199       As  this  Article  goes  to  press,  there  is  no  indication  that  the  CBD  will  appeal  the   district   court’s   decision   to   the   U.S.   Court   of   Appeals   for   the   Ninth   Circuit.  However,   the   CBD   is   already   pursuing   a   similar   lawsuit   based   on   the   EPA’s  decision   to   approve   Oregon’s   and   Washington’s   2012   Section   303(d)   impaired  waters  lists.200  These  sequential  lawsuits  will  presumably  continue  to  focus  on  the  issue   of   when   exactly   affected   coastal   states   know   enough   about   the   particular  impacts   of   ocean   acidification   in   specific   waters   (and   apparently   on   wild   and  natural  populations)  to  trigger  the  Clean  Water  Act’s  Section  303(d)  process.      

Notably,   the  Western  District  of  Washington  upheld   the  EPA   in  allowing  a  fairly  high  knowledge  threshold  before  coastal  waters  must  be  deemed  “impaired”  for   ocean   acidification   under   the   Clean   Water   Act:   Area-­‐specific   studies   must  demonstrate   that   anthropogenic   causes   (preferably   human   emissions   of   carbon  dioxide)  are  causing  decreases  in  local  pH  that  either  are  greater  than  0.2  pH  units  from  “normal”  or  are  causing  demonstrable   impacts  on  wild/natural  populations  of  marine  life.  This  standard  hardly  reflects  a  precautionary  approach  to  impaired  waters  listings  for  ocean  acidification—although,  again,  it  is  not  always  clear  what  the  TMDL  process  could  actually  accomplish.    

 Nevertheless,   some   coastal   states   are   likely   to   cross   even   that   high  

knowledge   threshold   sometime   in   the   near   future.   Indeed,   one   of   the   perverse  ironies   of   the   CBD’s   Section   303(d)   litigation   is   that   some   of   the   states—like  Oregon   and   Washington—that   are   resisting   ocean   acidification-­‐based   Section                                                                                                                  197  Id.  at  *25.  198  Id.  at  *25-­‐*28.  199  Id.  at  *28.  200  Susannah  L.  Bodman,  “Lawsuit  over  ocean  acidification  in  Oregon,  Washington  gets   a   hearing   in   Seattle,”   The   Oregonian,   Feb.   10,   2015,  http://www.oregonlive.com/pacific-­‐northwest-­‐news/index.ssf/2015/02/ocean_acidification_seattle.html.    

Page 38: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  38  

303(d)   listings   are   also   leaders   in   intensively   pursuing   state   and   regional   ocean  acidification  programs.  This  Article  turns  to  those  state  and  regional  programs  in  Part  IV.  

 4.   Parallel   Developments:   The  National   Ocean   Policy,   the   FOARAM  Act,  

and  NOAA       As   the   EPA   itself   has   noted   repeatedly,201  the   CBD’s   efforts   to   apply   the  Clean   Water   Act   to   ocean   acidification   arose   concurrently   with   several   other  federal   efforts   to   improve   ocean   management   generally   and   to   address   ocean  acidification  in  particular.  For  example,  on  July  19,  2010,  President  Barack  Obama  issued   Executive   Order   13547   to   establish   a   National   Ocean   Policy. 202  This  Executive   Order   established   a   National   Ocean   Council   and   charged   it   and   all  federal  agencies   to  pursue  the  recommendations  of   the   Interagency  Ocean  Policy  Task  Force.203  These  recommendations   included  a  policy  to  “provide  for  adaptive  management  to  enhance  our  understanding  of  and  capacity  to  respond  to  climate  change   and   ocean   acidification   .   .   .   .”204  Thus,   the  National   Ocean   Council   is   now  addressing  ocean  acidification.       Congress  has  also  addressed  ocean  acidification.  For  instance,  on  March  30,  2009,  it  enacted  (as  part  of  the  Omnibus  Public  Land  Management  Act  of  2009),  the  Federal   Ocean   Acidification   Research   and  Monitoring   (FOARAM)   Act   of   2009.205  This  Act  appropriated  $96  million  to  NOAA  and  NASA,  spread  over   four  years,206  to:  (1)  develop  a  comprehensive  interagency  plan  to  research  and  monitor  ocean  acidification   and   establish   an   interagency   ocean   acidification   research   and  monitoring   program;   (2)   establish   an   ocean   acidification   program  within  NOAA;  (3)   assess   the   effects   of   ocean   acidification   on   ecosystems   and   socioeconomics,  both   nationally   and   regionally;   and   (4)   develop   adaptation   techniques   that   will  effectively   conserve   marine   ecosystems   even   as   they   cope   with   ocean  acidification.207                                                                                                                    201  E.g.,  U.S.  EPA,  Clean  Water  Act  Section  303(d):  Notice  of  Call  for  Public  Comment  on  303(d)  Program  and  Ocean  Acidification,  75  Fed.  Reg.  13,537,  13,539  (March  22,  2010).  202  Pres.   Barack   Obama,   Exec.   Order   No.   13547:   Stewardship   of   the   Ocean,   Our  Coasts,  and  the  Great  Lakes,  75  Fed.  Reg.  43,023  (July  19,  2010).  203  Id.  §§  1,  4,  75  Fed.  Reg.  at  43,023,  43,024.  204  Id.  §  1,  75  Fed.  Reg.  at  43,023.  205  Pub.  L.  No.  111-­‐11,  §§  12401-­‐12409,  123  Stat.  991,  1436-­‐42  (March  30,  2009).  206  Id.  §  12409,  123  Stat.  at  1441-­‐42.  207  Id.  §  12402,  123  Stat.  at  1436-­‐37.  

Page 39: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   39  

  In   response   to   the   FOARAM   Act,   NOAA   has   established   an   ocean  acidification  program.208  Moreover,  on  March  26,  2014,  NOAA  and   its  partners   in  the   Interagency   Working   Group   on   Ocean   Acidification   released   their   Strategic  Plan   for   Federal   Research   and  Monitoring   of   Ocean   Acidification.209  The   Working  Group  was  “guided  by  the  following  vision:  ‘A  nation,  globally  engaged  and  guided  by   science,   sustaining   healthy  marine   and   coastal   ecosystems,   communities,   and  economies  through  informed  responses  to  ocean  acidification.’  This  vision  reflects  the   intention   that  U.S.   ocean-­‐acidification  efforts  be   societally   relevant   and   to  be  based   on   the   best   available   information   and   science.”210  The   plan   has   seven  themes—“(1)   monitoring;   (2)   research;   (3)   modeling;   (4)   technology  development;   (5)   socioeconomic   impacts;   (6)   education,   outreach,   and  engagement   strategies;   and   (7)   data   management   and   integration”—and   it  recommends  both  short-­‐  and  long-­‐term  research.211      

The   plan   also   identifies   13   goals   for   ocean   acidification   research   and  monitoring,   five   of  which   are   directly   relevant   to   effectively   implementing  Clean  Water   Act   water   quality   criteria,   water   quality   standards,   and   TMDL   processes,  including   identifying   coastal   waters   that   actually   have   been   impacted   by   ocean  acidification.   These   goals   include:   (1)   “Develop[ing]   comprehensive   models   to  predict  changes  in  the  ocean  carbon  cycle,  oceanic  carbonate-­‐buffer  systems,  and  impacts   on   marine   ecosystems   and   organisms”;   (2)   Ensur[ing]   the   ability   to  measure   all   required  parameters  with   adequate  data  quality   through   technology  development   and   standardization   of   measurements”;   (3)   “Undertak[ing]  investigations   that   translate   and   reconcile   laboratory   results   with   real-­‐world  situations”;  (4)  “Develop[ing]  vulnerability  assessments  for  various  CO2  emissions  scenarios”;   and   (5)   “Identify[ing]   and   engag[ing]   stakeholders   and   local  communities   in   developing   adaptation   and   mitigation   strategies   for   responsible  stewardship  of  marine  and  Great  Lakes  organisms  and  ecosystems.”212       The  very  need  for  this  research  plan,  however,  suggests  that  the  EPA’s  2010  assessment   of   the   current   state   of   place-­‐specific   ocean   acidification   science   for  Clean  Water  Act  purposes  is  generally  correct:  Most  coastal  states  do  not  have  the                                                                                                                  208  National   Oceanic   &   Atmospheric   Administration,   NOAA   Ocean   Acidification  Program,  http://oceanacidification.noaa.gov  (as  viewed  July  4,  2015).  209  Interagency  Working  Group  on  Ocean  Acidification,   Strategic  Plan   for  Federal  Research   and   Monitoring   of   Ocean   Acidification   (March   2014),   available   at  https://www.whitehouse.gov/sites/default/files/microsites/ostp/NSTC/iwg-­‐oa_strategic_plan_march_2014.pdf.    210  Id.  at  6.  211  Id.  212  Id.  at  7.  

Page 40: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  40  

scientific   data   and   support   necessary   to   even   assess   problematic   changes   in   pH  (short-­‐term   or   long-­‐term)   in   their   local   waters,   let   alone   implement  meaningful  TMDLs   that   will   make   a   difference   to   marine   health.   NOAA’s   research   plan,   if  implemented   well   and   quickly,   may   help   to   provide   coastal   states   with   much-­‐needed  information  to  undergird  their  coastal  water  quality  programs,  potentially  improving   legal   responses   to  ocean  acidification   in   the   future.   In   the  mean   time,  however,  a   few  states  are  also  exploring  other  approaches   to  ocean  acidification,  the  subject  of  Part  IV.    

IV.  STATE  AND  REGIONAL  APPROACHES  TO  OCEAN  ACIDIFICATION  

    The  Clean  Water  Act,   of   course,   is   not   the   only  possible   legal   response   to  ocean  acidification.  Arguably,  moreover,  the  purpose  of  the  Section  303(d)  process  is  to  make  states  aware  of  their  ocean  acidification  problems  and  to  prompt  state  law   regulation   of   sources—often   nonpoint   sources   like   atmospheric   carbon  dioxide  or  nutrient  pollution  runoff—to  improve  water  quality.  However,  as  noted,  without   large-­‐scale   and   probably   global   regulation   of   carbon   dioxide   emissions,  the  main  cause  of  ocean  acidification  is  largely  beyond  individual  state  control.       Some   states   and   coastal   regions   affected  by  ocean   acidification  have   been  responding   to   that   problem—but   they   have   chosen   to   do   so   outside   of   the  relatively   constricting   structure  of   the  Clean  Water  Act.  These  state  and  regional  programs   document   the   potential   scope   of   the   ocean   acidification   problem   for  ecosystems   and   industries   within   individual   states   and   tend   to   emphasize  techniques  to  both  minimize  and  adapt  to  ocean  acidification.         This   Part   provides   a   snapshot   of   state   and   regional   ocean   acidification  programs.   It   focuses   on   Washington,   the   first   state   to   seriously   address   ocean  acidification   through   state   law   and   policy;   Maine,   which   enacted   ocean  acidification   legislation   in   2014   and   released   its   ocean   acidification   report   and  recommendations  in  2015;  and  the  still-­‐nascent  regional  ocean  acidification  efforts  along  the  West  Coast.  

 A.   Washington’s  Ocean  Acidification  Program       1.     Ocean  Acidification  in  Washington       As   noted,   “Puget   Sound   has   some   of   the   world’s   most   corrosive   waters.  Scientists   are   finding   that   marine   waters   in   the   Northwest   have   become   so  

Page 41: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   41  

corrosive   that   they   are   eating   away   at   oyster   shells   before   they   can   form.”213  Indeed,   effects   on   oyster   and   other   shellfish   aquaculture   within   the   State   of  Washington—and   especially   in   Puget   Sound—are   what   first   turned   state  regulators’   attention   to   the   ocean   acidification   problem.   As   Washington’s   Blue  Ribbon  Panel  on  Ocean  Acidification  would  later  recount,    

Between   2005   and   2009,   disastrous   production   failures   at   Pacific  Northwest  oyster  hatcheries  signaled  a   shift   in  ocean  chemistry   that  has   profound   implications   for   Washington’s   marine   environment.  Billions   of   oyster   larvae   were   dying   at   the   hatcheries,   which   raise  young   oysters   in   seawater.   Research   soon   revealed   the   cause:   the  arrival   of   low-­‐pH   seawater   along   the   West   Coast,   which   created  conditions   corrosive   to   shell-­‐forming   organisms   like   young   oysters.  The  problem,  in  short,  was  ocean  acidification.214  

Ocean   acidification   in   Washington   threatens   the   state’s   coastal   ecology,   the  livelihoods  of  its  Tribes,  and  several  economic  industries.215       Several   sources   cause   and   exacerbate   ocean   acidification   in   Washington  coastal  waters.  As  is  true  for  oceans  everywhere,  “[c]arbon  dioxide  emissions  are  the   leading  cause  of  ocean  acidification.”216  Moreover,  according  to  Washington’s  team  of   scientists,   “At   the   current   rate   of   carbon  dioxide   emissions,   the   average  acidity   of   the   surface   ocean   is   expected   to   increase   by   100   to   150   percent   over  preindustrial  levels  by  the  end  of  this  century.”217       In   addition,   however,   several   regional   and   local   causes   exacerbate  Washington’s   vulnerability   to   ocean   acidification.   At   the   regional   level,  Washington   and   the   Pacific   Coast   generally   face   increased   threats   from   open  ocean  upwelling:                                                                                                                    213  Pacific  Marine  Environmental  Laboratory,  NOAA,  Acidifying  Water  Takes  Toll  on  Northwest   Shellfish,  http://www.pmel.noaa.gov/co2/story/Acidifying+Water+Takes+Toll+On+Northwest+Shellfish  (as  viewed  June  29,  2015).  214  WASHINGTON   STATE   BLUE   RIBBON   PANEL   ON   OCEAN   ACIDIFICATION,   OCEAN  ACIDIFICATION:  FROM  KNOWLEDGE  TO  ACTION,  WASHINGTON  STATE’S  STRATEGIC  RESPONSE  xi  (2012),   available   at  https://fortress.wa.gov/ecy/publications/publications/1201015.pdf   [hereinafter  2012  WASHINGTON  PANEL  REPORT].  215  Id.  at  4-­‐5.  216  Id.  at  9.  217  Id.  

Page 42: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  42  

When   strong   northerly  winds   blow   along  Washington’s   outer   coast,  surface   seawater   is   pushed   away   from   the   coastline   and   deeper  offshore   water   is   drawn   up   to   replace   it.   This   upwelled   water   is  naturally  rich  in  nutrients,  high  in  carbon  dioxide,  and  low  in  pH  due  to   biological   processes   in   the   ocean.   However,   today’s   upwelled  waters   are   also   carrying   an   ever-­‐growing   load   of   human-­‐generated  carbon   dioxide   picked   up   from   the   atmosphere   30   to   50   years   ago  when  the  water  was  last  in  contact  with  the  atmosphere.  As  a  result,  today’s  upwelled  water  is  more  corrosive  to  calcifying  organisms  like  oysters,   clams,   scallops,  mussels,   crabs,   abalone,   and  pteropods   than  would  be  seen   from  natural  conditions  alone.   It  also  means   that   this  water  will  become  increasingly  corrosive  in  coming  decades  as  water  with   more   recent   (and   higher)   human-­‐generated   carbon   dioxide  content  upwells.218    More  locally,  nutrient  water  pollution  from  land-­‐based  sources  and  organic  

carbon   pollution   flowing   down   rivers   and   streams   can   exacerbate   ocean  acidification.219  Nutrient  pollution  can  spur  algal  blooms  (one   form  of  which   is  a  “red   tide”).220  When   the   algae   then   dies   and   decomposes,   the   decomposition  processes  uses  most  of   the  oxygen   in   the  water,   creating  an  hypoxic  area   (more  colloquially,   a   “dead   zone,”   like   in   the   Gulf   of   Mexico).221  At   the   same   time,  however,   the   decomposing   algae   release   carbon   dioxide   to   the   water   column,  exacerbating   ocean   acidification.222  Freshwater   inputs   carrying   organic   carbon  pollution,   in   turn,   combine   the   generally   lower   pH   of   freshwater   with   the   pH-­‐reducing   properties   of   sewage   effluent,   municipal   wasterwater   discharges,   and  industrial   discharges   to   exacerbate   the   pH   effects   of   ocean   acidification.   As   a  result,   “When   fresh  water  and   seawater  mix  at   river  mouths  or   in  estuaries,   the  water  can  sometimes  be  corrosive  to  calcifying  organisms.  This  is  the  case  for  the  Columbia  River  in  summer  and  in  Puget  Sound  in  winter.”223  

 Finally,   the   ocean’s   absorption   of   other   gases   besides   carbon  dioxide   can  

exacerbate  ocean  acidification.224  In  particular,  nitrogen  oxides  and  sulfur  dioxide  have  long  been  regulated  under  the  Clean  Air  Act  because  they  cause  acid  rain,  and  

                                                                                                               218  Id.  at  10.  219  Id.  at  10-­‐12.  220  Id.  at  11.  221  Id.  222  Id.  223  Id.  at  12.  224  Id.  at  13.  

Page 43: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   43  

those   same   acidifying   properties   can   locally   exacerbate   ocean   acidification  issues.225  

 These   multiple   causes   of   ocean   acidification   in   Washington   mean   that  

different   areas   of   Washington’s   coastal   waters   are   vulnerable   to   different  combinations  of  causes.  In  Washington’s  outer  coast,  the  primary  drivers  of  ocean  acidification   are   absorption   of   carbon   dioxide,   coastal   upwelling   (especially   in  summer),   and   freshwater   inputs   from   the   Columbia   River.226  In   contrast,   “[t]he  primary  influence  on  ocean  acidification  conditions  in  the  Columbia  River  estuary  is  the  naturally  low  pH  of  the  Columbia  River  and  its  tributaries.  Decomposition  of  organic  carbon  can  drive  the  pH  even  lower.”227  In  the  Puget  Sound  and  the  Strait  of   Juan  de  Fuca,   corrosive  upwelling  water   from   the  ocean   is   a   strong   influence,  but   the   more   inward   estuaries   in   Puget   Sound   also   suffer   from   nutrient   and  organic   carbon   pollution   flowing   into   the   Sound   from   rivers   and   streams;   these  areas  may  also  suffer   from  atmospheric  deposition  of  nitrogen  oxides  and  sulfur  dioxide.228  Puget   Sound   also   exhibits   much   pH   variability,   and   “[s]ome   of   the  lowest  pH  levels  and  aragonite  saturation  states  observed  in  Washington  marine  waters  have  been  measured  in  the  southern  part  of  the  Hood  Canal  basin.”229  

 Reflecting  back  on  Part  III  momentarily,  Washington’s  studies  of  its  coastal  

acidification   underscores   the   potential   limitations   of   the   Clean   Water   Act   in  addressing   the   problem:   There   is   little   the   Clean   Water   Act   can   do   to   address  global   carbon   dioxide   emissions   or   offshore   upwelling   currents.   Similarly,  increased   local   controls   on   emissions   nitrogen   oxides   and   sulfur   dioxide  would  have   to   come   through   the   Clean   Air   Act.   Conversely,   as   Washington   has  recognized,  more   stringent   controls   on   land-­‐based   nutrient  water   pollution   and  organics   pollution—clearly   within   the   province   of   the   Clean   Water   Act—could  bring  some  relief.         2.   Washington  State  Blue  Ribbon  Panel  on  Ocean  Acidification      

In   2011,   Washington   Governor   Christine   Gregoire   convened   the  Washington   State   Blue   Ribbon   Panel   on   Ocean   Acidification.   Within   a   year,   the  Panel  issued  its  report,  Ocean  Acidification:  From  Knowledge  to  Action,230  outlining  a  strategic  state  response  to  the  impacts  of  ocean  acidification.                                                                                                                  225  Id.  226  Id.  at  14.  227  Id.  at  15.  228  Id.  229  Id.  230  2012  WASHINGTON  PANEL  REPORT,  supra  note  214.  

Page 44: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  44  

 The   Panel   concluded   that   Washington   coastal   waters   are   particularly  

vulnerable   to   ocean   acidification   because   of   upwelling.231  It   also   emphasized,  however,   that   upwelling   is   not   the   only   local   factor   contributing   to   ocean  acidification  in  Washington  and  that  the  relative  importance  of  local  factors  varies  by  location.232         As  is  true  with  ocean  acidification  more  generally,  shell-­‐forming  organisms  in   Washington’s   coastal   waters   are   the   most   vulnerable   to   ocean   acidification.  However,   these   creatures   constitute   a   large   proportion   of  Washington’s  marine  life:      

More  than  30  percent  of  Puget  Sound’s  marine  species  are  vulnerable  to   ocean   acidification   by   virtue   of   their   dependency   on   the  mineral  calcium   carbonate   to   make   shells,   skeletons,   and   other   hard   body  parts.  Puget  Sound  calcifiers  include  oysters,  clams,  scallops,  mussels,  abalone,  crabs,  geoducks   .   .   .,  barnacles,  sea  urchins   .   .   .,  sand  dollars,  sea  stars,  and  sea  cucumbers.  Even  some  seaweeds  produce  calcium  carbonate  structures.233    

Moreover,  the  economic  impacts  to  Washington  from  ocean  acidification’s  effects  on  these  species  are  fairly  direct:    

Washington   is   the   country’s   top   provider   of   farmed   oysters,   clams,  and   mussels.   Annual   sales   of   farmed   shellfish   from   Washington  account   for   almost   85   percent   of   U.S.   West   Coast   sales   (including  Alaska).2   The   estimated   total   annual   economic   impact   of   shellfish  aquaculture   is   $270   million,   with   shellfish   growers   directly   and  indirectly   employing  more   than   3,200   people.3   Shellfish   are   also   an  integral   part   of   Washington’s   commercial   wild   fisheries,   generating  over   two-­‐thirds   of   the   harvest   value   of   these   fisheries.4   Shellfish   of  ecological  and  economic   importance  include  oysters,  mussels  (native  and   Mediterranean),   clams   (e.g.,   geoduck,   razor,   littleneck,   Manila),  scallops,   Dungeness   crab,   shrimp   (e.g.,   spot   prawns,   pink   shrimp),  pinto  abalone,  and  urchins.234    

                                                                                                               231  Id.  at  xii.  232  Id.  233  Id.  at  xiii,  Box  S-­‐1.  234  Id.  at  xv.  

Page 45: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   45  

In   addition,   “licensing   for   recreational   shellfish   harvesting   generates   $3   million  annually  in  state  revenue  and  recreational  oyster  and  clam  harvesters  contribute  more   than   $27   million   annually   to   coastal   economies.   Overall,   Washington’s  seafood   industry   generates   over   42,000   jobs   in   Washington   and   contributes   at  least   $1.7   billion   to   gross   state   product   through   profits   and   employment   at  neighborhood  seafood  restaurants,  distributors,  and  retailers.”235       The   panel   recognized   that   global   carbon   dioxide   emissions   are   the  main  cause  of  ocean  acidification,236  but  it  also  stressed  the  need  for  local  adaptation:    

Washington’s  shellfish  industry  and  native  ecosystems  cannot  rely  on  emissions   reductions   alone,   however.   Our   marine   waters   are  continuing   to   acidify   and   reducing   carbon   dioxide   emissions   takes  time.  To  rely  solely  on  those  reductions  would  result   in  significant—and   in   some   cases   irreversible—economic,   cultural,   and  environmental   impacts.   Additional   local   actions,   including   local  source   reduction   and   adaptation   and   remediation,   are   necessary   to  “buy   time”  while   society   collectively  works   to   reduce   global   carbon  dioxide  emissions.237    

For   example,   the   panel   recommended   local   reductions   in   nitrogen   and   organic  carbon   inputs   into  coastal  waters   from  point,  nonpoint,  and  natural  sources,238  a  recommendation   that   could   have   direct   implications   for   Washington’s  implementation  of  its  Clean  Water  Act  program.         The   panel   also   stressed   the   need   for   increased   research,  monitoring,   and  public  outreach.  “Investing  in  research  and  monitoring  will  help  fill  those  gaps  and  ensure  that  our  efforts  to  reduce  the  risks  of  ocean  acidification  are  appropriately  focused   and   effective.”239  In   turn,   “[o]utreach   and   public   engagement   connects  Washingtonians  to  the  problem  of  ocean  acidification  by  informing  them  about  the  science   and   the   significance   of   changing   ocean   chemistry   for   Washington’s  economy,  environment,  and   tribes.  This  can  empower  citizens  and  businesses   to  help  develop  and  implement  solutions.”240      

                                                                                                               235  Id.  236  Id.  at  xvii.  237  Id.  238  Id.  at  xviii.  239  Id.  240  Id.  

Page 46: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  46  

Finally,   recognizing   that   ocean   acidification   is   a   long-­‐term   problem,   the  panel   recommended   both   “Key   Early   Actions   (KEAs)   and   longer-­‐term   strategies  and  actions.  The  18  KEAs  included  both  scientific  and  governance  suggestions  and  ranged   from   “[w]ork[ing]   with   international,   national,   and   regional   partners   to  advocate   for  a  comprehensive  strategy  to  reduce  carbon  dioxide  emissions”241  to  “[i]mplement[ing]   effective   nutrient   and   organic   carbon   reduction   programs   in  locations   where   these   pollutants   are   causing   or   contributing   to   multiple   water  quality  problems”242  to  “[e]nsur[ing]  continued  water  quality  monitoring  at  the  six  existing  shellfish  hatcheries  and  rearing  areas  to  enable  real-­‐time  management  of  hatcheries  under  changing  pH  conditions”243  to  setting  up  “refuges  for  organisms  vulnerable   to   ocean   acidification   and   other   stressors”244  to   “[e]stablishing   the  ability   to   make   short-­‐term   forecasts   of   corrosive   conditions   for   application   to  shellfish  hatcheries,  growing  areas,  and  other  areas  of  concern”245  to  establishing  a  person   or   entity   in   the   Governor’s   Office   to   coordinate   all   ocean   acidification  research  and  activity.246  

 The  KEAs  represent  what  the  panel  considered  to  be  “essential”  first  steps  

to   implementing   its   six   overall   strategies   for   dealing   with   ocean   acidification.    These   six   recommendation   strategies   are:   (1)   reducing   emissions   of   carbon  dioxide;   (2)   reducing   local   land-­‐based   contributions   to   ocean   acidification;   (3)  increasing  Washington’s   ability   to   adapt   to   and   remediate   the   impacts   of   ocean  acidification;   (4)   investing   in   the   state’s   ability   to   monitor   and   investigate   the  effects  of  ocean  acidification;  (5)  informing,  educating,  and  engaging  stakeholders,  the  public,  and  decision  makers  in  ocean  acidification  issues;  and  (6)  maintaining  a  continued   and   coordinated   focus   on   ocean   acidification. 247  Longer-­‐term  recommendations   to   pursue   these   six   strategies   ranged   from   using   shells   in  specific  marine   areas   to   reduce   the   impacts   of   ocean   acidification   on   shellfish’s  abilities  to  form  shells  by  increasing  concentrations  of  calcium  carbonate  (calcite  and   aragonite)   in   the   immediately   surrounding   waters248  to   enhancing   ocean  acidification  modeling   and   long-­‐term   predictive   capabilities249  to   creating   ocean  acidification  school  curricula  for  K-­‐12  and  higher  education.250                                                                                                                  241  Id.  at  xx,  tbl.  S-­‐1.  242  Id.  243  Id.  244  Id.  245  Id.  at  xxi,  tbl.  S-­‐1.  246  Id.  247  Id.  at  28-­‐32,  tbl.  1.  248  Id.  at  30,  tbl.  1  (Strategy  6.1,  Action  6.1.3.).  249  Id.  at  31,  tbl.  1  (Strategy  7.4).  250  Id.  at  32,  tbl.  1  (Strategy  8.2,  Action  8.2.1).  

Page 47: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   47  

    3.   Washington’s  Marine  Advisory  Councils       In   response   to   the   Blue   Ribbon   Panel’s   2012   report,   in   2013   the  Washington  Legislature  enacted  Senate  Bill  5603  to  create  the  Washington  Coastal  Marine   Advisory   Council   and   the   Washington   Marine   Resources   Advisory  Council.251    The  Washington  Coastal  Marine  Advisory  Council  operates  out  of   the  Office   of   the   Governor, 252  although   the   Washington   Department   of   Ecology  provides   the   administrative   and   staff   support   for   the   Council.253  The   Council’s  broad   membership   reflects   the   broad   state,   private,   and   tribal   interests   in  Washington’s  marine   waters,254  and   it   has   several   duties,   including   serving   as   a  forum  to  discuss  coastal  issues,  including  coastal  waters  resource  policy,  planning,  and  management;  serving  as  a  point  of  contact   for  collaboration  with   the   federal  government,  regional  entities,  and  other  states;  providing  a  collaborative  response  to  issues  facing  coastal  communities  and  coastal  waters  resources;  identifying  and  pursuing   funding;  and,  probably  most   importantly,  providing  consensus-­‐based255  “recommendations  to  the  governor,  the  legislature,  and  state  and  local  agencies  on  specific   coastal   waters   resource   management   issues,”   including   marine   spatial  planning,   principles   and   standards   for   emerging   new   coastal   uses,   and   scientific  research  needed  for  coastal  resources  management,256  which  should  include  ocean  acidification.       The  Washington  Marine  Resources  Advisory  Council  (MRAC)  also  operates  out   of   the   Office   of   the   Governor257  and   also   has   a   broad   and   representative  membership.258  However,   its   duties   focus   more   directly   on   ocean   acidification.  Specifically,  by  statute,  this  Council  must:  (1)  “maintain  a  sustainable  coordinated  focus,   including   the   involvement   of   and   the   collaboration   among   all   levels   of  government   and   nongovernmental   entities,   the   private   sector,   and   citizens   by  increasing  the  state's  ability  to  work  to  address  impacts  of  ocean    acidification;”  (2)  “advise   and   work   with   the   University   of   Washington   and   others   to   conduct  ongoing   technical   analysis   on   the   effects   and   sources   of   ocean   acidification.   The                                                                                                                  251  63rd   Wash.   Leg.,   S.B.   5603,   as   engrossed   (April   2013),   available   at  http://lawfilesext.leg.wa.gov/biennium/2013-­‐14/Pdf/Bills/Senate%20Passed%20Legislature/5603.PL.pdf.  252  Id.  §  1(1).  253  Id.  §  1(8).  254  See  id.  §  1(2)  (listing  all  the  members).  255  Id.  §  1(6).  256  Id.  §  2(1).  257  Id.  §  4(1).  258  Id.  §  4(2).  

Page 48: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  48  

recommendations   must   identify   a   range   of   actions   necessary   to   implement   the  recommendations   and   take   into   consideration   the   differences   between   instate  impacts   and   sources   and   out-­‐of-­‐state   impacts   and   sources;”   (3)   “deliver  recommendations  to  the  governor  and  appropriate  committees  in  the  Washington  state   senate   and   house   of   representatives”;   (4)   “seek   public   and   private   funding  resources  necessary,  and  the  commitment  of  other  resources,  for  ongoing  technical  analysis  to  support  the  council's  recommendations;”  and  (5)  “assist  in  conducting  public   education   activities   regarding   the   impacts   of   and   contributions   to   ocean  acidification   and   regarding   implementation   strategies   to   support   the   actions  adopted  by  the  legislature.”259  The  Council  sunsets  on  June  30,  2017.260       MRAC   has   been   meeting   since   November   2013.261  At   its   March   2014  meeting,   it   announced   its   strategic   plan,   which   focuses   on   four   goals:   (1)  Advancing   implementation   of   the   Blue   Ribbon   Panel’s   recommendations;   (2)  collaborating  with  and  advocating  for  the  Washington  Ocean  Acidification  Center;  (3)   ensuring   effective   multi-­‐agency   collaboration   and   coordination;   and   (4)  engaging   in  broad  public  education  about  ocean  acidification.262  The  main  goal  of  the   strategic   plan   was   to   come   up   with   an   implementation   plan.263  In   addition,  MRAC  began  to  focus  on  local  contributions  to  ocean  acidification,  building  off  the  Blue  Ribbon  Panel’s  recommendations.  Noting  that  “[r]educing  inputs  of  nutrients  and   organic   carbon   from   local   sources   will   decrease   acidity   in   Washington’s  marine  waters   that  are   impacted  by  these   local  sources,”264  it  began  to  map   local  watershed   contributions   of   these   pollutants   (natural,   onsite   sewage   facilities,  upstream  wastewater  treatment  plants,  and  agricultural  runoff)  and  municipal  and  industrial  marine  point  source  contributors  along  the  Washington  coast.265  It  also  

                                                                                                               259  Id.  §  4(8).  260  Id.  §  4(9).  261  Washington  Department  of  Ecology,  Ocean  Acidification  and  Washington  State:  Washington   Marine   Resources   Advisory   Council   (MRAC),  http://www.ecy.wa.gov/water/marine/oceanacidification.html  (as  viewed  July  17,  2015).  262  Washington   Marine   Resources   Advisory   Council,   Strategic   Plan   4   (Mar.   7,  2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20140307MRACstrategicplan.pdf.  263  Id.  at  6,  8.  264  Washington  Marine  Resources  Advisory  Council,  What  Can  We  Do  Locally?,  at  2  (Mar.   7,   2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20140307MRACroberts.pdf.  265  Id.  at  3.  

Page 49: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   49  

noted  that  increased  efforts  were  already  underway  in  monitoring,  modeling,  and  adaptation  efforts,  but  that  more  would  be  needed.266       By   November   2014,   as   part   of   the   Puget   Sound   Action   Agenda,   MRAC  identified   seven   priority   ocean   acidification   actions   and   submitted   them   for  funding,  which   became  part   of   the   2014-­‐2015  Puget   Sound   action  plan   as  Near-­‐Term   Actions   (NTAs). 267  These   NTAs   were   to:   (1)   support   MRAC   and   the  Washington   Ocean   Acidification   Center   in   research   regarding   the   biological  response   to   ocean   acidification;   (2)   support   MRAC   and   the   Washington   Ocean  Acidification  Center   in  coordinating  research  with   federal  and  state  agencies;   (3)  expand   the   ocean   acidification   monitoring   network;   (4)   develop   a   forecast  modeling  system;  (5)  identify  local  source  impacts  and  develop  modeling  for  them;  (6)   develop   mitigation   strategies   to   improve   native   oyster   resilience;   and   (7)  develop   the   cultivation   and   harvest   of   seaweed   as   a   mitigation   strategy.268  In  addition,   MRAC   further   refined   its   own   longer-­‐term   role   in   addressing   ocean  acidification,  concluding  that  it  would  annual  ocean  acidification  status  reports  to  the  Governor  and  Washington  Legislature;  submit  annual  budget  requests  related  to  ocean  acidification;  engage   in  ongoing   legislative,   funding,  and  communication  strategies;  and  facilitate  public  understanding  of  ocean  acidification.269       MRAC   produced   its   first   Ocean   Acidification   Status   Report   in   February  2015,270  which   had   several   positive   conclusions.   First,  with   respect   to   necessary  funding,   “[i]n   the   2013-­‐2015  biennium,  Washington   State   invested   $1.85  million  towards   ocean   acidification   research   and   coordination,   and   this   investment   has  been   used   to   leverage   up   to   $1.93   million   in   additional   public   and   private  funding.”271  Second,   Washington   is   improving   scientific   understanding   of   how  ocean  acidification  affects  marine  shellfish  industries.  Specifically,  the  Washington  Ocean  Acidification  Center  (WOAC)  has  been  “[w]orking  closely  with  the  shellfish                                                                                                                  266  Id.  at  4.  267  Washington   Marine   Resources   Advisory   Council,   Ocean   Acidification   NTAs   2  (Nov.   18,   2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20141118MRACpresentationPSP.pdf.  268  Id.  at  3.  269  Washington   Marine   Resources   Advisory   Council,   Marine   Resources   Advisory  Council   Long-­‐Range   Vision   1   (Nov.   18,   2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20141118MRAChandoutLongRangeVision.pdf.  270  WASHINGTON  MARINE  RESOURCES  ADVISORY  COUNCIL,  STATE  OF  OCEAN  ACIDIFICATION  IN  WASHINGTON   (Feb.   2015),   available   at  http://www.ecy.wa.gov/water/marine/oa/20150331MRACstatusOA.pdf.  271  Id.  at  5.  

Page 50: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  50  

industry   .   .   .   to   assist   the   industry   in   gathering   vital   information   on   local   ocean  acidification   conditions   so  hatchery  operators   can   react   in   real-­‐time   to  minimize  the   loss  of  oyster   larvae.”272  Third,  relatedly,  shellfish  growers   in  Washington  are  developing  a  suite  of  adaptation  strategies.273  Fourth,  the  Washington  Department  of   Ecology   “is   working   to   fully   understand   the   impact   of   local   nutrient  contributions  on  acidification.  The  results  of  their  work  will  inform  whether  more  focused   actions   are   needed   to  minimize   impacts   of   local   contributions   to   ocean  acidification.”274  Finally,  ocean  acidification  efforts  are  increasing  both  locally  and  nationally;   for  example,   “[t]he  Suquamish  Tribe  has  worked   to  develop  an  Ocean  Acidification  Curriculum  Collection  for  K-­‐12  educators  to  use  in  the  classroom  that  includes  curricula  developed  at  the  University  of  Washington.”275       However,  as  MRAC  also  noted,  much  remains   to  be  done.   It  offered  a   long  list  of  recommended  actions  to  be  undertaken  between  2015  and  2017:    

• Continue  and  expand  monitoring  efforts  that  directly  contribute  to  marine   industries   taking   action   against   ocean   acidification  conditions  

• Provide   ocean   acidification   forecasts   to   inform   shellfish   growers  and  resource  manager  actions  

• Study   how   ocean   acidification   affects   vital   commercial   and  managed   species   such   as   salmon,   rockfish,   razor   clams,   geoduck,  and  fish  

• Investigate   the   capacity   of   species   to   genetically   adapt   to   ocean  acidification  

• Complete   research   on   how   local   sources   of   nutrients   exacerbate  acidic  conditions  

•  Investigate  various  strategies  to  adapt  to  and  alleviate  the  impacts  of  ocean  acidification,  including:  

o Developing  a  seaweed  cultivation  program  o Restoring  native  oyster  populations  o Supporting  the  creation  of  a  shell  recycling  program  o Establishing   and   managing   refuges   for   species  

vulnerable  to  ocean  acidification  

                                                                                                               272  Id.  273  Id.  at  6.  274  Id.  275  Id.  

Page 51: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   51  

• Continue  to  educate  and  raise  awareness  of  ocean  acidification  to  potentially   impacted   industries,   stakeholders,   and   the   general  public  

• Seek  public  and  private  funding  to  support  these  efforts  including:  o A   2015-­‐17   biennium   state   funding   request   in   the  

Governor’s   budget   of   $1.7  million   for   continued   ocean  acidification  research  and  coordination  

o  Working   to   identify   federal   funding  opportunities   that  can   be   used   in   conjunction   with   state   funding   to  improve  monitoring  and  adaptation  efforts.    

• Track   the   results   of   this   work   through   the   Puget   Sound  Partnership276  

 It  of  course  remains  to  be  seen  whether  Washington  can  fulfill  MRAC’s  ambitious  goals  to  address  ocean  acidification.       4.   Washington  Ocean  Acidification  Center       Also  in  response  to  the  Blue  Ribbon  Commission’s  2012  report,  in  2013  the  Washington   Legislature   created   the   Washington   Ocean   Acidification   Center,  housed   in   the  University   of  Washington  College   of   the  Environment.277  It   acts   as  Washington’s   ocean   acidification   science   clearinghouse,   pursuing   five   missions  that   the   legislature   articulated:   (1)   “Establish   an   expanded   and   sustained   ocean  acidification   monitoring   network   to   measure   trends   in   local   acidification  conditions   and   related   biological   responses”;   (2)   “[a]s   part   of   the   monitoring  network,   ensure   continued  water   quality  monitoring   at   the   six   existing   shellfish  hatcheries  and  rearing  areas  to  enable  real-­‐time  management  of  hatcheries  under  changing  pH  conditions”;  (3)  “[e]stablish  the  ability  to  make  short-­‐term  forecasts  of  corrosive  conditions   for  application  to  shellfish  hatcheries,  growing  areas,  and  other   areas   of   concern”;   (4)   “[c]onduct   laboratory   studies   to   assess   the   direct  causes   and   effects   of   ocean   acidification,   alone   and   in   combination   with   other  stressors,   on   Washington’s   species   and   ecosystems’;   and   (5)   “[i]nvestigate   and  develop  commercial-­‐scale  water  treatment  methods  or  hatchery  designs  to  protect  larvae   from   corrosive   seawater.”278  The   Center   also   partners   with   a   variety   of  institutions  besides  the  University  of  Washington,  including  the  Washington  State                                                                                                                  276  Id.  at  6-­‐7.  277  College   of   the   Environment,   University   of   Washington,   Washington   Ocean  Acidification   Center,   http://environment.uw.edu/research/major-­‐initiatives/ocean-­‐acidification/washington-­‐ocean-­‐acidification-­‐center/   (as   viewed  July  17,  2015).  278  Id.  

Page 52: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  52  

Department   of   Natural   Resources,   the   Washington   Department   of   Ecology,  Western  Washington  University,  NOAA,  EPA,  and  Taylor  Shellfish  Farms.279       With   regard   to  monitoring,   the  Center  has  both   leveraged  existing   coastal  monitoring  networks  and  deployed  new  sensors  into  Washington’s  coastal  waters,  creating   a   fairly   geographically   comprehensive   monitoring   system   for  Washington’s   coast.280  In   addition,   it   has   integrated  water   quality   and   biological  monitoring,281  allowing   it   to   measure   carbon   variables,   standard   water   quality  parameters,  and  plankton  concentrations  simultaneously  at  the  same  locations.282  This  integrated  monitoring  reveals  that  pteropod  shells  in  Puget  Sound  show  signs  of  dissolution.283      

In  addition,  based  on  2008  data,  the  Center  has  been  able  to  produce  a  map  of   aragonite   saturation   variation   throughout   Puget   Sound,284  and   it   has   also  mapped   dissolved   oxygen   patterns   there   in   2014.285  By   tying   these   and   other  parameters,  to  pteropod  conditions,  the  Center  hopes  to  be  able  to  use  pteropods  as  a  bio-­‐indicator  for  assessing  changing  ocean  conditions  and  species’  responses  to   those   changing   conditions,   generating   results   that   are   comparable   across  different  regions  of  the  ocean  and  across  time.286  

 With   regarding   to   shellfish   hatcheries,   “Evidence   shows   that   water  

chemistry  in  bays  and  estuaries  each  summer  already  falls  well  below  the  optimal  growing   conditions   of   sensitive  marine   species.   Data   collection   at   hatchery   sites  also  reveals  that  there  is  a  great  deal  of  local  variability  in  water  chemistry.”287  The  Center   provides   real-­‐time   monitoring   data   to   hatcheries   and   is   working   with  shellfish  facilities  to  install  water  treatment  systems  to  improve  shellfish  growing  

                                                                                                               279  Terrie   Klinger   &   Jan   Newton,   Co-­‐Directors,   Washington   Ocean   Acidification  Center,   Science   Update   for   the   Washington   Marine   Resources   Advisory   Council   3  (March   31,   2015),   available   at  http://www.ecy.wa.gov/water/marine/oa/20150331MRACnewton.pdf..  280  Id.  at  4.  281  Id.  at  4,  6.  282  Id.  at  6.  283  Id.  at  7.  284  Id.  at  5.  285  Id.  at  8.  286  Id.  at  9.  287  Washington   Ocean   Acidification   Center   &   Washington   Marine   Resources  Advisory  Council,  Monitoring  and  Adaptation  to  Ocean  Acidification  in  the  Shellfish  Industry  Science  Information  Sheet  1  

Page 53: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   53  

conditions.288  “Small-­‐scale   systems   in   place   at   the  Whiskey   Creek   hatchery   have  proven   effective   at   maintaining   healthy   conditions   in   growing   tanks   and   have  improved   survival   and   growth   among   growing   shellfish.   Another   pilot   system  being  tested  by  Taylor  Shellfish  has  shown  increased  shellfish  survival  and  growth.  Challenges   remain   in   scaling   up   these   systems   to   operate   at   commercial   scales,  however.”289  

 5.   Conclusion    Washington   has   invested   considerable   time—in   terms   both   of   scientific  

research   and   of   policy   development—and   money   into   learning   to   monitor   and  cope  with  ocean  acidification,  and  those  efforts  are  beginning  to  bear  fruit—a  fairly  comprehensive   monitoring   system   (especially   in   Puget   Sound),   a   greater  understanding   of   how   ocean   acidification   works   in   state   coastal   waters,   the  beginnings   of   bio-­‐indicators   and   predictive   models,   and   some   increasingly  effective   adaptation   measures   for   shellfish   farms.   Water   quality   regulatory  improvements  for  nutrient  and  organic  carbon  pollution  and  adaptation  measures  for  natural  stocks  of  marine  species,  in  contrast,  seem  to  be  lagging  behind.  While  these   are,   to   be   sure,   more   scientifically   challenging,   there   are   also   multiple  reasons   beyond   ocean   acidification   for   Washington   to   pursue   these   measures,  including  the  reduction  of  algal  blooms  and  hypoxic  zones  and  the  improvement  of  coastal   ecosystems’   general   resilience   to   climate   change   as   well   as   ocean  acidification   impacts.   Nevertheless,   even   with   respect   to   water   quality,  Washington   appears   to   have   improved   its   scientific   understanding   of   ocean  acidification   sufficient   to   be   coming   very   close   to   triggering   the   Section   303(d)  impaired   water   process,   especially   in   coastal   waters   where   pteropod   shell  dissolution  has  already  been  documented.    B.   Maine’s  Efforts  to  Address  Ocean  Acidification       1.   Ocean  Acidification  Issues  in  Maine  to  Date    

Ocean   acidification   problems   in   Maine   most   visibly   manifested   first   as  acidic  muds.  For  example,  in  the  clam-­‐bearing  mud  flats  of  Casco  Bay,  clams  began  to  disappear.290  Research  by  the  Friends  of  Casco  Bay  revealed  that  the  clams  “that  do  grow  may  be  stunted  and  pitted;  others  simply  dissolve.  After  sampling  at  30                                                                                                                  288  Id.  at  1-­‐2.  289  Id.  at  2.  290  Friends   of   Casco   Bay,   “The   Mystery   of   the   Disappearing   Clams,”  http://www.cascobay.org/the-­‐mystery-­‐of-­‐the-­‐disappearing-­‐clams/   (April   2,  2013).  

Page 54: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  54  

clam   flats   around   the  Bay  over   the  past   two   summers,   researchers   at   Friends  of  Casco  Bay  suspect  an   insidious  connection  between  nitrogen  pollution  and  acidic  mud,   leading   to   clam   flats   that  no   longer   grow  clams.”291  The  Bangor  Daily  News  reported  in  January  2014  that  “[t]he  spread  of  ‘dead  mud’  among  Maine’s  shellfish  flats  could  have  disastrous  implications  for  clammers,  lobstermen,  oyster  farmers  and   others   whose   livelihoods   depend   on   healthy   coastal   ecosystems.”292  The  growing   problem   was   causing   increasing   concern   among   wild   clam   harvesters,  oyster  aquaculturists,  and  lobster  fishermen.293  

 As   in   Washington,   ocean   acidification   in   Maine   is   caused   primarily   by  

increasing   anthropogenic   emissions   of   carbon   dioxide294  but   is   exacerbated   by  local   factors.   Specifically,   “[i]n   addition   to   atmospheric   CO2,   there   are   two   other  drivers   of   inshore   acidification   potentially   very   important   to   Maine’s   marine  resources:   freshwater   runoff   and   nutrient   loading   from   onshore   sources.”295  “Freshwater   runoff   is   typically   more   acidic   than   seawater,”   and   climate   change  models   predict   increasingly   frequent   and   increasingly   severe   storms   in   Maine,  leading   to   more   such   runoff.296  In   addition,   “[a]dding   to   the   difficult   task   of  understanding   how   Maine’s   marine   environment   is   acidifying,   the   dominant  source   of   freshwater   to   the   larger   Gulf   of   Maine   comes   from   watersheds   and  melting  ice  to  the  north  entering  from  the  Scotian  Shelf.”297    The  effects  of  nutrient  pollution  in  Maine  are  much  the  same  as  in  other  places,  like  the  Chesapeake  Bay  and  Puget  Sound  in  Washington:  “large  phytoplankton  blooms  resulting  from  the  addition  of  excess  nutrients  eventually  decompose  and  release  CO2,”  exacerbating  ocean  acidification.298  

                                                                                                                 291  Id.  292  Christopher  Cousins,  “As  ocean  becomes  more  acidic,  will  ‘dead  mud’  consume  Maine’s   bountiful   shellfish   flats?”,   Bangor   Daily   News,  http://bangordailynews.com/2014/01/13/news/state/as-­‐ocean-­‐becomes-­‐more-­‐acidic-­‐will-­‐dead-­‐mud-­‐consume-­‐maines-­‐bountiful-­‐shellfish-­‐flats/  (Jan.  13,  2014).  293  Id.  294  COMMISSION   TO   STUDY   THE   EFFECTS   OF   COASTAL   AND   OCEAN   ACIDIFICATION   AND   ITS  EXISTING   AND   POTENTIAL   EFFECTS   ON   SPECIES   THAT   ARE   COMMERCIALLY   HARVESTED   AND  GROWN   ALONG   THE   MAINE   COAST,   FINAL   REPORT   TO   THE   STATE   OF   MAINE   126TH  LEGISLATURE   SECOND   REGULAR   SESSION   ii   (Jan.   2015),   available   at  http://www.maine.gov/legis/opla/Oceanacidificationreport.pdf  [hereinafter  2015  MAINE  OCEAN  ACIDIFICATION  REPORT].  295  Id.  296  Id.  297  Id.  298  Id.  

Page 55: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   55  

2.   The  Maine  Ocean  Acidification  Commission    

On  April   30,   2014,   the  Maine   Legislature  used   its   emergency   authority   to  establish   the  Commission  To  Study  the  Effects  of  Coastal  and  Ocean  Acidification  and  Its  Existing  and  Potential  Effects  on  Species  That  Are  Commercially  Harvested  and  Grown  along  the  Maine  Coast.299  The  Commission’s  purpose  was      

to   identify   the   actual   and   potential   effects   of   coastal   and   ocean  acidification   on   commercially   valuable   marine   species,   to   identify  the  scientific  data  and  knowledge  gaps  that  hinder  Maine's  ability  to  craft   policy   and   other   responses   to   coastal   and   ocean   acidification  and   prioritize   the   strategies   for   filling   those   gaps   and   to   provide  policies   and   tools   to   respond   to   the   adverse   effects   of   coastal   and  ocean  acidification  on  commercially  important  fisheries  and  Maine's  shellfish  aquaculture  industry  .  .  .  .300    

In   addition,   the   Commission   was   to   rather   quickly   produce   a   report   on   these  subjects.301       The   Commission   released   its   report   on   February   5,   2015. 302  It   first  acknowledged   that  both  global  and   local   factors   influenced  ocean  acidification   in  Maine  waters.  303  Despite  the  complexities  and  knowledge  gaps  surrounding  these  interactions,  moreover,  the  Commission  was  convinced  that  “[a]pplicable  scientific  research   suggests   that   in   the   Gulf   of   Maine,   such   changes   are   likely   having   an  impact   on   commercially   important   species.”304  Because   of   the   basic   chemistry   of  ocean   acidification,   “[t]he   waters   of   the   Gulf   of   Maine   are   more   susceptible   to  ocean   acidification   than  other   regional  waters   surrounding   the  United   States   for  two  main   reasons.  First,   because  of   the   relative   freshness  of  waters  entering   the  Gulf   of   Maine,   its   waters   tend   to   be   less   chemically   buffered   against   increasing                                                                                                                  299  State  of  Maine,  126th  Maine  Legislature,  Resolve  2013,  Chapter  110  (H.P.  1174  -­‐  L.D.   1602),   §   1   (April   30,   2014),   available   at  http://www.mainelegislature.org/legis/bills/getPDF.asp?paper=HP1174&item=6&snum=126.    300  Id.,  Preamble.  301  Id.  §  8.  302  Katie   Valentine,   “Maine   Report   Warns   of   ‘Urgent’   Need   to   Address   Ocean  Acidification,”   ClimateProgress,  http://thinkprogress.org/climate/2015/02/06/3619987/maine-­‐ocean-­‐acidification-­‐report/  (Feb.  6,  2015).  303  2015  MAINE  OCEAN  ACIDIFICATION  REPORT,  supra  note  294,  at  ii.  304  Id.  at  3.  

Page 56: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  56  

acidity.  Secondly,  because  CO2  is  more  soluble  in  colder  water,  our  region  tends  to  absorb   more   atmospheric   CO2.” 305  As   in   Washington,   the   impact   of   ocean  acidification  on  shell-­‐forming  organisms  was  particularly   troubling,  because  “[i]n  Maine,   87%   of   the   landings   value   of   harvested   or   grown   species   comes   from  organisms  that  make  calcium  carbonate  shells.”306         The  Maine   Commission   concluded   that   ocean   acidification   in  Maine   is   an  urgent   political   and   economic   problem,   requiring   considerable   public   education  and   difficult   state-­‐wide   decisions.307  It   unanimously   adopted   six   goals   and   25  recommendations  to  achieve  those  goals.308  The  six  goals  are  to:    

1.  Invest  in  Maine’s  capacity  to  monitor  and  investigate  the  effects  of  ocean  acidification  and  determine   impacts  of  ocean  acidification  on  commercially   important   species   and   the   mechanisms   behind   the  impacts;    2.  Reduce  emissions  of  carbon  dioxide;    3.  Identify  and  reduce  local  land-­‐based  nutrients  and  organic  carbon  that   contribute   to   ocean   acidification   by   strengthening   and  augmenting  existing  pollution  reduction  efforts;    4.  Increase  Maine’s  capacity  to  mitigate,  remediate  and  adapt  to  the  impacts  of  ocean  acidification;    5.  Inform  stakeholders,  the  public  and  decision-­‐makers  about  ocean  acidification  in  Maine  and  empower  them  to  take  action;  and    6.   Maintain   a   sustained   and   coordinated   focus   on   ocean  acidification.309    In  terms  of  water  quality,  the  Commission  further  recommended  extensive  

water  quality  and  marine   life  monitoring,310  improved  water  assessment   tools   to  identify   ocean   acidification, 311  specific   identification   of   the   causes   of   ocean                                                                                                                  305  Id.  at  4.  306  Id.  307  Id.  at  6.  308  Id.  at  iii.  309  Id.  310  Id.  at  7-­‐9.  311  Id.  at  9.  

Page 57: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   57  

acidification   in   different  Maine   coastal  waters,312  and   identification   of   the   effects  on   marine   organisms.313  The   Commission   also   recommended   that   Maine   pay  considerably   more   attention   to   nutrient   loading   in   coastal   waters,   including  identifying  the  relevant  point  and  nonpoint  sources  and  considering  the  need  for  amended   or   new  water   quality   criteria.314  In   terms   of   adaptation  measures,   the  Commission’s  recommendations  ranged  from  the  fairly  specific—“Spread  shells  or  other  forms  of  calcium  carbonate  (CaCO3)  in  bivalve  areas  to  remediate  impacts  of  local   acidification;”315  “[i]dentify   refuges   and   acidification   hotspots   to   prioritize  protection  and  remediation  efforts”316—to  the  more  general  and  aspirational,  such  as  increasing  the  adaptive  capacity  of  the  fishing  and  aquaculture  industries317  and  encouraging  the  creation  of  new  research  hatcheries.318    

The   Commission   also   proposed   legislation   to   create   a   permanent   Ocean  Acidification   Council.319  The   Council   would   both   facilitate   implementation   of   the  Commission’s  recommendations  and  pursue  seven  goals:  

 1.   Establish   partnerships   with   state   agencies   involved   with   ocean  acidification  matters;    2.   Coordinate   the   implementation   of   the   commission’s  recommendations  with  other  ocean  and  coastal  actions;  3.   Incorporate   refinements   and   updates   to   the   recommendations  according  to  the  latest  science  on  ocean  acidification;    4.   Bridge   ocean   acidification   related   science   and   policy   needs   by  supporting  continued  productive  interaction  between  scientists  and  policymakers;    5.   Coordinate  with  other   states   and  key   federal   agencies,   including  the   National   Oceanographic   and   Atmospheric   Administration,   the  Environmental   Protection   Agency   and   the   Department   of   the  Interior  and  work  within  the  framework  of  the  National  Ocean  Policy  and   with   the   National   Ocean   Council,   the   Northeast   Regional  

                                                                                                               312  Id.  at  10.  313  Id.  at  10-­‐11.  314  Id.  at  14-­‐18.  315  Id.  at  19.  316  Id.  at  20.  317  Id.  at  19.  318  Id.  at  20.  319  Id.  at  iii,  Appendix  D.  

Page 58: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  58  

Planning   Body,   the   Northeast   Regional   Ocean   Council   and   the  Northeast  Coastal  Acidification  Network,  while  sharing  data  with  the  Northeast   Ocean   Data   Portal.14   This   can   be   done   by   developing  memoranda  of  understanding  or  other  mechanisms  among  partners  to   support   data   sharing,   collaboration   and   leveraging   and  prioritizing  of  funding;    6.   Identify   and   promote   economic   development   opportunities  afforded   by   ocean   acidification   through   development   and  commercialization  of  new  technologies  and  businesses;  and    7.   Build   public   awareness,   support   and   engagement   to   advance  public  understanding  of  the  importance  of  a  healthy  ocean  and  of  the  most  pressing  challenges  facing  the  ocean  and  to  engage  citizens  and  various  stakeholders  in  the  development  of  and  support  for  actions  and  solutions  needed  to  address  those  challenges.320    3.   The   Aftermath   of   the   Report   and   Regional   Prospects   for   the  

Future    

  A  bill  was   introduced  into  the  Maine  Legislature   in  2015  to   implement  the  Commission’s   recommendations.321  However,   in   June   2015,   this   legislation   was  held  over  until  the  next  legislative  session.      

Nevertheless,  efforts   to  address  ocean  acidification  appear   to  be  spreading  in  throughout  the  Northeast  states.  In  particular,  Massachusetts,  Rhode  Island,  and  New  Hampshire  have,  to  varying  extents,  begun  to  follow  Maine’s  lead,  potentially  spurring  a  regional  effort  to  address  ocean  acidification  in  Northeast  coastal  waters  in  the  future.322    

 3.   Conclusion  

 

                                                                                                               320  Id.  at  22-­‐23.  321  An   Act   to   Create   the   Ocean   Acidification   Council,   LD   493,   127th   Maine  Legislature   (2015),   available   at  http://www.mainelegislature.org/legis/bills/bills_127th/billtexts/HP033201.asp.  322  Patrick  Whittle,  “New  England  states  following  a  model  set  by  Maine  to  reduce  ocean   acidity,”   The   Portland   Press   Herald,  http://www.pressherald.com/2015/03/29/new-­‐england-­‐states-­‐following-­‐a-­‐model-­‐set-­‐by-­‐maine-­‐to-­‐reduce-­‐ocean-­‐acidity/  (March  29,  2015).  

Page 59: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   59  

According   to   the   U.S.   Global   Research   Program   in   2014,   the   Northeast  Region   is   expected   to   experience   increased   winter   and   spring   precipitation   and  increasing   numbers   of   heavy   rainfall   events.323  Similarly,   nutrient   pollution   is   a  recognized   water   quality   program   throughout   the   Northeast.324  As   the   Maine  Commission’s   report   suggested,   therefore,   New   England   coastal   states’   efforts   to  address  ocean  acidification  should  consider  strengthening  controls  on  stormwater  runoff   and   nutrient   pollution.   However,   as   the   Maine   Commission   also  acknowledged,  these  water  quality  controls  are  not  enough,  and  these  states  must  also  pursue  other  efforts  to  adapt  to  ocean  acidification.    C.   West  Coast  Collaboration  on  Ocean  Acidification       1.     Ocean  Acidification  and  the  West  Coast       While   the   State   of   Washington   took   the   lead   on   ocean   acidification  responses,   ocean  acidification  problems  are   common   to   the  entire  West  Coast  of  the   United   States   and   Canada,325  particularly   in   the   Pacific   Northwest   region  extending   from  Alaska  and  British  Columbia   to  northern  California.  For  example,  shellfish   hatcheries   in  Oregon   began   experiencing   die-­‐offs   at   the   same   time   that  Washington   hatcheries   did,   from   2005   to   2009,326  and,   as   already   noted,   ocean  acidification  is  already  affecting  multiple  fisheries  in  Alaska.327      

Moreover,   the   entire   Pacific   coast   suffers   from   the   same   upwelling   that  exacerbates   ocean   acidification   in   Washington.   This   coast   is   dominated   by   the  California   Current   and   its   associated   ecosystem,   which   “covers   approximately  32,000   km2   of   ocean   habitat   from   British   Columbia,   Canada   to   Baja   California,  Mexico.”328  Upwelling   of   nutrients   along   this   coast   is   a   well-­‐known   and   normal                                                                                                                  323  U.S.   GLOBAL   CHANGE   RESEARCH   PROGRAM,   CLIMATE   CHANGE   IMPACTS   IN   THE   UNITED  STATES:  THE  THIRD  NATIONAL  CLIMATE  ASSESSMENT  374  (2014).  324  E.g.,  New  England  Interstate  Water  Pollution  Control  Commission,  letter  to  EPA  Administrator   Lisa   Jackson,   dated   January   3,   2011,   at   1-­‐2,   available   at  https://www.neiwpcc.org/neiwpcc_docs/NEIWPCCCommentLetteronNutrientCriteria1-­‐3-­‐11.pdf.    325  2012  WASHINGTON  PANEL  REPORT,  supra  note  214,  at  3.  326  Id.  327  Rojas-­‐Rochas,  supra  note  77.  328  LINDSAY  YOUNG,  ET  AL.,  CLIMATE  CHANGE  AND  SEABIRDS  OF  THE  CALIFORNIA  CURRENT  AND  PACIFIC   ISLAND   ECOSYSTEMS:   OBSERVED   AND   POTENTIAL   IMPACTS   AND   MANAGEMENT  IMPLICATIONS:  FINAL  REPORT  TO  THE  U.S.  FISH  &  WILDLIFE  SERVICE  REGION  1,  at  3  (2  May  2012),   available   at  http://www.faralloninstitute.org/Publications/YoungEtal2012USFWSRep.pdf.  

Page 60: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  60  

phenomenon.329  For   example,   the   Partnership   for   Interdisciplinary   Studies   of  Coastal  Oceans  (PISCO)  notes  that:  

 Every   summer  off  Oregon  and  Washington,  northerly  winds  and   the  earth’s   rotation   combine   to   drive   surface  waters   offshore   and   bring  naturally  nutrient-­‐rich  but  oxygen-­‐poor  waters  to  the  coast  .  .  .  .  When  this   water   wells   up   to   the   ocean   surface,   microscopic   plants   called  ‘phytoplankton’  bloom  in  the  sunlight  creating  a  rich  broth  that  feeds  a   variety   of   fish   and   marine   invertebrates.   It   is   this   upwelling   of  nutrient-­‐rich  waters  that  makes  the  west  coast  of  North  America  one  of  the  most  productive  marine  ecosystems  on  earth.330    

At  the  beginning  of  the  21st  century,  however,  these  currents  began  to  change.  As  PISCO  reports,  “the  occurrence  of  low-­‐oxygen  water  close  to  shore  (the  inner  shelf,  less  than  50  m  (165’)  of  water)  is  highly  unusual  and  had  not  been  reported  prior  to  2002  despite  over  50  years  of  scientific  observations  along  the  Oregon  coast.”331  In   2006,   these   changing   ocean   currents   created   an   unprecendented   anoxic  (oxygen-­‐lacking)  “dead  zone”  off  the  coast  of  Oregon,  “result[ing]  in  mass  die-­‐offs  of  long-­‐lived  marine  animals  such  as  seastars  and  sea  cucumbers.”332       Hypoxia   is   thus   a   climate-­‐change-­‐related   concern   for   the   Pacific   Coast  states  and  British  Columbia.  However,  as  noted  for  Washington,  changing  patterns  of   upwelling   bring   low-­‐pH   waters   to   the   surface,   while   the   plankton   and   algal  blooms  resulting  from  the  increased  nutrients  lead  to  increased  carbon  dioxide  in  the   water;   both   effects   exacerbate   ocean   acidification.   Despite   the   fact   that   the  California   Current   is   in   general   very   well   studied   because   of   its   importance   to  fisheries,333  “long-­‐term  records  of  pH  in  the  [California  Current]  are  very  rare.”334  Thus,   as   with   most   places   in   the   United   States,   basic   scientific   data   regarding  ocean   acidification   along   the   Pacific   Coast   were   just   missing.   To   deal   with   this  region-­‐wide   problem,   the   states   of   California,   Oregon,   Washington,   and                                                                                                                  329  Id.   (noting   that   “the   California   Current   is   a   highly   productive   system   where  upwelling  and  advection  transport  nutrients  and  drive  primary  productivity  in  the  system.”).  330  Partnership   for   Interdisciplinary   Studies   of   Coastal   Oceans,   Hypoxia   in   the  Pacific   Northwest,   http://www.piscoweb.org/research/science-­‐by-­‐discipline/coastal-­‐oceanography/hypoxia-­‐new/hypoxia-­‐in-­‐pacific-­‐northwest  (Feb.  11,  2011).  331  Id.  332  Id.  333  YOUNG,  supra  note  328,  at  10.  334  Id.  at  11.  

Page 61: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   61  

(increasingly)   Alaska   and   the   Canadian   province   of   British   Columbia   have  increasingly   pooled   their   efforts   to   develop   the   necessary   scientific   information,  ocean  acidification  adaptation  tools  and  strategies,  and  policy  recommendations.         2.   West  Coast  Governors  Alliance  on  Ocean  Health       In   2006,   the   states   of   Washington,   Oregon,   and   California   formed   a  partnership—the  West  Coast  Governors  Alliance  on  Ocean  Health—“to  protect  and  manage   ocean   and   coastal   resources   along   the   West   Coast.” 335  The   Alliance  reformulated   its   goals   in   2012   to   include   ocean   acidification,336  and   the   Alliance  includes   tribal   governments,   as   well.   In   general,   the   Alliance   develops   “shared  priorities  and  action  plans  across  the  region  for  marine  debris,  climate  change,  and  ocean  acidification.”337       Building  on  the  2012  Washington  Blue  Ribbon  Panel  on  Ocean  Acidification,  supports  and  works  with  the  West  Coast  Ocean  Acidification  and  Hypoxia  Science  Panel   (see   below),   which   formed   in   November   2013.338  The   Alliance   is   also  “working  with   shellfish   farmers   and  hatcheries   to   connect   them   to   the   real-­‐time  monitoring   data   that   they   need,”   and   it   “partners   with   the   California   Current  Acidification  Network  (C-­‐CAN),  a  West  Coast-­‐wide  collaborative  network  that  aims  to   increase   understanding   of   ocean   acidification   along   the   California   Current  System”   (see   below).339  Finally,   the   Alliance   is   helping   to   create   data   products  specific  to  West  Coast  ocean  acidification:  “The  West  Coast  Governors  Alliance  has  partnered   with   the   Integrated   Ocean   Observing   Systems   (IOOS)   West   Coast  regions  (SCCOOS,  CeNCOOS  and  NANOOS)  to  connect  oceanographic  data  collected  by   IOOS   to   a   broader   West   Coast   audience   through   a   California   Sea   Grant  fellowship.  The  fellow  is  helping  to  tie  OOS  real-­‐time  oceanographic  data  and  time-­‐averaged  data  products  into  the  WCGA.”340                                                                                                                  335     WEST   COAST   OCEAN   SUMMIT,   FINAL   REPORT   5   (Jan.   2015),   available   at  http://www.westcoastoceansummit.org/media/wcos-­‐final-­‐report-­‐-­‐-­‐january-­‐2015-­‐-­‐-­‐final.pdf.    336  Id.  337  Washington   Marine   Resources   Advisory   Council,   Ocean   Acidification   Science  and   Policy   Landscape   1   (Nov.   18,   2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20141118MRAChandoutLandscape.pdf.  338  West   Coast   Governors   Alliance   on   Ocean   Health,   Ocean   Acidification,  http://www.westcoastoceans.org/index.cfm?content.display&pageID=182   (as  viewed  July  5,  2015).  339  Id.  340  Id.  

Page 62: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  62  

    3.   Pacific  Coast  Collaborative  and  Its  Action  Plan  on  Climate  and  Energy       On   June   30,   2008,   the   leaders   of   Alaska,   British   Columbia,   California,  Oregon,   and  Washington   “signed   the   Pacific   Coast   Collaborative   Agreement,   the  first  agreement  that  brings  together  the  Pacific  leaders  as  a  common  front  to  set  a  cooperative  direction  into  the  Pacific  Century.    Out  of  this  agreement  was  born  the  Pacific   Coast   Collaborative—a   formal   basis   for   cooperative   action,   a   forum   for  leadership  and   information  sharing,  and  a  common  voice  on   issues   facing  Pacific  North  America.”341  Through   this  umbrella   forum,   the  governors  of   the   four  West  Coast  states  and  the  premier  of  British  Columbia  have  collaborated  to  “[p]roved[e]  high   level   coordination   and   consistency   of   regional   policy   priorities   including  climate  change,  clean  energy,  and  ocean  conservation.”342      

As  part  of  these  collaborative  efforts,  in  October  2013,  the  leaders  of  British  Columbia,  Washington,  Oregon,  and  California  signed  the  Pacific  Coast  Action  Plan  on  Climate  and  Energy.343  That  plan  covered  14  action  items,  one  of  which  was  to  “[e]nlist   support   for   research   on   ocean   acidification   and   take   action   to   combat  it.344  Specifically,  this  action  item  noted  that  “[o]cean  health  underpins  our  coastal  shellfish   and   fisheries   economies”   and   promised   that   “[t]he   governments   of  California,  British  Columbia,  Oregon  and  Washington  will  urge  the  American  and  Canadian   federal   governments   to   take   action   on   ocean   acidification,   including  crucial   research,   modeling   and   monitoring   to   understand   its   causes   and  impacts.”345       As  part  of  this  Action  Plan,   in  December  2013  the  governors  of  California,  Oregon,  and  Washington  and  premier  of  British  Columbia  wrote  to  U.S.  President  Barack   Obama   and   Canadian   Prime   Minister   Stephen   Harper,   urging   increased                                                                                                                  341  Pacific   Coast   Collaborative,   Leadership   now   for   a   sustainable   tomorrow,  http://www.pacificcoastcollaborative.org/Pages/Welcome.aspx   (as   viewed   July  18,  2015).  342  Washington   Marine   Resources   Advisory   Council,   Ocean   Acidification   Science  and   Policy   Landscape   1   (Nov.   18,   2014),   available   at  http://www.ecy.wa.gov/water/marine/oa/20141118MRAChandoutLandscape.pdf.  343  Pacific  Coast  Collaborative,  Pacific  Coast  Action  Plan  on  Climate  and  Energy  (Oct.  28,   2013),   available   at  http://www.pacificcoastcollaborative.org/Documents/Pacific%20Coast%20Climate%20Action%20Plan.pdf.    344  Id.  at  1.  345  Id.  

Page 63: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   63  

national   attention   in   both   countries   to   ocean   acidification.346  Specifically,   they  declared   that   “[t]here   is   an   urgent   need   for   the   U.S.   and   Canadian   federal  governments  to  bolster  our  ongoing  regional  and  cross-­‐border  efforts  to  address  this   critical   issue  with   enhanced   federal   coordination,  monitoring,   and   research  support.”347  The  governors  and  premier  also  emphasized   that   “[g]lobal   and   local  processes   converge   in   areas   along   the   West   Coast,   and   these   ‘hot   spots’   of  corrosive  water  are  becoming  more  frequent.  As  a  result,  the  West  Coast  is  being  impacted  earlier  and  harder  than  other  regions  of  North  America,  and  indeed  the  planet.”348       The   letter  underscored   that   “State  governments  and  regional  efforts  have  catalyzed   action   and   raised   awareness   of   the   potential   impacts   of   ocean  acidification,   providing   for   unprecedented   collaboration,”   including   the   West  Coastal  Ocean  Acidification  and  Hypoxia  Panel,  the  West  Coast  Governors  Alliance  on   Ocean   Health,   the   State   of   Washington’s   Blue   Ribbon   Panel   on   Ocean  Acidification,   and   the   California   Current   Acidification   Network.349  However,   the  gist   of   the   letter  was   that   the   ocean   acidification   problem  was   too   big   even   for  these   regional   efforts:   “While   the   West   Coast   jurisdictions   are   taking   vigorous  actions  to  understand  and  address  acidification,  the  scope  of  the  challenge  merits  increasing   Canadian   and   U.S.   federal   investment   in   monitoring,   research   and  coordination.   The   health   of   our   oceans   is   vital   to   our   economies;   this   threat   to  ocean  health  will  require  state,  regional,  federal  and  international  cooperation  on  an   unprecedented   scale.”350  They   requested   continued   funding   for   the   federal  Integrated  Coastal  and  Ocean  Observation  System  Act  and  the  FOARAM  Act,  both  of  which  had  been  funded  only  through  September  2013;  continued  Canadian  and  U.S.  federal  funding  of  physical  and  biological  co-­‐located  monitoring  of  the  oceans;  funding   to   develop   biogeochemical   models   of   ocean   acidification;   assistance   in  developing   resource   management   tools   and   strategies;   and   the   convening   of   a  meeting  to  further  discuss  strategies.351                                                                                                                    346  Letter   to   U.S.   President   Barack   Obama   and   Canadian   Prime  Minister   Stephen  Harper,   from  Governor  Edmund  G.  Brown  of  California,   Premier  Christy  Clark  of  British   Columbia,   Governor   John   Kitzhaber   of   Oregon,   &   Governor   Jay   Inslee   of  Washington,   at   1   (Dec.   12,   2013),   available   at  http://www.ecy.wa.gov/water/marine/oa/20131212_PacificCoastCollaborative_letter.pdf.  347  Id.  348  Id.  349  Id.  at  2.  350  Id.  351  Id.  at  2-­‐3.  

Page 64: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  64  

4.   California  Current  Acidification  Network       The  California  Current  Acidification  Network  emerged  in  2010  as  a  result  of  a  scientific  workshop.352  Its  mission  is  to:    

1.   Coordinate   and   encourage   development   of   an   ocean   acidification  monitoring  network   for   the  west  coast   that  serves  publicly  available  data;  2.   Improve   understanding   of   linkages   between   oceanographic  conditions  and  biological  responses;  3.  Facilitate  and  encourage  the  development  of  causal,  predictive  and  economic  models  that  characterize  these  linkages  and  forecast  effects;  and  4.   Facilitate   communication   and   resource   /   data   sharing   among   the  many  groups,  organizations  and  entities   that  participate   in  C-­‐CAN  or  utilize  C-­‐CAN  as  an  informational  resource.353    

Thus,  the  California  Current  Acidification  Network  serves  primarily  to  fill  gaps  in  scientific   knowledge   about   ocean   acidification.   However,   it   has   also   developed  guidelines/best   practices   for   monitoring   ocean   acidification—including  monitoring   relevant   parameters   (e.g.,   nutrients)   in   land-­‐based  pollution354—and  provides   a   clearinghouse   of   national   and   international   publications   related   to  ocean   acidification,   including   the   2010  National   Academy   of   Sciences   study   and  the  2011  report  from  the  IPCC  on  ocean  acidification.355    

5.   The  West  Coast  Ocean  Acidification  and  Hypoxia  Science  Panel       California   and  Oregon   initially   teamed  up   to   create   the  West  Coast  Ocean  Acidification   and   Hypoxia   Science   Panel   (WCOAHSP),   but   the   collaboration   now  also   includes   scientists   from   Washington   and   the   Canadian   province   of   British  

                                                                                                               352  California  Current  Acidification  Network,  C-­‐CAN,   http://c-­‐can.msi.ucsb.edu   (as  modified  March  28,  2015,  and  viewed  July  5,  2015).  353  Id.  354  California   Current   Acidification   Network,   C-­‐CAN   Documents,   http://c-­‐can.msi.ucsb.edu/c-­‐can-­‐documents  (as  last  modified  Dec.  3,  2014,  and  visited  July  18,  2015).  355  California   Current   Acidification   Network,  National/International   OA   reference  materials,   http://c-­‐can.msi.ucsb.edu/materials/oa-­‐reference-­‐materials   (as   last  modified  Jan.  18,  2013,  and  visited  July  18,  2015).  

Page 65: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   65  

Columbia.356    “The  Panel’s  core  goal  is  to  collaborate  with  decision  makers  across  the   state,   regional   and   federal   levels   on   these   complex   issues.”357  Specifically,  WCOAHSP  pursues   a   four-­‐step   iterative   process   to   help   policymakers   effectively  integrate   ocean   acidification   science:   develop   a   scientific   research   foundation  based  on  decisionmakers’  needs;  tailor  that   information  to  specific  agency  needs;  put   together   the   scientific   building   blocks   to   consider   effects   on   entire   ocean  ecosystems;   and   inform   policy   and   management   at   multiple   levels   of  government.358    

The  Panel  established  a  series  of  working  groups  to  summarize  knowledge  for  action  on  key  themes  identified  by  decision  makers.”359  More  specifically:    

[T]he  Panel  has  recognized  that  ocean  acidification  is  not  an  isolated  threat   to   our   oceans,   but   a   part   of   a   shifting   environment   in   which  carbonate   chemistry   and   dissolved   oxygen   are   changing   alongside  nutrients   and   temperature.   These  multiple   stressors   along   the  West  Coast   require  new   information,  new  directions,  and  new  approaches  for  future  work.    To   address   the   information   needs   of   decision-­‐makers,   Panelists   are  contributing   to   the   scientific   literature   with   high-­‐level   scientific  perspectives  that    distill   the  current  understanding  of  oceanographic  drivers,   and   physiological   and   ecological   impacts   of   ocean  acidification  and  hypoxia.360    

  In  May  2014,   the  WCOAHSP,   in  collaboration  with  a  host  of  other  science  bodies,   including   the  University   of  Washington’s   Ocean  Acidification   Center   and  NOAA’s  Ocean  Acidification  Program,   published   a   two-­‐page   fact   sheet   on  Pacific                                                                                                                  356  West   Coast   Ocean   Acidification   &   Hypoxia   Panel,   Overview,  http://westcoastoah.org/overview/  (as  viewed  July  5,  2015).  357  Id.  358  Skyli   McAfee,   Executive   Director,   California   Ocean   Science   Trust,   Ocean  Protection   Council   Science   Advisor,   and   West   Coast   Ocean   Acidification   and  Hypoxia  Science  Panel  Convener,  The  West  Coast  Ocean  Acidification  and  Hypoxia  Panel:   Presentation   to   the  Washington  Marine  Resources  Advisory  Council   4   (Mar.  31,   2015),   available   at  http://www.ecy.wa.gov/water/marine/oa/20150331MRACmcafee.pdf.  359  Id.  360  California   Ocean   Science   Trust,   West   Coast   Ocean   Acidification   and   Hypoxia  Panel,   http://www.oceansciencetrust.org/project/west-­‐coast-­‐ocean-­‐acidification-­‐and-­‐hypoxia-­‐science-­‐panel/  (as  viewed  July  5,  2015).  

Page 66: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  66  

Coast  ocean  acidification.361  This  public  education  brochure  announces  that  “[t]he  evidence   for   ocean   acidification   in   the   Pacific   Northwest   is   compelling.” 362  Emphasizing   the   role   of   carbon   dioxide   emissions,   the   fact   sheet   also   notes,  however,  that  “[a]cidification  can  be  more  severe  in  areas  where  human  activities  further   increase   acidity,   such   as   through   nutrient   inputs   that   fuel   biological  production   and   respiration   processes.”363  Indeed,   “Natural   and   anthropogenic  factors   combine   to   intensify   ocean   acidification   in   Pacific   Northwest   waters.”364  Perhaps  most  importantly,  the  fact  sheet  concludes  that:    

The   human   contribution   to   acidification   in   the   Pacific   Northwest   is  quantifiable  and  has  increased  the  frequency,   intensity,  and  duration  of  harmful  conditions.  In  Hood  Canal,  24-­‐49%  of  the  total  increase  in  CO2   in   subsurface  waters   since   the   industrial   revolution   is   linked   to  human   activity.   Off   the   Oregon   coast,   undersaturated   conditions   [of  aragonite],  once  rare,  now  occur  30%  of  the  time  during  the  summer  upwelling   season.   Anthropogenic   CO2   is   the   largest   human-­‐derived  source  of  acidifying  pollution   in  Pacific  Northwest  waters,  adding  an  amount  of  CO2  that  can  significantly  worsen  naturally-­‐low  [aragonite  saturation]  conditions  for  shelled  organisms.  The  human  contribution  essentially  ‘makes  a  bad  day  worse’  for  shellfish  and  other  organisms,  and  it  causes  those  bad  days  to  become  more  frequent.365  

 In   the  Pacific  Northwest,   average   “[v]alues  of  pH  7.8–7.9   are   expected  by  

2100,   representing  a  doubling  of  acidity,”  and   “[a]reas   that  could  be  particularly  vulnerable   to   ocean   acidification   include   1)   coastal   regions   that   receive   large  volumes   of   freshwater,   especially   when   the   freshwater   contains   high   levels   of  dissolved   nutrients   or   organic  material;   and   2)   regions  where   upwelling   brings  colder  CO2-­‐rich  deep  water  onto   the   continental   shelves,   such   as   along   the  west  coast   of   North   America.”366  In   addition,   “The   juvenile   stages   of   many   Pacific  Northwest   shellfish   species   (e.g.   oysters,   clams,   and   mussels)   are   particularly  vulnerable  to  acidification  because  the  biomineral  they  use  to  build  their  shells—aragonite—has   the   greatest   tendency   to   dissolve   at   CO2   levels   currently   being  observed   in   Pacific   Northwest   marine   waters.”367  Native   as   well   as   hatchery                                                                                                                  361  NANOOS,   et   al.,   Ocean   Acidification   in   the   Pacific   Northwest   (May   2014),  available  at  http://www.ecy.wa.gov/water/marine/oa/201405-­‐OAfactsheet.pdf.  362  Id.  at  1.  363  Id.  364  Id.  at  2.  365  Id.  366  Id.  at  1.  367  Id.  

Page 67: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   67  

species   are   already  being   affected,   and   “[s]mall   changes   in   the   environment   can  cause  large  responses  among  living  organisms.  While  most  marine  organisms  can  tolerate  a   range  of  environmental  conditions,  at   some  point   their   tolerance   fails;  even   small   changes   in   the   environment   can   cause   an   abrupt  biological   response  when  the  limits  of  tolerance  are  passed.”368  “Long-­‐term  decline  in  pH  could  exceed  the  tolerance  limits  of  some  marine  species  that  live  in  coastal  waters,”  and  “[t]he  current   rate   of   acidification  may   be   unprecedented   in   Earth’s   history.”369  As   the  fact  sheet  ominously  concludes:    

Contemporary   ocean   acidification   could   threaten   the   flow   of   goods  and   services   to   marine-­‐dependent   communities.   A   new   study   has  shown   that   the   fishing   industry   in   Southeast   and   Southwest   Alaska  will   be   vulnerable   to   declines   in   both   commercial   and   subsistence  harvests  due  to  ocean  acidification  in  coming  decades.  Disruptions  in  Alaska   fisheries   could  have   significant  economic   impacts   throughout  the  Pacific  Northwest  due  to  the  economic  linkages  between  the  two  regions.370    

  On   the   policy   side,   the   WCOAHSP   has   advocated   a   broad   range   of   legal  approaches   to   ocean   acidification,   emphasizing   that   “[t]here   is   a   cost   to  inaction.”371  It   advocates   a   coast-­‐wide   approach372  that   incorporates   emission  control   goals   and   cap-­‐and-­‐trade   programs   for   carbon   dioxide   emissions;  incorporation  of   “ocean  health”  as  a  priority  mission  across   regulatory  agencies;  refinement   of   the   Clean   Water   Act’s   role,   focusing   on   a   permit   program   for  nonpoint   source   pollution   as   well   as   greater   ocean-­‐related   attention   to   NPDES  permits;   increased  use  of  marine  protected  areas   and  ecosystem-­‐based   fisheries  management;  and  increased  use  of  “smart  monitoring”  for  adaptive  learning.373       In   addition,   the  WCOAHSP  has  produced  or   is   producing   a  wide   range   of  publications   for   both   scientists   and  policymakers.374  On   the  policy   side,   a   recent  report   explains   Ocean   Acidification   and   Hypoxia:   Today’s   Need   for   a   Coast-­‐Wide  Approach,  while  forthcoming  reports  will  discuss  Scientific  Approaches  to  Making  a  303(d)  Assessment  for  Near  Coastal  Acidification   and  Rethinking  the  Federal  Clean                                                                                                                  368  Id.  at  2.  369  Id.  370  Id.  371  McAfee,  supra  note  358,  at  8.  372  Id.  at  9.  373  Id.  at  11.  374  West   Coast   Ocean   Acidification   and   Hypoxia   Science   Panel,   Products,  http://westcoastoah.org/panelproducts/  (as  visited  July  18,  2015).  

Page 68: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  68  

Water  Act.375  Thus,   the  WCOAHSP  may  provide   states  with  practical   instructions  for   applying   the   Clean   Water   Act   and   state   water   quality   standards   to   ocean  acidification.    

6.   West  Coast  State  Laws  on  Ocean  Acidification       Despite  all  of  these  regional  efforts  to  analyze,  understand,  and  respond  to  ocean  acidification,  legal  responses  to  ocean  acidification  remain  minimal.  Neither  Alaska’s   statutes   nor   its   administrative   code   mention   “ocean   acidification.”   The  complex   California   Code   contains   a   single   mention   of   ocean   acidification,  authorizing   ocean   acidification   research   to   be   funded   by   the   California   Ocean  Protection  Trust  Fund;376  California  has  no  ocean  acidification  regulations.  Oregon  also   has   one   statute   that   mentions   ocean   acidification,   authorizing   ocean  acidification   research   as   part   of   Oregon   State   University’s   Oceangoing   Research  Vessel   Program. 377  The   Washington   statutes   have   three   mentions   of   ocean  acidification—one   in   connection   with   the   duties   of   the   Washington   Marine  Resources   Advisory   Council378  and   two   related   to   funding   ocean   acidification  research.379       Moreover,   cycling   back   to   the   Clean  Water   Act,   none   of   the   Pacific   Coast  states  have   tailored   their  marine  water  quality   standards   to   acknowledge  ocean  acidification.   Alaska,   for   example,   classifies   its   marine   waters   according   to   four  designated   uses:   (A)   water   supply   (for   aquaculture,   seafood   processing,   or  industrial   uses);   (B)   water   recreation,   either   contact   recreation   or   secondary  recreation;   (C)   growth   and   propagation   of   fish,   shellfish,   other   aquatic   life,   and  wildlife;  and  (D)  harvesting  for  consumption  of  raw  mollusks  or  other  raw  aquatic  life.380  For  aquaculture  water  supply  and  growth  and  propagation  of  fish,  shellfish,  and   other   aquatic   life   and   wildlife,   marine   pH   “[m]ay   not   be   less   than   6.5   or  greater  than  8.5,  and  may  not  vary  more  than  0.2  pH  unit  outside  of  the  naturally  occurring  range”381—the  EPA’s  1976  reference  criterion.  California’s  water  quality  standards  for  ocean  waters  specify  that  “[t]he  pH  shall  not  be  changed  at  any  time  more   than   0.2   units   from   that   which   occurs   naturally”   and   that   “[m]arine  communities,   including   vertebrate,   invertebrate,   and   plant   species,   shall   not   be                                                                                                                  375  Id.  376  CAL.  PUB.  RESOURCES  CODE  §  35650  (2014).  377  OR.  REV.  STAT.  §  352.252  (2014).  378  WASH.  STAT.  §  43.06.338  (2014).  379  Id.  §§  70.105D.070(3)(v);  75.109.150(1),    380  18  ALAS.  ADMIN.  CODE  §  70.020(a)(2)  (2015).  381  ALASKA  DEPARTMENT  OF  ENVIRONMENTAL  CONSERVATION,  WATER  QUALITY  STANDARDS  19  (April  8,  2012).  

Page 69: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

2015]   Dealing  with  Ocean  Acidification   69  

degraded.”382  Oregon’s  water   quality   standards   state   that,   in   general,   the   pH   for  marine  waters  may  not   fall  outside  the  range  of  7.0   to  8.5.383  While  Oregon  does  set  basin-­‐specific  water  quality  standards,384  none  of  the  marine  pH  standards   in  these  basins  varies  from  Oregon’s  general  marine  pH  requirement.385  Washington  establishes  four  categories  of  marine  waters  for  aquatic  life  uses—extraordinary,  excellent,  good,  and   fair  quality386—and  establishes  pH  water  quality  criteria   for  each.  In  extraordinary  marine  waters,  “pH  must  be  within  the  range  of  7.0  to  8.5  with  a  human-­‐caused  variation  within  the  above  range  of   less   than  0.2  units”;   in  excellent  and  good  marine  waters,  “pH  must  be  within  the  range  of  7.0  to  8.5  with  a  human-­‐caused  variation  within   the   above   range  of   less   than  0.5  units”;   and   in  fair   quality   marine   waters,   “pH   must   be   within   the   range   of   6.5   to   9.0   with   a  human-­‐caused  variation  within  the  above  range  of  less  than  0.5  units.”387       Thus,   while   the   Pacific   Coast   states   and   British   Columbia   have   pursued  several   regional   partnerships,   these   partnerships   have   so   far   been   much   more  effective   in   generating   the   science   needed   to   address   ocean   acidification   than   in  changing  ocean  or  water  quality  law  and  policy.  Of  course,  efforts  to  address  ocean  acidification   at   all   are   still   fairly   new:   We   are   only   three   years   out   from   the  Washington  Blue  Ribbon  Panel’s   report,   after   all.   The  next   five   to   ten   years  will  likely  be  critical  in  determining  whether  state  and  regional  efforts  will  mature  into  actual   legal   programs   to   address   ocean   acidification—or   whether,   instead,   the  dance  of  litigation  using  old  tools  like  the  Clean  Water  Act  will  continue.    

V. CONCLUSION

    The  ocean  acidification  science  that  has  emerged  suggests  that  changing  pH  along  the  United  States’  coasts  is  already  affecting  marine  species,  marine  ecology,  and   marine   industries   like   shellfish   aquaculture.   Eventually   (and   maybe   sooner                                                                                                                  382  STATE  WATER  RESOURCES  CONTROL  BOARD  &  CALIFORNIA  ENVIRONMENTAL  PROTECTION  AGENCY,  WATER  QUALITY  CONTROL  PLAN:  OCEAN  WATERS  OF  CALIFORNIA   6,   11   (Oct.   16,  2012,   effective   Aug.   19,   2013),   available   at  http://www.waterboards.ca.gov/water_issues/programs/ocean/docs/cop2012.pdf.  383  OR.  ADMIN.  RULES  §  340-­‐041-­‐0021(1)(a)  (2014).  384  See  OR.  ADMIN.  RULES  §§  340-­‐041-­‐0101  to  340-­‐041-­‐0350  (2014).  385  OR.   ADMIN.   RULES   §§   340-­‐041-­‐0225   (Mid-­‐Coast   Basin);   340-­‐041-­‐0235   (North  Coast   Basin);   340-­‐041-­‐0275   (Rogue   River   Basin);   340-­‐041-­‐0305   (South   Coast  Basin);  340-­‐041-­‐0326  (Umqua  River  Basin).  386  WASH.  ADMIN.  CODE  §  173-­‐201A-­‐210(1)(a)  (2014).  387  Id.  §  173-­‐201A-­‐210(1)(f).  

Page 70: EALING(WITH( CEAN(ACIDIFICATION THE(PROBLEM … · 2015]& Dealing&with&Ocean&Acidification& 5& & The ocean is&the& world’s& largest carbon sink&for carbon dioxide gas.17& However,&it&isalso&important&to&remember&that&the&ocean&is&partof&theEarth’s&

  WASHINGTON  LAW  REVIEW   [DRAFT  70  

rather  than  later  for  Oregon  and  Washington),  states  will  compile  enough  scientific  data  and  ocean  pH  will  change  enough  to  establish  violations  of  marine  pH  water  quality   standards,   setting   the   Clean   Water   Act’s   Section   303(d)   processes   in  motion.       When  that  event  occurs,  however,  a  significant  question  remains  regarding  what   exactly   the   Clean  Water   Act   can   do.   A   carbon-­‐based   TMDL   for   the   oceans  would   do   little,   legally,   to   reach   the   primary   cause   of   ocean   acidification—emissions  of  carbon  dioxide—nor  could  any  Clean  Water  Act  legal  requirement  do  much   to   reach   the  major   ocean   acidification   exacerbating   factor   along   the  West  Coast—more   destructive   upwelling   currents.   These   problems   can   ultimately   be  resolved,   if   at   all,   only   by   fixing   the   underlying   problem   of   climate   change   and  greenhouse   gas   emissions  more   generally.   In   the  meantime,   coastal   states  must  begin   to   pursue   ocean   acidification   adaptation   strategies  with   the   same  urgency  that   they   should  be  pursuing   climate   change  adaptation   strategies.   In   this   sense,  Washington’s  and  Maine’s  nascent  efforts  to  buffer  their  wild  shellfish  populations  with  additional  calcium  carbonate  by  spreading  shells,  and  Washington’s  efforts  to  help   its  shellfish  aquaculture   industry  to  cope  with   low-­‐pH  seawater  are  steps   in  the  right  (and  necessary)  direction.       Nevertheless,   the   emerging   ocean   acidification   science   also   suggests   that  the  CBD,  the  states,  and  the  EPA  should  be  thinking  a  bit  more  creatively  about  the  role   of   the   Clean  Water   Act   in   addressing   ocean   acidification.   Specifically,   ocean  acidification   exacerbating   factors   that   clearly   fall  within   the   scope  of   the  Act   are  nutrient   pollution   and   stormwater   runoff.   With   respect   to   nutrient   pollution   in  particular,  ocean  acidification  presents  yet  another  reason—beyond  harmful  algal  blooms,  beyond  dead  zones,  beyond  damaged  ecosystems  like  the  Gulf  of  Mexico,  Florida   Everglades,   and   Florida   Keys—to   finally   get   serious   about   bringing  agricultural  pollution  under  the  Act’s  direct  federal  purview.  Somewhat  ironically,  the  much-­‐beleaguered  multi-­‐state  Chesapeake  Bay  nutrient  TMDL388  may  someday  prove   to   be   the   first,   best   thing   that   the   Clean   Water   Act   ever   did   to   address  regional  ocean  acidification—and  that  TMDL  may  also  become  the  most  pragmatic  model   for  making   the  Clean  Water  Act   an   effective   instrument  within   a   growing  ocean  acidification  toolbox.                                                                                                                  388  The  EPA  established  this  multi-­‐state  TMDL—the  first  of  its  kind—in  December  2010,  and  it  covers  nitrogen  and  phosphorus,  both  of  which  are  nutrients,  as  well  as   sediment.   U.S.   Environmental   Protection   Agency,   Chesapeake   Bay   TMDL,  http://www.epa.gov/chesapeakebaytmdl/   (as   viewed   July   18,   2015).   The   TMDL  has   been   subject   to   numerous   challenges,   but   on   July   6,   2015,   the   U.S.   Court   of  Appeals   for   the   Third   Circuit   unanimously   upheld   it.     American   Farm   Bureau  Federation  v.  U.S.  EPA,  -­‐-­‐-­‐  F.3d  -­‐-­‐-­‐,  2015  WL4069224,  at  *1  (3rd  Cir.  July  6,  2015).