dynamic linear programming - core

23
Dynamic Linear Programming Propoi, A.I. IIASA Working Paper WP-79-038 May 1979 brought to you by CORE View metadata, citation and similar papers at core.ac.uk provided by International Institute for Applied Systems Analysis (IIASA)

Upload: others

Post on 26-Mar-2022

7 views

Category:

Documents


0 download

TRANSCRIPT

Dynamic Linear Programming

Propoi, A.I.

IIASA Working Paper

WP-79-038

May 1979

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

Propoi, A.I. (1979) Dynamic Linear Programming. IIASA Working Paper. WP-79-038 Copyright © 1979 by the author(s).

http://pure.iiasa.ac.at/1145/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on

servers or to redistribute to lists, permission must be sought by contacting [email protected]

Working Paper DYNAMIC LINEAR PROGRAMMING

Anatoli Propoi

May 1979 WP-79-38

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria

The paper p r e s e n t s a survey of dynamic l i n e a r programming (DLP) models and methods, i nc lud ing d i scuss ion of d i f f e r e n t f o rma l i za t i ons of dynamic l i n e a r programs, models which can be w r i t t e n iri such a form, d u a l i t y r e l a t i o n s and o p t i m a l i t y con- d i t i o n s f o r DLP, numerical methods - -bo th f i n i t e - s t e p s and i t e r a t i v e .

DYNAMIC L I N E A R PROGWL!ING*

A . Propoi**

INTRODUCTION

Dynamic l i n e a r programming (DLP) can be cons idered a s a n e x t s t a g e of l i n e a r programming (LP) development [ I -31 . Nowadays it becomes d i f f i c u l t , even sometimes imposs ib l e , t o make de- c i s i o n s i n l a r g e sys tems and n o t t o t a k e i n t o accoun t t h e con- sequences o f t h e d e c i s i o n over some p e r i o d o f t i m e . Thus, a lmost a l l problems o f o p t i m i z a t i o n become dynamic, m u l t i s t a g e ones. Examples a r e long-range energy , wa te r and o t h e r r e s o u r c e s supp ly models, problems of n a t i o n a l s e t t l e m e n t p l ann ing , long- range a g r i c u l t u r e inves tment p r o j e c t s , manpower and e d u c a t i o n a l p lann ing models, r e s o u r c e s a l l o c a t i o n f o r h e a l t h c a r e , etc.

N e w problems r e q u i r e new approaches. Wi th in DLP it i s d i f f i c u l t t o e x p l o i t on ly LP i d e a s and methods. While f o r t h e s t a t i c LP t h e b a s i c q u e s t i o n c o n s i s t s of de te rm in ing t h e op t ima l p rograv , t h e implementat ion of t h i s program ( r e l a t e d t o t h e q u e s t i o n o f t h e feedback c o n t r o l o f such a program, i t s s t a b i l i t y and s e n s i - t i v i t y , etc . ) i s no less impor tan t f o r t h e dynamic problems. Hence, t h e DLP theo ry and methods shou ld be bo th based on t h e methods o f l i n e a r programming [ 1 , 2 ] and on t h e methods o f c o n t r o l t h e o r y , P o n t r y a g i n ' s maximum p r i n c i p l e [ 4 ] and i t s d i s c r e t e v e r s i o n [ 5 ] i n p a r t i c u l a r .

DLP CANONICAL FORM

I n f o rmu la t i ng DLP problems it i s u s e f u l t o s i n g l e o u t [ 3 ] :

- s t a t e e q u a t i o n s o f t h e system w i t h t h e s t a t e and c o n t r o l v a r i a b l e s ;

- c o n s t r a i n t s imposed on t h e s e v a r i a b l e s ; - p lann ing hor i zon T and t h e l e n g t h o f each t i m e p e r i o d ;

*On l eave from t h e I n s t i t u t e f o r Systems S t u d i e s , MOSCOW, USSR. **To appear i n "Numerical Opt imizat ion of Dynamic Systems"

(Eds. L.C.W. Dixon and G.P. Szeg6) North-Hol land.

- o b j e c t i v e f u n c t i o n (per formance i n d e x ) , which q u a n t i f i e s t h e q u a l i t y o f c o n t r o l .

S t a t e e q u a t i o n s . S t a t e e q u a t i o n s have t h e f o l l o w i n g form:

x ( t + l ) = A ( t ) x ( t ) + B ( t ) u ( t ) + s ( t ) (1 )

where t h e v e c t o r x ( t ) = x t . . . x n t 1 d e f i n e s t h e s t a t e o f

t h e system a t s t a g e t i n t h e s t a t e space X , which is supposed

t o b e t h e n-dimensional e x c l i d e a n space E"; v e c t o r r

u (t) = {u l (t) , . . . , ur ( t ) 1 E E s p e c i f i e s t h e c o n t r o l l i n g a c t i o n

a t s t a g e t ; s ( t) = s t . . s n t 1 i s a v e c t o r d e f i n i n g t h e

e x t e r n a l e f f e c t on t h e system ( u n c o n t r o l l e d , b u t known a p r i o r i

i n t h e d e t e r m i n i s t i c model ) . 0

I t is a l s o assumed t h a t t h e i n i t i a l s t a t e of t h e sys tem i s

given :

PIann inq h o r i z o n T i s supposed t o b e f i x e d . Thus i n ( 1 ) :

t = 0 , 1 , . . . ,T-1. The l e n g t h o f each t i m e p e r i o d may b e t h e

same f o r t h e whole p l a n n i n g ho r i zon ( s a y , month, y e a r , 5 y e a r s ) ,

o r d i f f e r s f o r d i f f e r e n t p e r i o d s . For example, i n long-range

energy supp ly models t h e p lann ing ho r i zon might be 100 y e a r s ,

which forms 10-per iod h o r i z o n w i t h f i v e p e r i o d s e q u a l 6 y e a r s ,

t h r e e p e r i o d s equa l 10 y e a r s and two p e r i d s equa l 20 y e a r s [ 6 ] .

C o n s t r a i n t s . I n r a t h e r g e n e r a l form c o n s t r a i n t s imposed on t h e

s t a t e and c o n t r o l v a r i a b l e s may b e w r i t t e n as

m where f (t) = i f l ( t ) ,. . . , f m ( t ) 1 E E ( t = 0 , 1 , - - = ,T - I )d

O b j e c t i v e f u n c t i o n . (Pe r fo rmance i n d e x ) , which i s t o b e maxi-

mized f o r c e r t a i n t y , i s

I n v e c t o r p r o d u c t s t h e r i g h t vector is a colum.? and t h e l e f t

v e c t o r i s a row.

~ e - f i n i t t c n s . The v e c t o r sequence u = ( u ( O ) , . . . , u ( T - 1 ) 1 i s a

n o n t r o l ( ~ r o g : ? a r n ) o f t h e s y s t e m . The v e c t o r s e q u e n c e

x = ( x ( 0 ) , x (1 ) , . . . , x ( T ) ), which c o r r e s p o n d s t o c o n t r o l u f rom

( I ) , ( 2 ) , i s t h e s y s t e m ' s t r c , i e c t o r y . The p a i r { u , x ) , which

s a t i s f i e s a l l +-he c o n s t r z i n t s o f t h e p rob lem ( e . g . ( 1 ) - ( 4 ) ) i s

a f e a s i b l e p r s c e s s . A f e a s i b l e p r o c e s s { u * , x * > wh ich maximizes

t h e o b j e c t i v e f u n c t i o n ( 5 ) i s o p t i m a l .

The DLP p rob lem i n i t s c a n o n i c a l fo rm is f o r m u l a t e d a s f o l l o w s .

ProbZen; I ? . F i n d a c o n t r o l u* and a t r a j e c t o r y x* , s a t i s f y i n g

t h e s t a t e e q u a t i o n s w i t h t h e i n i t i a l s t a t e a n d t h e con-

s t r a i n t s ( 3 ) and ( 4 ) , which maximize t h e o b j e c t i v e f u n c t i o n ( 5 ) . . I n Problem 1P v e c t o r s xO, s ( t ) , f ( t ) , a ( t ) , b ( t ) and matrices

~ ( t ) , ~ ( t ) , ~ ( t ) , D ( t ) are s u p p o s e d t o be known.

The c h o i c e o f t h e c a n o n i c a l form is t o some e x t e n t a r b i t r a r y

and t h e r e are v a r i o u s p o s s i b l e v e r s i o n s , a n d m o d i f i c a t i o n s of

Prob lem 1P. I n p a r t i c u l a r , b o t h s t a t e and c o n t r o l v a r i a b l e s

may be n o n - n e g a t i v e ; s t a t e e q u a t i o n s may i n c l u d e t i m e l a g s ; con-

s t r a i n t s on s t a t e and c o n t r o l v a r i a b l e s may b e s e p a r a t e , g i v e n

a s e q u a l i t i e s or i n e q u a l i t i e s ; t h e o b j e c t i v e f u n c t i o n may b e

d e f i n e d o n l y by t h e t e r m i n a l s ta te x ( T ) o f t h e s y s t e m , etc.

[ 5 , 7 ] . I t s h o u l d be n o t e d , nowever , t h a t s u c h m o d i f i c a t i o n s c a n

be e i t h e r r e d u c e d t o Prob lem 1P or t h e r e s u l t s s t a t e d below f o r

Problem 1P c a n be e a s i l y e x t e n d e d fo r t h e s e m o d i f i c a t i o n s .

Note, t h a t i f T = 1 , t h e n Prob lem 1P becomes a c o n v e n t i o n a l LP

prob lem. Prob lem 1P i tse l f c a n a lso be c o n s i d e r e d as a c e r t a i n

s t r u c t u r e d LP p rob lem w i t h c o n s t r a i n t s ( 1 ) - ( 4 ) . I n t h i s case

t h e o p t i m a l c o n t r o l P rob lem 1P t u r n s o u t t o b e a n LP p r o b l e m

w i t h t h e s t a i r c a s e c o n s t r a i n t matr ix .

Sone t imes dynamic LP p rob lems are f o r m u l a t e d u s i n g o n l y LP l a n -

guage , a s f o r examp le , P rob lem 2 , [8 ] - [ I 01 :

. - ?~o.?Lern 2 . F i n d v e c t o r s {x* ( 1 ) , . . . , x * ( T ) 1, wh ich m a x i n i z e

s u b j e c t t o

One can a l s o e x p r e s s t h e s t a t e v a r i a b l e s x ( t ) i n Problem 1P a s

an e x p l i c i t f u n c t i o n o f c o n t r o l . A s a r e s u l t , t h e fo l l ow ing LP

problem w i th a b l o c k - t r i a n g u l a r m a t r i x i s ob ta ined .

Problem 3 . Find v e c t o r s {u* ( 0 ) , . . . ,u* (T-1 ) 1 , which maximize

where t h e v e c t o r s h (t) , w ( t ) and t h e m a t r i c e s w ( t , - r ) depend on

t h e known parameters of Problem 1P.

Problems 2 and 3 a r e t y p i c a l examples of s t r u c t u r e d LP &,?d admit

va r i ous mod i f i ca t i ons i n t h e same way a s Problem 1P .(e.g. a block

d iagona l s t r u c t u r e w i t h coupl ing c o n s t r a i n t s and/or v a r i a b l e s ,

e t e . ) . They have been s t u d i e d i n t e n s i v e l y (see, e .g . [1,2,8-101.

But u n l i k e c o n t r o l Problem 1P, such f o r m a l i z a t i o n s of dynamical

problems do n o t use e x p l i c i t l y t h e s t a t e equa t ions o f a system.

Therefore t h i s approach makes it d i f f i c u l t t o a t t r a c t t h e i d e a s

and methods o f t h e c o n t r o l t heo ry . The DLP problems i n t h e form

of Problem 1P w e r e i n t roduced i n [11 ,5 ] .

DLP MODELS

There i s a l a r g e and r a p i d l y expandigg f i e l d o f a p p l i c a t i o n s of

dynamic l i n e a r p r o g r a m i n g . H e r e on ly some of them a r e mentioned.

Z??:alr;ic ntlZt?:-SPC t o r economtc mode 2 s . These a r e b a s i c a l l y exten-

s i o n s of dynamic i npu t -ou tpu t models, when s u b s t i t u t i o n i s

al lowed ( s e e f o r exanp le [ 1 ,2 ,12 -141 ) . A longs ide w i t h d i s c r e t e

t ime f o rmu la t i on con t i nuous t i m e economy models have a l s o been

deve loped ( e . g . i n [ I51 1 .

Enera; n iode is . For long- range p l a n n i n g t h e prob lem i s t h e

f o l l ow ing : f o r e x i s t i n g i n i t i a l s t r u c t u r e o f t h e secondary

energy p r o d u c t i o n c a p a c i t i e s and under g i v e n p r imary energy and

nonenergy r e s o u r c e s supp l y c o n s t r a i n t s f i n d a t r a n s i t i o n t o such

a mix o f t h e energy p r o d u c t i o n o p t i o n s ( f o s s i l , n u c l e a r , e t c . ) ,

which s a t i s f i e d t h e p r o j e c t e d energy demand and min imizes t h e

t o t a l c o s t o f such t r a n s i t i o n . These ene rgy supp l y models have

been s t u d y i n g i n t e n s i v e l y i n t h e r e c e n t y e a r s [6,16-181. The

n e x t s t a g e i n t h i s d i r e c t i o n i s t h e i n v e s t i g a t i o n o f energy-

economy i n t e r a c t i o n . T h i s problem can be a n a l y s e d e i t h e r a s a n

i n t e g r a t e d DLP model o r i n some man-machine i t e r a t i v e mode [ 181 . Pr imary r e s o u r c e s mode 2 s . These models r e l a t e t o t h e p l a n n i n g

o f p r imary r e s o u r c e s e x t r a c t i o n and/or e x p l o r a t i o n a c t i v i t i e s .

The su rvey o f d i f f e r e n t DLP energy-resources-economy models i s

g i ven i n [ I 81 . Wa%er m o d e l s . The DLP models f o r wa te r sys tems are t h e wa te r

supp ly models (which a r e concep tua l y c l o s e t o energy supp l y

models) , t h e prob lems o f a l t e r n a t i v e s e v a l u a t i o n i n a r i v e r

b a s i n , etc . [ I 9-21] . Models .for e d u c a t i o ~ a Z and manpower ? l a n n i n ? . The s i m p l e edu-

c a t i o n a l model a i m s t o f i n d s u c h e n r o l l m e n t s t o d i f f e r e n t edu-

c a t i o n a l i n s t i t u t i o n s which a s w e l l a s s a t i s f y a l l t h e con-

s t r a i n t s of t h e sys tems ( e . g . t e a c h e r s , b u i l d i n g s and o t h e r

e d u c a t i o n a l c a p a c i t i e s a v a i l a b i l i t y ) and be a s close as p o s s i b l e

t o t h e p r o j e c t e d manpower demand. I n t h e manpower p l ann ing

n o d e l s c o n t r o l s a r e r e c r u i t m e n t s and/or p romot ions . t

There a r e d i f f e r e n t m o d i f i c a t i o n s o f t h e s e models , b o t h f o r na-

t i o n a l and i n s t i t u t i o n a l l e v e l s [ 2 2 ] .

., . ...:- - 3 ~ s e tt Z ~ ~ ~ e n t p l a n n i n g . These DLP models re la te t o f i nd -

i n g an o p t i m a l , i n some ' sense, m i g r a t i o n f l ows i n a r e g i o n O r a

cou:1tr-y [ 231 .

3 e ~ Z t h cQre sgstems. The problem o f h e a l t h c a r e sys tem p lan -

n i n g may be reduced t o an a l l o c a t i o n f unds , h e a l t h manpower and

o t h e r r e s o u r c e s o v e r t ime among d i f f e r e n t d i s e a s e s t r e a t m e n t

a c t i v i t i e s i n such a way a s t o y i e l d t h e b e s t r e s u l t s i n terms

o f reduced m o r t a l i t y , m o r b i l i t y and o t h e r l o s e s [ 24 ] .

Agricu Z ture mode is. S e ~ a r a t e DLP models concern p l a n n i n g prob-

l e m s i n l i v e s t o c k b r e e d i n g , c r o p p r o d u c t i o n , r e s o u r c e s u t i l i z a -

' t i o n , e tc . The i n t e g r a t e d models r e l a t e t o p l a n n i n g o f d i v e r s i -

f i e d a g r o - i n d u s t r i a l complexes and t h e problems o f fa rm growth

[25-281 . Production models. These DLP models a r e b a s i c a l l y a s s o c i a t e d

w i t h t h e p r o d u c t i o n s c h e d u l i n g and i n v e n t o r y problems i n

i n d u s t r y [ 8 , 9 , 2 9 , 3 0 ] .

Dynamic t r a n s p o r t a t i o n problems. Transh ipment and o t h e r n e t -

work prob lems a r e t h e i m p o r t a n t c l a s s o f L i n e a r programming.

Dynamical a s p e c t s o f t r a n s p o r t a t i o n prob lems a r e c o n s i d e r e d i n

[3 ,31 ,32 ] .

Miscellaneous models. I t is wor thwh i le t o ment ion' h e r e some

" i n d i v i d u a l " DLP a p p l i c a t i o n s : conges ted u rban road t r a f f i c

c o n t r o l [ 3 3 ] , p l a n n i n g t h e a c q u i s i t i o n and d i s p o s a l o f equipment

i n a t r a n s p o r t f l e e t [ 3 4 ] , m u l t i s t a g e s t r u c t u r a l d e s i g n prob lems

L3.51.

THEORY OF DCP

The t h e o r y o f DLP i s connec ted w i t h d u a l i t y r e l a t i o n s and

o p t i m a l i t y c o n d i t i o n s 11 1 ,36 ,7 ,5 ] . Problem ID. To f i n d a d u a l c o n t r o l X = { A (T-1) , . . . , X ( O ) and

a d u a l t r a j e c t o r y p = { p ( ~ ) , . . . ,p (O) s a t i s f y i n g t h e c o - s t a t e

( d u a l ) e q u a t i o n C

w i t h t h e boundary c o n d i t i o n

s u b j e c t t o t h e c o n s t r a i n t s

and minimize t h e o b j e c t i v e f u n c t i o n

Here p ( t ) IZ En and A ( t ) IZ Ern are Lagrange m u l t i p l i e r s f o r con-

s t r a i n t s ( 1 ) - ( 4 ) .

The d u a l Problem I D i s a c o n t r o l - t y p e problem as i s t h e p r i m a l

one 1P. Here t h e v a r i a b l e A ( t ) i s a d u a l c o n t r o l and p ( t ) i s

a c o - s t a t e o r a d u a l s t a t e a t s t a g e t. W e have r e v e r s e d t i m e

i n t h e d u a l Problem I D : t = T-1, ..., 1,O.

Theorem I . ( T h e DLP NGZobaZ" D u a l i t y T h e o r e m ) . The s o l v a b i l i t y

o f e i t h e r o f t h e 1P o r I D prob lems i m p l i e s t h e s o l v a b i l i t y o f * t h e o t h e r , w i t h Jp (u * ) = JD ( A ) . .

L e t u s i n t r o d u c e Hami l ton f u n c t i o n s

f o r t h e p r i m a l and d u a l p rob lems r e s p e c t i v e l y .

Theorem 2 . (The DLP " L o c a l u D u a l i t y T h e o r e m ) . The s o l u t i o n s

of t h e p r i m a l {u* ,x* ) and d u a l p rob lems are o p t i m a l if

and o n l y i f t h e v a l u e s of Hami l ton ians c o i n c i d e :

Thus, t h e s o l u t i o n o f t h e p a i r of dynamic d u a l p rob lems can be

reduced t o a n a l y s i s o f a p a i r o f s ta t i c l i n e a r programs

max H p ( p ( t + l ) , u ( t ) (10)

G ( t ) x ( t ) + D ( t ) u ( t ) = f ( t ) ; u ( t ) > 0 -

min H D ( x ( t ) , A ( t ) )

l i nked by t h e s t a t e ( I ) , ( 2 ) and c o - s t a t e ( 6 ) , ( 7 ) e q u a t i o n s .

I n p a r t i c u l a r , i t can be shown, t h a t maximum p r i n c i p Z e fo r dua l

Problem I P and minimum p r i n c i p l e f o r dual Problem I D a r e ho ld

[ 5 , 7 ] . An economic i n t e r p r e t a t i o n o f t h e DLP d u a l i t y r e l a t i o n s

i s given i n [361 .

DLP METHODS

We s h a l l d i s t i n g u i s h f i n i t e and i t e r a t i v e methods f o r s o l v i n g

DLP problem.

F i n i t e - s t e p s methods. These methods are t h e ex tens ion o f f i n i t e

l a rge -sca le LP methods f o r t h e dynamic problems. Two b a s i c

approaches may be s i n g l e d o u t here: compact i n v e r s e and decom-

p o s i t i o n methods [9,10,37,38: . Compact i n v e r s e methods. These methods are v a r i a n t s of t h e

s implex method us ing b a s i s f a c t o r i z a t i o n w i t h v a r i o u s s t r a t e g i e s

a s t o t h e v e c t o r p a i r t o en t ,e r and t o l eave t h e b a s i s . The

approach i s be ing developed both f o r s t r u c t u r e d and g e n e r a l LP

( i n t h e l a t t e r c a s e t h e s p a r s e n e s s o f c o n s t r a i n t m a t r i x i s

e x p l o i t e d ) ( s e e e .g . [9 ,10,37,38,39,40] ) . For s t a i r c a s e s t r u c t u r e

(Problem 2 ) t h i s approach was used i n [37,41-441 . For DLP

Problem 1P t h e approach was prcposed i n [45,46] and desc r ibed

i n (47-491, The method a r i s e d i s a n a t u r a l and s t r a i g h t f o r w a r d

ex tens ion o f t h e s implex method. The main concept of t h e s implex

method--the b a s i s - - i s r e p l a c e d by t h e s e t o f l o c a l b a s e s , i n t r o -

duced f o r t h e whole p lann ing pe r iod . The i d e a of t h e method i s

t h e fo l lowing. Cons ider t h e c o n s t r a i n t s ( 3 ) f o r t = O . Using

( 2 ) , they can be w r i t t e n i n t h e form

and accord ing t o t h e convent iona l s implex procedure be p a r t i -

t i oned a s

\.r:rlcre D ( 0 ) i s a s q c a r e n o n - s i n g u l a r ( m m ) m a t r i x . I f T = 1 0

( s t a t i c : p r o b l e m ) , t h e n onr- c a n s e t u1 ( 0 ) = 0 a n d f i n d f r o m ( 1 3 )

a L a s i c f s a s i b l e s o l u t i o n u 0 ( O ) - > 0 . I n t h e dynz?.nic c a s e

(T > 1 ) n o t a l l componen ts o f u 1 ( 0 ) a r e z e r o s f o r b a s i c

s a l u t i o x s . T h e s e n o n z e r o c c m p o n e n t s s h o y ~ l d be t r a n s f o r m e d t o

t h e next s t r p s t > 0 . 3 a r t i t i o n i ~ g t h e s t a t e e q u a t i o n s ( 1 ) f o r

t = 0 i n t h e same way a s i n ( 1 3 ) a n d s u b s t i t u t i n g u o ( 0 ) f r o m

( 1 3 ) t o t h i s p a r t i t i o n e d s t a t e e q u a t i o n s , o n e c a n o b t a i n t h e

c o n s t r a i n t s f o r t h e nexE s t e p i n t h e form, s i m i l a r t o ( 1 2 ) : A

j ( l ) ; ( l ) = 1 ) e ( 1 = , 0 ; ~ ( 1 ) ; . Tne m s t r i x 6(1) depenscis or, G ( 1 1 , C , 3 ( 3 ) a22 car! be a g a i n p a r t i t i o z e d i n t h e

h A O h A

s a n e 1 ~ 2 : ~ : D ( 1 ) = [ D O ( l ) ; D l ( i ) ] , d e t D O ( l ) # 0 and s o o n , u n t i l tr.c l a s t s t e p u l (T-I) = 0 .

h

The s e t o f n l i n e a r l y i n 6 e p e n d e r . t c o l u r r n s of t h e m a t r i x D ( t ) i s

Loccl 3 c s l s a t s t e p t . The s e t of l o c a l b a s e s { D o ( t ) ) f o r t h e

w h o l e p la r , r . i ng p e r i o d t = 0 , 1 , . . . ,T-1 p l a j r s t h e s a m e r o l e a s '

5 a s i s i n s t a n . i z r d s i m p l e x - m e t h o d . The i n t r o 2 u c t i o n o f l o c a l b a s e s

a l l o w s t o i m p l e m e n t a l l s i m p l e x procedures ( s e l e c t i o n o f v e c t o r s

t o b e removed f r a x a n d t o b e i n t r o d u c e d i x t o t h e b a s i s , p r i c i n g ,

u p d a t i n g ) v e r y e f f e c t i v e l y [ 4 9 ] . I t s h o u l d be a l s o n o t e d , t h a t

t h e d y n a m i c s imp lex -me thod g i v e s n o t o n l y c o m p a c t s u b s t i t u t e

f o r b a s i s i n v e r s e , b u t u s e s o n l y a p z r t of t h e l o c a l b a s e s

r e p r e s e n t a t i o n a t e a c h i t e r a t i o n .

The e x t e n s i o n o f t h e dynamic s i m ~ l e x - m e t h o d t o DLP p rob le i ns w i t h

t i m e l a g s o r n c n - n e g a t i v e s t a t e v a r i a b l e s as w e l l a s d u a l ver-

s i o n s o f t h e method are c o n s i d e r e d i n [ 4 6 , 4 9 1 .

2ecor?=,cs i t i o r . ns rkods. T h e s e m e t h o d s f o l l o w s fror;l r e p e a t e d ap- - p l i c a t i o n o f d i f f e r e n t d e c o m p o s i t i o n m e t h o d s ( f i r s t o f a l l , ~ a n t z i c j -

Wol fe d c c o m ; ~ o s i t i o n ~ r i ~ c i 2 l e j t o t h e DLP ~ r o b l e m , and t h e s t a i r c a s e

s t r u c t u r e ( ? r o b l e m 2 ) was d e s c r i b e d i n [ ? ,50 -541 .

F o r D L ? P r o b l e m 1P t h i s a 2 p r o a c h was u s e d i n [ S S ] . C o n s i d e r t h e

s e q u e n c e o f LP p r o b l e m s ( t = T- 1 , . . . , I , 0 ) :

max p ( t + l ) x ( t + J )

where R (xo) i s t h e s e t of a l l s t a t e s x ( t ) f e a s i b l e from i n i t i a l t s t a t e x0 f o r t s t z p s [ 5 1 ; p ( t + l ) i s d u a l s t a t e v e c t o r .

So lu t i ons o f t h e s e LP problems w i th op t ima l va lues of p * ( t + l )

g i v e an op t ima l s o l u t i o n o f t h e o r i g i n a l Problem 1P. Any v e c t o r

x ( t ) of R (xo) can be r e p r e s e n t e d a s a l i n e a r convex combina- t t i o n o f i t s extreme p o i n t s (assuming boundness o f R ( x o ) ) . t Thus, problem (1 4 ) can be r e w r i t t e n as

max p ( t + l ) [ L A ( t ) x i ( t ) p i ( t ) + B ( t ) u ( t ) + s ( t ) l i -

Problem (15) i s a master problem a t s t e p t. For i t s s o l u t i o n

convent ional column g e n e r a t o r procedure can be adopted. Other

methods f o r s o l u t i o n o f Problem 1P based on d i f f e r e n t decomposi-

t i o n and p a r t i t i o n p r i n c i p l e s w e r e cons idered i n [56-601.

The DLP i t e r a t i v e m e t h o d s . The a p p l i c a t i o n o f t h e LP f i n i t e

methods t o t h e dynamic problems may cause c e r t a i n d i f f i c u l t i e s ,

e s p e c i a l l y f o r l a r g e p lann ing peri'ods T. The reason f o r it i s

t h a t s o l u t i o n p a t h s i n t h e s e methods c o n s i s t o f a number o f

v e r t i c e s of a f e a s i b l e po l yhedra l set ( i n some s p a c e ) , and t h i s

number w i l l i n c r e a s e e x p o n e n t i a l l y w i t h T.

The i t e r a t i v e methods seem t o by-pass t h e s e d i f f i c u l t i e s . They

a l s o c h a r a c t e r i z e d by low demand t o computer ' s co re memory,

s i m p l i c i t y of t h e computer implementat ion, low s e n s i t i v i t y t o

d i s tu rbances . Disadvantages of t h e s e methods may b e low con-

vergence r a t e , y e i l d i n g o n l y approximate s o l u t i o n . .\

We s h a l l s i n g l e o u t t h e fo l l ow ing i t e r a t i v e methods.

; 1 L i : r ~ c r ~ ! ! : ~ n t m?t i ;oJ ; ; . T h i s g r o u p o f m e t h o d s i s bclscd -- __ I- o n f i n d i n g ex t remum o f f u n c t i o n s :

' (:, p = max L ( u f x ; A , p ) ; ; ( u , ~ ) = min L ( u f x ; ; \ ,PI ( 1 6 ! X f U L 0 p i x > 0 -

w h e r e L ( u , x , A , p ) i s t h e L a g r a n g e f u n c t i o n o f P r o b l e m 1P ( I D ) .

M i n i m i z a t i o n o f Y i s e q u i v a l e n t t o t h e s o l u t i o n o f t h e d u a l

P r o b l e m ID, w h i l e t h e m a x i m i z a t i . o n o f c$ i s e q u i v a l e n t t o t h e

s o l u t i o n o f p r i m a l P r o b l e m 1P [ 7 ] . A s t h e s e f u n c t i o n s a r e non-

d i f f e r e n t i a b l e b y n a t u r e , t h e g e n e r a l i z e d g r a d i e n t t e c h n i q u e i611

is n e e d e d . The a p p l i c a t i o n o f t h i s a p p r o a c h t o t h e s o l u t i o n o f

d u a l P r o b l e m ID l e a d s t o t h e f o l l o w i n g a l g o r i t h m . W e c o n s i d e r

P r o b l e m 1P w i t h a d d i t i o n a l c o n s t r a i n t s o n c o n t r o l v a r i a b l e s :

u ( t ) EUt ; U t = ! u ( t ) I ~ ( t ) u ( t ) 2 r ( t ) , u ( t ) 2 0 ) .

v ( 1 ) C h o o s e a r b i t r a r y d u a l c o n t r o l { A ( t ) j ( t = 0 , 1 , . . . ,T-1 ) . ( 2 ) Cernpute d u a l s t a t e t r a j e c t o r y ~ ~ ' ( t ) ; f r o m t h e d u a l

s t a t e e q u a t i o n s ( 6 ) w i t h b o u n d a r y c o n d i t i o n ( 7 ) . v

( 3 ) F o r p\J ( t + l ) s o l v e T LP p r o b l e m s : rnax H p ( p ( t + l ) .u ( t ) ) . u ( t ) E U t . L e t uV ( t ) b e a s o l u t i o n o f t h e s e p r o b l e m s .

v ( 4 ) Compute p r i m a l s t a t e t r a j e c t o r y x ( t l f r o m ( 1 ) and

( 2 ) f o r u V ( t ) .

v v (5) Compute g e n e r a l i z e d g r a d i e n t o f Y : S Y ( A ) = h ( t ) , w h e r e h v ( t ) = f ( t ) - ~ ( t ) x ' ( t ) - ~ ( t ) u \ ; ( t ) . ( 1 7 )

v+ 1 ( 6 ) Compute new d u a l c o n t r o l A : . v+l v v v

= A - a ( ' 3 ) I ( ( V = O , l , 2 . . . . ) ( 1 8 )

- - - * r . . 3 : 1 i . ? ~ : . L e t n V - t O ; v - + ~ ; - . 1 a v - -. Then ?' ( i V ) -+ ! ' (A ) ,

:>=o * * *

) ~ ' + . I , 1 = {A ( t ) is a n o p t i m a l c o n t r o l o f d u a l P r o b l e m I D .

The a l g o r i t h m ( 1 ) - ( 6 ) g i v e s a d u a l s o l u t i o n o f t h e p r o b l e m . To

o b t a i n t h e p r i m a l s o l u t i o n o n e c a n a p p l y t h e same a p p r o a c h t o

f u n c t i o n : ( u ) i n ( 1 6 ) .

,,--,:*.c.. - - - ... , .. -, L Q C L : : n 3 2 i i :C ~ u Y ~ c ? . ~ s ; : . - : e z , : z : [ 6 2 631 . T h i s a p p r o a c h com-

b i n e s t h e a d v a n t a g e s o f b o t h f i n i t e a n d i t e r a t i v e m e t h o d s : u n d e r

ain imal requirements f o r s t o r a g e i t ensures monotonic conver-

cjsnce i n a f i n i t e number of s t e p s . I n a sense , t h i s method c-n be

considered a s a "smooth" a l t e r n a t i v e t o t h e nonsmooth approach,

dsscr ibeci above. Le t t h e L a g r a ~ q e f ~ i c t i o n 5 ( u , ) . ) o f Problsm 1 2

( I D ) be ailqnented by q ! ~ a d r a t l c te~rix:

where 0 > 0 , v e c t o r h ( t ) i s d e f i n e d from ( 1 7 ) .

Now i n s t e z d of ( 1 6 ) t h e fo l l ow ing p a i r of problems can . be

cor?s iders2

\U ( A ) = rriax i?(u ,A) ; t , ( u ) = in M(u,X! f1 . -

U X

Opposi te t o ?' ( A ) , t h e f u ~ c t i o n P (?, j i s a s a ~ o t h concave m f u n c t i o n ; d e r i v a t i v e o f '? ( A ) i s a con t inuous f7 t?c t i on of X m d m a'? ( E , ) / a A ( t ) = h ( t ) where h ( t ) i s computed from (171, when M

u* = ui(A) i s a s o l u t i o n o f t h e l e f t problem i n ( 2 0 ) (621.

Problems n i n Y ,(1) and max $ ( u ) a r e t h e p a i r of modi f ied d u a l )I M

~ r o b l e ~ . s , a s s o c i a t e ? w i t h o r i g i n a l Problem 1P. I n [621 i s

shown, t h a t t h e m o d i f i c a t i o n does n o t chznge t h o g e n e r a l d u a l

r e l a t i o n s . Thus i;l o r d e r t o o b t a i n a s o l u t i o n o f Troblem

one can sol ire e i t h e r t h e d u a l p r o b l e ~ min ? 0.) with t h e no2-

smooth fu-rlction Y o r t h e modi f ied Zual p rob len n i n ? ( A ) w i t h >! t h e smooth fuirlction !'

M'

The l a t t e r g i v e s t h e f o l l o w i n s a lgor i thm:

( 1 ) Choose a r b i t r a r y d u a l c o n t r o l A V .

( 2 ) Solve t h e l e f t p r o b l e n i n ( 2 0 ) .

Th is ?robLen has l i n e a r s t a t e e q u a t i o n s ( 1 ) , g u a d r a t i c ob jec-

t i v e f u n c t i o n ( 1 9 ) and s imp le c o n s t r a i n t s on c o n t r o l u ( t )

( e . 9 . I) - < u(t) - < c ( t ) 1 . There fo re f o r i t s s o l u t i o n o p t i n a l

c o n t r o l t2chnique (iv-hich reduces i n t h i s c a s e t o s o l u t i c n of 2

n a t r i x A i c c a t i e q ~ a t i o n ) can be e f f e c t i v e l y 2 ~ 2 l l e d [ 6 3 1 .

v ( 3 ) L e t u b e a s o l u t i o n o f t h e abo l re p r o b l m . C c m ~ a t e

h" ( t ) f r o m ( 1 7 ) f o r t h i s uV and new d u a l c o n t r o l X v+ 1

f r o m

p + 1 ( t ) = X v ( t ) - 4 h v ( t ) ( \ J = 0 , 1 , 2 , . - . )

T k e o r ~ s , ~ 4 . F o r a n y e > 0 ,

* * and b e g i n n i n g f r om some f i n i t e vO : X v €11 , u;' EU , v > \ J ~ ,

& -

I

where A T I U-, a r e s o l u t i o n sets o f d u a l a n d p r i m a l p r o b l e m s

I D and 1P r e s p e c t i v e l y .

Theorem 4 s t a t e s t h a t , o p p o s i t e t o t h e g e n e r a l i z e d g r a d i e n t a l g o r i t h m ( 1 ) - ( 6 ) , t h e a l g o r i t h m ( 1 ) - ( 3 ) c o n v e r g e s f o r a f i n i t e number o f s t e p s a n d t h e v a l u e s o f t h e m o d i f i e d f u n c t i o n '? ( A ) m o n o t o n o u s l y d e c r e a s e s w i t h v ( i n f a c t so d o e s t h e n o n n o d y f i e d d u a l f u n c t i o n Y ( A ) a l s o 1621 ) . M o r e o v e r , t h i s a l g o r i t h m g i v e s s i m u l t a n e o u s l y d u a l A * and ?r imal u* o p t i m a l s o l u t i o n s .

CONCLUSION

A s h o r t s u r v e y h a s b e e n g i v e n a b o v e o f DL? m o d e l s , t h e o r y and m e t h o d s . T h e r e i s n o t much l i t e r a t u r e o n c o m p u t e r imp lemen ta - t i o n o f t h e m e t h o d s . E x p e r i m e n t s , h o w e v e r , show t h a t t h e s e me thods c a n b e much more e f f i c i e n t i n c o z p a r i s o n w i t h t h e s t a n d a r d ( s t a t i c ) a p p r o a c h (see, f o r i n s t a n c e , [ 3 9 , 5 3 1 ) . T h e r e - f o r e c o m p u t e r t e s t i n g and e v a l u a t i o n o f t h e a l g o r i t h m s a r e now a n i m p o r t a n t p r o b l e m . O t h e r i m p o r t a n t d i r e c t i o n s o f r e s e a r c h a r e t h e p r o b l e m o f t h e i m p l e m e n t a t i o n o f o p t i m a l c o n t r o l a n d p o s t - o p t i m a l a n a l y s i s o f t h e mode l ( f e e d b a c k v s p rog ram o p t i m a l c o n t r o l , s e n s i t i v i t y a n d s t a b i l i t y a n a l y s i s , i n t e r r e l a t i o n be- tween s h o r t and l o n g - t e r m p r o b l e m s , e t c . )

I t s h o u l d a l s o b e n o t e d t h a t n o t a l l d y n a i c a l o p t i m i z a t i o n p r o b l e m s c a n be k e p t w i t h i n t h e f ramework o f DLP. T h e r e f o r e , t h e e x t e n s i o n o f DLP f o r s t o c h a s t i c , maxmin, n o n l i n e a r dynamic p r o g r z m i n g p r o b l e m s i s o f l a r g e p r a c t i c a l i n t e r e s t . Some w o r k h a s S e e n a l r e a d y d o n e i n t h i s d i r e c t i o n (see, e . g . [64 -6611 .

Refe rences

Dan tz i g , G.B., Lineal2 Programming and E x t e n s i o n s , P r i n c e t o n U n i v e r s i t y P r e s s , P r i n c e t o n , N . J . , 1363.

K a n t o r o v i t c h , L .V . , -The B e s t Use o f Economic Resources , Harvard U n i v e r s i t y P r e s s , Cambridge, Mass., 1965.

P r o p o i , A . I . , Problems o f Dynamic L i nea r Programming, Rb;-76-78, I r i t e r n a t i o n a l I n s t i t u t e f o r App l ied Systems A n a l y s i s , Laxenburg, A u s t r i a , 1976.

P o n t r y a g i n , L.S., e t a l . Mathemat ica l Theory o f Opt imal P rocesses , I n t e r s c i e n c e , New York, 1962.

P r o p o i , A . , Elementy T e o r i i Opt imalnykh D i s c r e t n y k h P r o t s e s s o v (E lements o f t h e Theory o f Opt imal Discrete S y s t e m s ) , Nauka, Moscow, 1973 ( i n R u s s i a n ) .

Markuse, W . , e t a l . A Dynamic Time-Dependent Model f o r t h e : A n a l y s i s o f Alternative Energy P o l i c i e s , i n Opera t i ona l Research ' 7 5 ( e d . K.B. Ha ley) , North- Ho l land P u b l i s h i n g Company, 1976, pp. 647-667.

P r o p o i , A., Dual Sys tems o f ~ y n a h c ine ear Programming, RR-77-9, I n t e r n a t i o n a l I n s t i t u t e f o r App l i ed Systems A n a l y s i s , Laxenburg, A u s t r i a , 1977.

Dan tz i g , G.B., On t h e S t a t u s o f M u l t i s t a g e L i n e a r Program- ming Prob lems, Management S c i e n c e , Vol. 6 ( 1959 ) , pp. 53-72.

Lasdon, L. S ., O p t i m i z a t i o n Theory f o r Large Sys tems , MacP-lillan, 1970.

I~ladsen;O., S o l u t i o n o f LP-Problems w i t h S t a i r c a s e S t r u c - t u r e , RZ-26-1977, I n s t i t u t e o f Mathemat i ca l S t a t i s - t i c s and O p e r a t i o n a l Research , Dennark, 1977.

I v a n i l o v , Yu. P. and A.I. P r o p o i , The L i n e a r Dynamic Pro- gramming, DokZ. Acad. Nauk SSSR, Vol. 198 , No . ' 5 (1971) pp. 1011-1014 ( i n R u s s i a n ) .

Aganbegian, A.G., K.A. B a g r i n o v s k i i and A.G. Granberg, Systema Modele i Narodnohoz ias tvennogo P l a n i r o v a n i a (Systems of Models o f N a t i o n a l P l a n n i n g ) , Moscow, "Idys Z " , .I972 ( i n Russ ian ) .

Dan tz i g , G.B., Op t ima l s o l u t i o n of a ~ y n a m i c L e o n t i e f Flodel w i t h S u b s t i t u t i o n , Econometrics, Vol . 23 (1955) , pp.295-302.

Koehler , G . , A. Whinston and G. Ylright, O p t i m i z a t i o n Over L e o n t i e f S u b s t i t u t i o n Sys tems , North-Holland Pub l i sh ing . Company, 1975.

Dukalov, A. N . , Yu.N. Ivanov and V.V. Tokarev, Cont ro l Theory and Zconomic Systems. Avtomat ika i Te Zemekhanika, No. 5 (1974) ' ( i n Russ ian) .

t lakarov A.A. and L.A. Melent jev , Metody I s s l e d o v a n i a i O p t i n i z a t z i i Energet icheskaso Khoziastva (Ana lys is and O p t i n i z a t i o n Methods o f Energy Sys tens) , Nauka, Novosib i rsk , 1973 ( i n Russ ian) .

Haefe le , W. and A.S. Manne, S t r a t e g i e s o f a T r a n s i t i o n from Foss iZ t o NucZear Fue l s , RR-74-07, I n t e r n a t i o n a l I n s t i t u t e f o r A?plied Systems Ana lys i s , Laxenburg, A u s t r i a , 1974.

Propo i , A. and I. Zin in , Energy-Besources-Economy DeveZop- ment ModeZs, I n s t i t u t e f o r Appl ied Systems Ana lys i s , . Laxenburg, A u s t r i a , 1978 ( fo r thcoming) .

Agarkov, S. , I . Druzhin in , 2. Konovalenko, A. Kuznetsov, T. Naumova, V. Ushakova, I. Gera rd i , N . Dorfman, R. Kogan, E. Kokorev and D. R ~ s ~ u ~ o v , The Optima2 A l l o c a t i o n o f Water Consuming P roduc t i on . Vodnye Resursy (Water Resources) , Vol. 3 (1957) , pp. 5-17.

Pa r i kh , S.C.,L inear Decomposit ion Programming o f Optimal Long-Range Operat ion o f a M u l t i p l e Mul t ipurpose

. Reservo i r System, i n The Proceed ings o f t h e Four th I n t e r n a t i o n a l Con fe rence on Operat ionaZ Research , (eds. D . Hertz and I. :.felese) Wiley, 1966.

pp. 763-777.

Biswas, A . K . , (Ed. Sys tems Approach t o Water Management, McGraw-Hill P u b l i s h i n g Company, 1976.

Propo i , A . , Models fo r Educa t i ona l and Manpower P lann ing : A Dynamic L i nea r Programming Approach, RM-78-20, ' I n t e r n a t i o n a l I n s t i t u t e f o r Appl ied Systems Iu la l ys i s , . Laxenburg, A u s t r i a , 1978.

Propo i , A. and F. ~ 7 i l l e k e n s , A DLP Approach t o Na t i ona l S e t t l e m e n t Sys tem P lann ing , RE-77-8, I n t e r n a t i o n a l I n s t i t u t e f o r Appl ied Systems Ana lys i s , Laxenburg, A u s t r i a , 1977. A lso see Envi ronment and PZanning A , Vol. 10 (1978) , pp. 561-576.

Propo i , A . , Dynamic L inea r Programming Models i n Hea l th Care Systems i n Model ing Hea l t h Care Sys tems , e d s . E. Shigan and R. Gibbs, CP-77-8, I n t e r n a t i o n a l I n s t i t u t e f o r Appl ied Systems Ana lys i s , Laxenburg, A u s t r i a , 1977.

Swart , PI. a.0. Expansion Planning f o r a Large Da i ry Farm, i n S t u d i e s i n L i n e a r Programming, Eds. H . S a l k i n and J.' Saha, North-Holland Pub l i sh ing Company, N . Y . , 1975.

P r o p o i , A . , Dynamic L i n e a r Progrcmming ModeZs f o r L i v e s - s t o c k Farms, 311-77-29, I n t e r n a t i o n a l I n s t i t u t e f o r App l ied Systems A n a l y s i s , Laxenburg, A u s t r i a , 1973.

C s a k i , C . , Dyncmic L i n e a r Programming Model f o r Ag r i cuZ - tu raZ I n v e s t n e n t and R e s o u r c e s U t i l i z a t i o n P o Z i c i e s , RM-77-36, I n t e r n a t i o n a l I n s t i t u t e f o r App l ied Systems A n a l y s i s , Laxenburg, A u s t r i a , 1977.

C a r t e r , H . , C . Csak i and A . P r o p o i , P l a n n i n g Long-Range Agr icuZtunaZ I n v e s t m e n t P r o j e c t s : A Dynamic L i n e a r Progranming Approach, W-77-38, I n t e r n a t i o n a l I n s t i t u t e f o r App l i ed Systems A n a l y s i s , Laxenburg, A u s t r i a , 1977.

G lassey , C . R . , Dynamic L i n e a r Programs f o r P r o d u c t i o n Schedu l i ng , O p e r a t i o n a l R e s e a r c h , V o l . 1 9 , 1 (1971) . pp. 45-56.

. -

P e g e l s , C . C . , S y s t e m s AnaZysi is f o r P r o d u c t i o n O p e r a t i o n s , .Gordon and Breach P u b l i s h i n g Company, London, 1976.

Be l lmore, PI. , W".. Ek lo f and G.L. Nemhauser, Transh ipment A lgo r i t hm f o r a M u l t i p e r i o d T r a n s p o r t a t i o n Problem, Naval R e s e a r c h L o g Z s t i c s Q u a r t e r l y , V o l . 19 , 4 ( 1969 ) .

Madsen, O . , A Case Study i n Problem S t r u c t u r i n g , i n Second European Congress on O p e r a t c o n a l R e s e a r c h , (ed. M . Roubens) , North-Hol land P u b l i s h i n g Company, 1976, pp. 287-293.

Tamura, H. M u l t i s t a g e L i n e a r Programming f o r Discrete Opt imal C o n t r o l w i t h D i s t r i b u t e d Lags. A v t o m a t i c a , V o l . 13 (1977 ) , pp. 369-376.

N e w , C. C. , T r a n s p o r t F l e e t P l a n n i n g f o r M u l t i p e r i o d Ope ra t i ons . O p e r a t i o n a l R e s e c r c h Q u a r t e r l y , Vol. 26, 1 , ii ( 1975 ) , pp. 151-166.

H o t J . K . , Opt imal Des ign of Mul t i -S tage S t r u c t u r e s : a Nested ~ e c o m p o s i t i o n Approach. Computers and S t r u c t u r e s , V o l . 5 ( 1 9 7 5 ) , pp. 249-255.

I v a n i l o v , Pu. P. and A . P r o p o i , D u a l i t y R e l a t i o n s i n Dynamic L i n e a r Programming, A v t o m a t i c a i T e l e m e k h a n i k a , V o l . 12 , (1973) , pp. 100-108 ( i n Russ ian ) . _..

B u l a v s k i i , V.A . , X.A. Zv iag ina and ;i.A. Yakovleva, Ch i s l ennye Metody L ine inogo Programrnirovania (Numer ical Methods o f L i n e a r Programming) , "Nauka I f ,

bloscow, 1977 ( i n Russ ian ) . Beer, K., Ldsung Grosser L i n e a r e r ~ p t i m i e r u n g s a u f g a b e n ,

V E B ~ e u t s c h e r V e r l a g d e r W i s s e n s c h a f t e n , B e r l i n , 1977 ( i n German) .

Wink le r , C . , Bas i s F a c t o r i z a t i o n f o r B lock Angular L inear Programs: U n i f i e d Theory o f P a r t i t i o n i n g and Decomposi t ion Using t h e S imp lex Method, RR-74-22, I n t e r n a t i o n a l I n s t i t u t e f o r App l i ed Systems A n a l y s i s , Laxenburg, A u s t r i a , 1974.

G i l l , P.E. and W. Murray, L i nea r l y -Cons t ra i ned Problems I n c l u d i n g L i n e a r and Q u a d r a t i c Programming, i n The S t a t e o f t h e A r t i n Numerical A n a l y s i s , ( e d . D . J a c o b s ) , Academic P r e s s , 1977, pp. 313-363.

Dan tz i g , G.B., Compact B a s i s T r i a n g u l a r i z a t i o n f o r t h e S implex Method i n Recent Advaxces i n Mathemat ica l Programming (Eds. R. Graves and P. Wolfe) , I - lcGraw- H i l l P u b l i s h i n g Company, N.Y . , 1963 , pp. 125-132.

Heesterman, A.R.G. an'd J. Sandee, S p e c i a l S implex A lgo r i t hm f o r L inked Prob lems, Management S c i e n c e , V o l . 11 , N o . 3 (1965) pp. 420-428.

K a l l i o , M. and 'E. P o r t e u s , T r i a n g u l a r F a c t o r i z a t i o n and G e n e r a l i z e d Upper Bounding Techn iques , Opera t i ons Research, V o l . 25, 1 (1977) , pp. 89-99.

W o l l m e r , R . D . , A S u b s t i t u t e I n v e r s e f o r t h e as is 6 f a S t a i r c a s e S t r u c t u r e L i n e a r Programs, Mathemat ics o f Opera t ions Research , Vol . 2, ' 3 . . ( 1977 ) , pp. 230-239.

Kr ivonozhko, V . I . and A . I . P r o p o i , A Method f o r L i n e a r Dynamic Programs w i t h t h e U s e of B a s i s M a t r i x F a c t o r i z a t i o n , i n A b s t r a c t s o f t h e I X I n t e r n a t i o n a l Symposium o f Mathemat ica l Programming, Budapes t , August 1976.

Kr ivonozhko, V . I . and A . I . P r o p o i , S implex Method f o r Dynamic L i n e a r Program S o l u t i o n , i n O p t i m i z a t i o n Techn ique , Proceed ings o f t h e 8 t h IF IP Cox fe rence , Kflrzburg 1977, (ed. J. S t o e r ) , Spr i nge r -Ve r l ag , 1978,

P r o p o i , A. and V. Krivonozhko, The Dynamic S imp lex Method, RM-77-24, I n t e r n a t i o n a l I n s t i t u t e for App l i ed Systems A n a l y s i s , Laxenburg, A u s t r i a , 1977.

Kr ivonozhko, V.E. and A.I . P r o p o i , C o n t r o l S u c c e s s i v e Improvement Method i n Dynamic L i n e a r Programming Problems I , 11, I z v e s t i a AN SSSX, Techn icheskya K i b e r n e t i k a , V o l . 3 ,4 , 1978, pp. 5-16,5-14 ( i n X u s s i a n ) .

P r o p o i , A. and V. Krivonozhko, S imp lex . Method f o r Dynamic L i nea r Programs, RR-78-14, I n t e r n a t i o n a l I n s t i t u t e for App l i ed Systems A n a l y s i s , Laxenburg, A u s t r i a .

Cobb, R.H. and J. Cord, Decompcsi t ion Approaches f o r S o l v i n g L inked Programs, in ProcceZings o f t h e P r i n c e t . 0 ~ Symposium on b iat lzenat ica l Programming ( ed . H.W. Kuhn), P r i n c e t o n u n i v e r s i t y P r e s s , N . J . 1967.

[51] Ho, J . K . and A.S. Manne, N e s t i d Decomposi t ion f o r Dynamic Models, Mathemat ica l Programming, Vol. 6 , 2 ( 1974 ) , pp. 121-140.

[52] G lassey , C . R . , Nested Decomposit ion and Mu l t i -S tage L i n e a r Programs, Management S c i e n c e , Vol. 20, pp. 282-292.

[53). Ho, J . K . Nested Decomposit ion o f a Dynamic Energy Model, Ma?zagement and S c i e n c e , Vol. 23, ' 9 (1977) , pp. 1022-1026.

[54] K a l l i o , M . , Decomposi t ion o f ~ r b o r e s c e n t L i n e a r Programs, Mathemat ica l Programming, Vol. 13 (1977) , pp. 348-356.

[55] Kr ivonozhko, V.E., Decomposit ion A lgo r i t hm f o r Dynamic L i n e a r Programming Prob lems, I z v e s t i a AN SSSR, Techn icheskya K i b e r n e t i k a , Vol. 3 (1977) , pp. 18-25 ( i n R u s s i a n ) .

[56] I v a n i l o v , Yu. P. and Yu. E. Malashenko, Method f o r L i n e a r Dynamic P r o g r a m i n g S o l u t i o n , ~ i b e r n e t i k a , Vol . 5 ( 1 9 7 3 ) , pp. 42-49 ( i n R u s s i a n ) .

[57] Be lukh in , V.P., P a r t i t i o n P r i n c i p l e and Pr imal-Dual Method f o r Dynamic L i n e a r Programming Prob lems. Zhurnal ; ' 3 c h i s l i t e l n o i Ma temat i k i i Matemat i chesko i P h y s i k i , Vol. 1 5 , 6 (1975) , pg. 1424-1435.

[58] Be lukh in , V.P., P a r a m e t r i c Method f o r Dynamic L i n e a r Programming S o l u t i o n . Avtomat i ca i Te Zemekhanika, Vol . 3 (19751, pp. 95-103.

[591 Aonuma, T., A Two-level A lgo r i thm f o r Two-stage L i n e a r Programs. Jou rna l o f t h e Ope ra t i ons Research S o c i e t y o f gapan, Vol . 21, 2 ( 1 9 7 8 ) , pp. 171-187.

[601 Fukao, T., A Computat ion Method f o r Dynamic L i n e a r Programming, Journa l o f t h e Ope ra t i ons Research S o c i e t y o f Japan, Vol . 2 , 3 ( 1960 ) .

- -. - -- - - - .

[611 Nonsmooth O p t i m i z a t i o n , P roceed ings of IIASA Workshop, March-Apri l 1977, eds . C. Lemarecha l , R. M i f f l i n , Pergamon P r e s s , 1978.

[62] P ropo i , A . I . and A.B. Yadykiri, Modi f ied Dual R e l a t i o n s i n Dynamic L i n e a r Programming, Avtomat ika i Tezemekhan ika , 5 ( 1 9 7 5 ) , pp. 106-1 14 ( i n R u s s i a n ) . -

. . -. . . - 1631 P ropo i , A . I . and A.B. Yadykin, P a r a m e t r i c I t e r a t i v e

!.lethods f o r Dynamic L i n e a r Programming. I . Non- d e g e n e r a t e C a s e , Avtomat ika i Te lemekhcn ika , Vol. 12 ( 1 9 7 5 ) , 11. Genera l C a s ~ . Lv tomat i ka i Te lemekhan ika , Vol . 2 ( 1 9 7 6 ) , pp. 127-135, 136-144.

[ 6 4 ] Ermol j e v , Yu. 14. , Metody S tokhas t i cheskogo Prograrnmirovania (Methods o f S t o c h a s t i c Programming), Nauka, M o s c o w , 1976 ( i n R u s s i a n ) .

[65] I v a n i l o v , Yu.P. and A . I . P r o p o i , Convex Dynamic Program- ming. Zhurnal Vychis lite Znoi Matematiki i Matematicheskoi Phyziki, V o l . 1 2 , 3 (1972) ( i n R u s s i a n ) .

[ 6 6 ] P r o p o i , A . I . and A.B. Yadykin, The P lann ing Under Unce r ta i n Demand, 1,II. Avtomatika i Telemekhanika, Vol. 2 , 3 (1974 ) , pp. 78-83, 1 0 2 - 1 0 8 . ( i n R u s s i a n ) .