dtc genetic testing

10
The Technical Process of DirecttoConsumer Genetic Testing An Informative Description for Students in the Life Sciences Laura Bruce ENGL 202C 03/27/2014

Upload: laurabruce27

Post on 03-May-2017

233 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: DTC Genetic Testing

   The  Technical  Process  of  Direct-­‐to-­‐Consumer  Genetic  Testing  

 

An  Informative  Description  for    Students  in  the  Life  Sciences  

 

 

Laura  Bruce       ENGL  202C       03/27/2014

Page 2: DTC Genetic Testing

     

1  

Audience  and  Scope  

The   purpose   of   this   document   is   to   provide   undergraduate   students   in   the   life   sciences   with   a  contemporary,  informative  description  of  the  technical  process  behind  direct-­‐to-­‐consumer  (DTC)  genetic  testing.     An   emphasis   is   placed   on   the   progression   of   the   laboratory   and   analytical   steps.     Since   this  document   does   not   include   extensive   molecular-­‐level   descriptions,   basic   background   knowledge   of  biochemical   concepts   and   laboratory   techniques   in   biology   will   be   beneficial   for   full   comprehension.    Thus,  while  this  document  can  be  useful  to  anyone  who  has  an  interest  in  genomics,  it  will  be  especially  suited   to   students   studying   the   life   sciences,  who   likely  have   relevant  prior   knowledge   in   cell  biology,  biochemistry,  and  genetics.    Notably,   the   information   in   this  document   is   increasingly  valuable,  as   the  growing  popularity  of  DTC  genetic  testing  is  pressuring  the  healthcare  system  to  move  towards  a  more  personalized   system.     It   is   essential   that   students   pursuing   careers   in   the   life   sciences   are   aware   of  developments  in  biotechnology,  including  DTC  genetic  testing.    

Introduction    

As  more   individuals  become   interested   in  what   their  genome  may  uncover,  genetic   testing,  a  medical  screening   process   that   identifies   variations   in   an   individual’s   chromosomes,   genes,   or   proteins,   has  become   increasingly  prevalent.     To   some  extent,   genetic   testing  has  been   routinely  used   in   forensics,  genealogy,   fetal   and   newborn   screening,   prenatal   planning,   and   disease   diagnosis.     Only   recently,  however,  has  genetic  testing  become  readily  available  for  individuals.  

In  2003,   the  Human  Genome  Project  was  completed,  mapping  the  entire  human  genome  and  shedding  light  on  how  our  genes  influence   our   physiology   and   reveal   our   ancestral   roots.     As   a  result,   scientists   are   increasingly   capable   of   understanding   the  relationships  between  genotype,  the  molecular  coding  of  genes  for  a  particular  trait,  and  phenotype,  the  physical  manifestation  of   that   particular   trait,   which   can   also   be   impacted   by  environmental  factors.      One   specific   way   of   measuring   genotype   and   genetic   variation  between   individuals   is   by   analyzing   their   single   nucleotide  polymorphisms   (SNPs).   SNPs   are   naturally   occurring  mutations  (changes)  in  the  four  possible  nucleotide  building  blocks  of  DNA  (C:  cytosine,  G:  guanine,  A:  adenine,  T:  thymine).    As  shown  in  Figure  1,  in  the  highlighted  region  of  DNA,  three  individuals  have  three  different  nucleotides,  which  represent  SNPs.    Typically,  an  individual’s  genome  will  contain  about  10  million  SNPs,  most  of  which  have  no  effect.    SNPs  only  affect  phenotype  if  they  occur  within  a  gene  or  its  regulatory  region.   Phenotypically,   these   effects   might   be   linked   to   traits   like   eye   color,   inherited   conditions,   or  tendencies  in  drug  metabolism.    SNPs  can  also  be  used  to  track  ancestry.        

(Source:  The  Broad  Institute,    http://www.broadinstitute.org)  

Figure  1.  SNPs  

Page 3: DTC Genetic Testing

     

2  

Direct-­‐to-­‐consumer   (DTC)   genetic   testing   is   a   type  of   health   and   ancestry   genetic   testing   that   is   sold  directly   to   individuals,  without   input   from  healthcare   providers   or   insurance   companies.     This   service  relies  on  a  technical  process  that  accesses  and  analyzes  all  of   the   interpretable  SNPs  for  an   individual.    The  main  purpose  of  DTC  genetic  testing   is  empowerment,  allowing  customers  to  obtain  wide-­‐ranging  personal  genetic  information  from  a  single  source.        Individuals  may  choose  DTC  genetic  testing  for  a  variety  of  reasons,  including:  

• Identifying  ancestry,  paternity,  or  ethnicity  • Seeking  disease-­‐related  risk  information  to  complement  healthcare  and  lifestyle  choices  • Fulfilling  personal  curiosity  

 The  DTC  genetic  testing  process  is  quick,  affordable,  and  more  accessible  than  it  would  be  to  seek  such  data  from  healthcare  providers  or  other  sources.    Companies  that  offer  DTC  genetic  testing  are  privately  held,  and  can  provide  individuals  with  health  and  ancestry  information  at  costs  ranging  from  $99-­‐$2000,  with  online  data  provided  within  6-­‐8  weeks.        

Well-­‐known  DTC  genetic  testing  companies  include:  • 23andMe,  Inc.  • BritainsDNA  • DNADTC  • Full  Genomes  Corporation  • GeneDx  

 A   schematic   of   a   typical   DTC   genetic   testing   service,   as   provided   by   23andMe,   is   depicted   in   Figure   1.    After  ordering,  customers  are  sent  an  at-­‐home  saliva  kit,  which  they  must  register,  spit  into,  and  mail  back  to   the   company.     Since   saliva   contains   both  white   blood   cells   and   skin   cells   from   the   inner   cheek,   this  provides  a  means  for  the  company  to  access  the  customer’s  DNA.    After  receiving  the  saliva  sample,  the  company   can   begin   laboratory   processing   towards   SNP   analysis   of   the   DNA,  which   is   the   focus   of   this  document.    The  raw  and  interpretative  results  are  reported  for  the  customer  via  an  informational  website  that  can  include  discussion  boards  and  a  means  of  connecting  to  relatives  identified  via  the  testing.      

   Figure  2.  23andMe’s  DTC  Genetic  Testing  Service  

(Source:  23andMe,  https://www.23andme.com)  *Note:  CLIA  refers  to  the  FDA’s  Clinical  Laboratory  Improvement  Amendments

Page 4: DTC Genetic Testing

     

2  

The  Technical  Process  

How  does  the  DTC  genetic  testing  company  establish   health   and   ancestry   information  from   the   customer’s   saliva   sample?     This   is  achieved  via  an  elaborate   technical  process  that   occurs   at   the   DTC   genetic   testing  company  site.   Laboratory   techniques   and  computer  analyses  are  employed.            As  depicted  by  a   schematic   in  Figure  3,   the  technical   process   involves   four   main   steps,  some  of  which  contain  sub-­‐steps.    Generally,  the   process   includes   DNA   extraction,  preparation   for   hybridization   via  amplification   and   labeling,   hybridization,  and   analysis   via   laser   scanning   and  normalization.      

   1. DNA  Extraction:  

 The   first   step   in   the  genetic   testing  process  is   to   extract   DNA   (deoxyribonucleic   acid),  the   molecule   that   contains   all   of   an  individual’s   genetic   information.     The  white  blood   cells   and   skins   cells   found   in   the  customer’s   saliva   sample   are   suitable   for  this   extraction.   In   this   technique,   DNA   is  purified   via   chemical   and   physical   means  within   various   test   tubes.     This   method   is  essential   in   order   to   isolate   the   DNA   from  proteins,   lipids,   and   other   molecules   that  are   in   saliva,   so   that   it   may   be   further  analyzed.    

 

  Figure  3.  Technical  Process  Behind       DTC  Genetic  Testing  

 

       

       

                                             

Saliva  sample  

1.  DNA  Extraction  

2.  Preparation  for                  Hybridization        

3.  Hybridization  

4.  Analysis  

Scanning  

       Labeling        (coupling)  

Amplification                    (PCR)  

Normalization  

(Source:  Wikipedia,  http://wikipedia.org/wiki/)

Page 5: DTC Genetic Testing

     

3  

As   shown   in   Figure   4,   DNA   extraction   itself   involves  various  steps.    Initially,  the  sample  must  be  combined  with   cell   lysis   solution   (brand   name   FABG)   and  protein   degradation   enzymes   (brand   name  Proteinase   K)   to   disrupt   the   cell   membranes   and  break   down   the   proteins   that   make   up   the   cell,  respectively.     This   results   in   a   heterogeneous  solution,  which   is   then  moved   into   a   special   binding  test  tube  for  centrifugation,  the  use  of  a  high-­‐power  spinning   machine   to   separate   biological   molecules.  Once  centrifuged,  DNA  remains  in  the  upper  aqueous  layer,   binding   to   an   inner  portion  of   the   special   test  tube,   while   proteins   remain   in   the   lower   phenol  layer,   and   are   discarded   (see   Figure   3   for   additional  imagery).   Afterwards,   the   DNA   is   centrifuged  repeatedly  with  wash  buffer   (two  times)  and  elution  buffer   (one   time),   to   remove   any   leftover   reagents  and   salts   from   the   resulting   phenol   layers.     In   the  end,  pure  genomic  DNA  remains.      

   2. Preparation  of  the  DNA  for  

Hybridization:    

The  next  main  step  in  the  process  of  DTC  genetic  testing  is   to   prepare   the   extracted   DNA   so   that   it   is   in   an  exploitable   form   for   hybridization.   This   requires  amplification   of   the   DNA   so   that   there   is   enough   to   be  analyzed,   followed   by   labeling   of   the   amplified   DNA   so  that  it  can  be  monitored  during  subsequent  analysis.    

i. Amplification  (PCR):    A  biochemical  process  know  as  polymerase  chain  reaction   (PCR)   is   employed   in   order   to  exponentially   copy   the   customer’s   DNA   for  analysis   (Figure   5).     The   DNA   is   mixed   with  enzymes,   primers,   and   other   stabilization   agents  in  a  small  test  tube.    The  enzymes  serve  to  bind  to  the   DNA   molecule,   and   the   primers   provide   a  place  where  biochemical  amplification  can  begin.

Figure  5.  PCR  Amplification  

Figure  4.  DNA  Extraction  

(Source:  Science  Creativity  Quarterly,    http://www.scq.ubc.ca)

(Source:  Favorgen  Biotech,  http://www.favorgen.com)  

Page 6: DTC Genetic Testing

     

4  

 PCR   occurs   within   a   thermal   cycler   machine,   which   can   increase   and   decrease   temperature  according   to  a   specific   schedule.     First,   the   sample   is  heated,  allowing   the  DNA  double-­‐helix   to  denature  into  two  separate  strands.    Then,  the  sample  is  cooled  slowly,  which  allows  the  enzymes  and   primers   to   bind   to   each   strand.   Finally,   the   sample   is   heated   (incubated)   to   an   ideal  temperature  for  the  primers,  which  begin  extending  each  single  strand  into  new  double  strands.    After   each   cycle,   the   number   of   copies   (complete   double-­‐helices)   of  DNA   is   doubled.     For  DTC  genetic  testing  purposes,  the  thermal  cycler  is  set  to  complete  around  50  cycles,  resulting  in  250  copies  of  the  customer’s  DNA.          

ii. Labeling  (Coupling):  Although   a   sufficient   amount   of   DNA   is   produced   by   the   PCR   process,   this   DNA   is   not   useful  unless  it   is   labeled  with  fluorescent  tags  that  can  be  monitored  during  later  steps  (hybridization  and   analysis).     Labeling   is   quite   simple,   and   requires   fluorescent   tags   in   solution   to   be   added  directly  to  the  test  tube  containing  the  amplified  DNA.    Typically,  cyanide  dyes  known  as  Cy3  and  Cy5   are   added,   since   they   have   green   and   red   fluorescent   properties,   respectively.     Each   dye  binds  to  a  different   location  on  the  DNA  molecule,  based  on  covalent  binding  properties.    Since  there  are  two  dyes,  the  process  of  adding  these  dyes  is  known  as  coupling.    

   3. Hybridization  of  the  Prepared  DNA  to  a  Microarray:  

After   the  customer’s  DNA  has  been   isolated,  amplified,  and  labeled,   the   actual   “testing”   aspect   of   genetic   testing   can  begin.    In  this  step,  the  identifiable  SNPs  in  the  DNA  will  be  recognized.    The  process,  known  as  hybridization,  refers  to  placing   the   prepared   DNA   on   microarray   chips,   and   then  incubating   to   allow   the   tagged   DNA   molecules   to   bind  (hybridize)   to   the   chips.   These   hybridized   chips   can   be  analyzed  according  to  the  binding  pattern  that  occurs.    Specifically,   DTC   genetic   testing   companies   use  microarray  bead   chips   that   are   customized   for   SNP   genotyping,   as  depicted   in   Figure   6.     Each   chip   is   essentially   a   small   glass  slide   that   is   covered  with   approximately   1  million   tiny   immobile   beads,   one   for   each   SNP   that  will   be  tested.       Each   bead   has   an   attached   probe,   a   chain   of   small   allele-­‐specific   oligonucleotides   (15-­‐20  nucleotide  base  pairs).    These  nucleotide  probes  are  pieces  of  DNA  that  are  complementary  to  the  sites  on   human   DNA   that   represent   SNPs.     All   probes   are   fluorescently   labeled   in   the   same   way   as   the  prepared   DNA.     Typically,   DTC   genetic   testing   companies   simply   purchase   these   SNP  microarray   bead  chips  from  biotechnology  companies.  The  purchased  bead  chips  are  designed  to  include  probes  for  SNPs  with  associations  to  health-­‐related  traits,  or  SNPs  that  are  ancestral  markers.      

Figure  6.  SNP  Microarray  Chips  

(Source:  Science  Creative  Quarterly,  http://www.scq.ubc.ca)  

Page 7: DTC Genetic Testing

     

5  

Figure   7   shows   the   how   the   sample   DNA  hybridizes  to  the  fixed  probes  on  the  bead  chip.    First,   the   customer’s   DNA   is   washed   over   the  chips   and   the   chips   are   incubated,   allowing   for  hydrogen-­‐bonding  to  occur  between  the  sample  and   the   probes.     The   sample   DNA   will   bind  strongly   to   the   nucleotides   on   the   probe   if   the  probe  is  fully  complementary  to  it.    Any  partially  complementary  strands  are  weakly  bonded  and  are   easily  washed  off  with  buffers,   leaving  only  perfectly  complementary  pairs  attached.   4. Analysis  of  the  Hybridized  

Microarray:    

Once  the  SNP  microarray  bead  chips  are  subject  to  hybridization  and  washing,  the  chips  are  analyzed  in  order   to   determine  which   SNPs   are   present.     This   is   accomplished   via   laser   scanning   and   subsequent  normalization  by  a  computer  program.        

i. Laser  Scanning:    If   the   customer’s   DNA   is   perfectly  complementary   to   an   SNP   probe,   the  Cy5   and   Cy3   fluorescent   tags   on   the  sample  DNA  and  the  probe  will  fluoresce  in  an  equivalent  way,  indicating   that   the   customer’s   genome   includes   that   specific  SNP  (Figure  7).    The  bead  chips  are  scanned  by  a  laser  system,  which   measures   the   fluorescence   as   a   light   signal.     Data  appears  as  a  cluster  of  green  and  red  spots  (Figure  8).      

 ii. Normalization:    The   fluorescent   hybridization   signals   as   provided   by   the  laser   scanner   must   be   normalized,   or   processed   as   an  overall   image,   to   quantify   which   SNPs   are   in   the  customer’s   genome.   A   high-­‐power   computer   program   normalizes   the   fluorescence   data   via   a  statistical  system.    Background  noise  is  removed,  and  the  system  accounts  for  the  location  of  the  signal  on  the  chip  while  noting  the  intensity  of  the  signal.    This  normalized  data  is  linked  to  SNPs  and   their   associated   traits   or   markers,   which   completes   the   technical   process   of   DTC   genetic  testing.     Finally,   the   data   is   interpreted   into   a   form   that   has   health   and   ancestral   significance.    These  interpretations  are  displayed  for  the  customer  via  the  company’s  online  website.  

Figure  7.  DNA  Hybridization  

Figure  8.  Laser  Scanning  Data  

(Source:  Wikipedia,  http://wikipedia.org/wiki/)

(Source:  Nature,  http://www.nature.com)  

Page 8: DTC Genetic Testing

     

6  

Conclusion  

The  goal  of  DTC  genetic  testing   is  to  empower   individuals  to  obtain  reliable  genetic   information  from  a  single   source.    After   the   customer’s   saliva   sample   is   received,   technical   processing  employs   laboratory  and   computer   techniques   to   obtain,   quantify,   and   analyze   data   before   it   is   interpreted   as   health   and  ancestry   information   for   the   customer.     In   summary,   there   are   four   main   steps   to   the   technical  processing,  some  of  which  contain  sub-­‐steps.    DNA  is  extracted  from  the  saliva  sample,  amplified  via  PCR,  and   labeled  with   fluorescent  tags.    The  prepared  DNA   is  subject   to  hybridization  on  an  SNP  microarray  bead   chip,   which   is   quantified   via   laser   scanning   and   normalized   by   a   computer.   The   ensuing  interpretation  of  the  data  with  relation  to  ancestry  and  health  risk  is  the  most  controversial  aspect  of  the  DTC  genetic  testing  service,  but  interpretation  accuracy  will   likely  improve  as  the  relationships  between  SNPs   and   phenotype   are   further   deciphered.   Overall,   DTC   genetic   testing   provides   a   glimpse   at   what  biotechnology  in  genetics  can  accomplish,  and  is  of  high  relevance  to  students  studying  the  life  sciences.          

Page 9: DTC Genetic Testing

     

7  

Works  Cited    

“How  it  works.”  23andMe.  23andMe,  Inc,  n.d.  Web.  24  March  2014.     <https://www.23andme.com/howitworks/>.  Jasmine,  Farzana,  et  al.  "Whole-­‐genome  amplification  enables  accurate  genotyping  for  microarray-­‐based     high-­‐density  single  nucleotide  polymorphism  array."  Cancer  Epidemiology  Biomarkers  &     Prevention  17.12  (2008):  3499-­‐3508.  Su,  Pascal.  "Direct-­‐to-­‐Consumer  Genetic  Testing:  A  Comprehensive  View.  "The  Yale  journal  of  biology     and  medicine  86.3  (2013):  359.  “What  is  direct-­‐to-­‐consumer  genetic  testing?”  Genetics  Home  Reference.  U.S.  National  Library  of     Medicine,  24  March  2014.  Web.  24  March  2014.  <http://ghr.nlm.nih.gov/     handbook/testing/directtoconsumer>.      Image  on  title  page.    DNA  double-­‐helix.  Digital  Image.  Creatia.  n.p.,  n.d.  Web.  24  March  2014.                          <http://creatia2013.files.wordpress.com/2013/03/dna.gif>.  Figure  1.    SNPs.  Digital  Image.  Glossary.  Broad  Institute,  2014.  Web.  24  March  2014.     <http://www.broadinstitute.org/education/glossary/snp>.  Figure  2.  (cropped)  23andMe’s  DTC  Genetic  Testing  Service.  Digital  Image.  How  it  Works.  23andMe,  LLC,  2007-­‐2014.  Web.  24     March  2014.  <https://www.23andme.com/howitworks/>.  Figure  3.  (cropped,  labels  edited)  Technical  Process  Behind  DTC  Genetic  Testing.  Digital  Image.  DNA  Microarray  Experiment.  Wikipedia,  5     March  2013.  Web.  24  March  2014.  <http://en.wikipedia.org/wiki/DNA_microarray_experiment>.    Figure  4.    DNA  Extraction.  Digital  Image.  Genomic  DNA  Extraction  Blood  DNA  Mini  /  Maxi  Kit.  Favorgen  Biotech     Corporation,  2009.  Web.  22  March  2014.     <http://www.favorgen.com/products/nucleic_genomic_dna_extraction/blood_dna.html>.  Figure  5.    PCR  Amplification.  Digital  Image.  DNA  Fingerprinting  in  the  Standardization  of  Herbs  and  Nutraceuticals.     Science  Creativity  Quarterly,  2014.  Web.  22  March  2014.       <http://www.scq.ubc.ca/dna-­‐fingerprinting-­‐in-­‐the-­‐standardization-­‐of-­‐herbs-­‐and-­‐   nutraceuticals/>.    Figure  6.  SNP  Microarray  Chips.  Digital  Image.  Test  Your  DNA  for  Diseases  —  No  Doctor  Required.  Time  Magazine,  23     October  2012.  Web.  25  March  2014.  <http://healthland.time.com/2012/10/23/drugstore-­‐genomes-­‐   whos-­‐pushing-­‐the-­‐sequencing-­‐industry/>.  

Page 10: DTC Genetic Testing

     

8  

Figure  7.  (cropped,  circles  added)  DNA  Hybridization.  Digital  Image.  DNA  Hybridization.  Wikipedia,  5  March  2013.  Web.  24  March  2014.     <http://upload.wikimedia.org/wikipedia/en/a/a8/NA_hybrid.svg>.  Figure  8.  (cropped)  Laser  Scanning  Data.  Digital  Image.  Cystic  fibrosis  carrier  screening:  Validation  of  a  novel  method  using     BeadChip  technology.  Nature,  13  May  2004.  Web.  26  March  2014.       <http://www.nature.com/gim/journal/v6/n5/fig_tab/gim200457f1.html>.