drosophila melanogaster development

43

Upload: maleah

Post on 13-Feb-2016

131 views

Category:

Documents


0 download

DESCRIPTION

Drosophila melanogaster development. How do Drosophila embryos develop? How can one use genetics to find genes that regulate embryo development?. Life cycle of Drosophila . egg. 4 days. female. embryogenesis. pupa. DROSOPHILA LIFE CYCLE. 1 day. larva. 1st instar. 1 day. 4 days. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Drosophila melanogaster  development
Page 2: Drosophila melanogaster  development

Drosophila melanogaster development

How do Drosophila embryos develop?

How can one use genetics to find genes that regulate embryo development?

Page 3: Drosophila melanogaster  development

DROSOPHILA

LIFE CYCLE

4 days

4 days

1 day

1 day

2 days

Life cycle of Drosophila

egg

larva1st instar

larva2nd instarlarva

3rd instar

pupaembryogenesis

female

Page 4: Drosophila melanogaster  development

OOGENESIS IN DROSOPHILA

Germarium

ring canal

Germline Cyst Formation

Cystoblast

Pro-Oocyte(undergoes meiosis)

germline stem cells follicle

stem cells

germline: stem cell > cystoblast > 1 oocyte + 15 nurse cells

Page 5: Drosophila melanogaster  development

OOGENESIS IN DROSOPHILA

Germarium Vitellariumnurse cell oocyte

stalk

follicle cells

border cells

germline stem cells follicle

stem cells

oocyte

oocyte + nurse cells surrounded by (somatic) follicle cells

Page 6: Drosophila melanogaster  development

Drosophila oocyte and supporting cells

Nurse cells Ring canals Oocyte Follicle cells

(from Gonzalez-Reyes and St Johnston (1994) Science 266: 639-642.)

Page 7: Drosophila melanogaster  development

Drosophila oocyte and supporting cells

Nurse cell nuclei Follicle cell nuclei

(from Gonzalez-Reyes and St Johnston (1994) Science 266: 639-642.)

Page 8: Drosophila melanogaster  development

Nuclear divisions start without cell division in Drosophila (superficial cleavage)

Fig. 9.1Zygotic gene expression begins

Page 9: Drosophila melanogaster  development

egg blastoderm fate map larva

T

A

Larvae already have substantial patterning

acron

head

thorax

abdomen

telson

T1

T2T3A1A2A3

A4A5A6A7A8

(cuticle)

“stripy” expressionof segmentation gene

fushi tarazu (ftz)

anterior

posterior

ventral dorsal

epithelium(6,000 cells)

Page 10: Drosophila melanogaster  development

The fruit fly body plan is assembled in 24 hours: How?

Page 11: Drosophila melanogaster  development

Christiane Nüsslein-Volhard and Eric Wieschaus used genetics to identify proteins that

set up the embryonic body plan

Page 12: Drosophila melanogaster  development

Wieschaus and Nüsslein-Volhard

looked for mutants that affect the fly body plan

wildtype

Page 13: Drosophila melanogaster  development

Genes identified in a famous screen for Drosophila mutants with embryo patterning defects

Page 14: Drosophila melanogaster  development

Screen for developmental mutants (Drosophila)Lethal hits = 100% (essential genes - ca. 5.000)

(efficiency of mutagenesis = number of hits per gene)

embryonal-lethal mutantszygotic mutants

25 %with morphological defects 3 %- segmentation defects (AP) 0.5 %- tissue types defective (DV) 0.5 %

female-sterile mutants 8 %

100 %

with effects on embryogenesis 2 %(= maternal-effect mutants)

- antero-posterior pattern 0.4 %- dorso-ventral pattern 0.3 %

ca. 2% of all genes involved in embryo pattern formation(male-sterile mutants)

(ca. 100 of >15.000 protein-encoding genes, only 5.000 essential genes)

Page 15: Drosophila melanogaster  development

Maternal-effect mutationsGenes expressed during oogenesis (= before fertilization)

or genes expressed in maternal cells (follicle) All progeny of heterozygous mother are normal.All progeny are affected only if mother is homozygous mutant

Zygotic mutationsGenes expressed during embryogenesis (= after fertilization)Only genetically mutant embryos are affected.(25% of progeny of heterozygous mother are affected.)

Page 16: Drosophila melanogaster  development

Drosophila axis detemination; dorsal/ventral polarity

How does the embryonic dorsal-ventral axis get translated into differentiation of different tissue

types?

Page 17: Drosophila melanogaster  development

amnio-serosa dorsal

ectoderm

neuro-ectoderm

mesoderm

Cell fate specification at the blastoderm stage

mesoderm formationfate map

dorsal

ventral

Page 18: Drosophila melanogaster  development

Dorsal-Ventral fate map

Page 19: Drosophila melanogaster  development

Gurken protein specifies the Anterior-Posterior axis of the Drosophila embryo during oogenesis

(Similar to EGF)

Page 20: Drosophila melanogaster  development

Localized maternal mRNA sets up anterior and posterior poles

Page 21: Drosophila melanogaster  development

Gurken also signals dorsal pole formation during oogenesis

follicle cellsanterior posterior

A P

V

D D

V

-+-

microtubules

71-6 810A

gurken expression in the oocyte

10A

gurken expression in the

oocyte

1-6

migration of nucleus

+-

-

8

oocyte nucleus

Page 22: Drosophila melanogaster  development

Expression of the Gurken Message and Protein Between the Oocyte Nucleus and the Dorsal Anterior Cell Membrane

Page 23: Drosophila melanogaster  development

DORSO-VENTRAL PATTERN FORMATIONfollicle cells

Oocyte

pipe expression

Ventral follicle cell

Pipe (Golgi?)

X

NucleusWind (ER?)

X

X

mod. from van Eeden & St.Johnston

Gurken = Epidermal Growth Factor (EGF)

Torpedo = EGF receptor(in follicle cells)

Page 24: Drosophila melanogaster  development

Toll Tl - membrane receptor

cactus cact - cytoplasmic inhibitor of Dorsal nuclear translocation

dorsal dl - transcription factor (morphogen)

Zygotic mutations tube - cytoplasmic proteinpelle - ser/thr protein kinase

Maternal effect mutations

ndl, pipe, wblgd, snk, ea - serine proteasesspz - ligand

Dorsal protein

dorsal RNA

Toll proteinSpätzle proteinDorsal protein

nudel, pipe, wbl

amnio serosa

dorsal ectoderm

neuro-ectoderm

mesodermDl

nuclear protein

Dorso-ventral pattern formation

dorsal

Page 25: Drosophila melanogaster  development

Wild type

ventralized

dorsal mutant

cactus mutant

dorsalized T1 T2 T3 A1 A2 A3 A4 A5 A6 A7 A8

Dorso-ventral pattern formation

dorsal

ventral

Page 26: Drosophila melanogaster  development

Wild type toll mutant cactus mutant

Translocation of Dorsal protein into ventral nuclei but not lateral or dorsal nuclei

Page 27: Drosophila melanogaster  development

Generation of Dorsal-Ventral Polarity in Drosophila

Page 28: Drosophila melanogaster  development

Generation of Dorsal-Ventral Polarity in Drosophila

Page 29: Drosophila melanogaster  development

Wild type

toll mutant

Inject wild-type cytoplasm

mesodermneuro-ectoderm

(denticle belts)

dorsal ectoderm

Dorso-ventral pattern formation pivotal role of Toll pathway

into toll mutant eggs

dorsalized

local rescue

ventral

dorsal

polarity reversal

Page 30: Drosophila melanogaster  development

Conserved pathway for regulating nuclear transport of transcription factors in Drosophila and mammals

Page 31: Drosophila melanogaster  development

Cells with highest nuclear Dorsal levels become mesoderm

Page 32: Drosophila melanogaster  development

Zygotically expressed genes

Page 33: Drosophila melanogaster  development

Action of Dorsal protein in ventral cells

Page 34: Drosophila melanogaster  development

Action of Dorsal protein in ventral cellsHigh affinity for promoter,Not much Dorsal needed to activate

Page 35: Drosophila melanogaster  development

Action of Dorsal protein in ventral cellsLower affinity for promoter,More Dorsal needed to activate

Page 36: Drosophila melanogaster  development

twist

dpp

Dorsal protein

dorsal RNA

Toll proteinSpätzle protein

Dorsal protein

nudel, pipe, windbeutel

Dorso-ventral pattern formation: summaryoocyte nucleus dorsal> repression of ventral fate

in dorsal follicle cells

ventral production of ligand> activation of Toll receptor

> graded nuclear uptakeof Dorsal morphogen

> regulation of zygotictarget gene expression

> cell fates along DV axis

Page 37: Drosophila melanogaster  development

Use of a similar regulatory system to pattern insects and vertebrates

Page 38: Drosophila melanogaster  development

Patterns mesoderm in vertebrates

Patterns ectoderm in Drosophila

Page 39: Drosophila melanogaster  development

Gastrulation in Drosophila

Page 40: Drosophila melanogaster  development
Page 41: Drosophila melanogaster  development

Schematic representation of gastrulation in

Drosophila

Page 42: Drosophila melanogaster  development
Page 43: Drosophila melanogaster  development