Transcript

Constant-Coefficient Systems(1)

โ€“ Then the corresponding solutions are

โ€“ The general solution is

โ€“ Wronskian of (2) is

Constant-Coefficient Systems(2)

โ€“ We can graph solutions of (1), ๐ฒ ๐‘ก =๐‘ฆ1(๐‘ก)๐‘ฆ2(๐‘ก)

as a single curve in the

๐‘ฆ1- ๐‘ฆ2 plane.

โ€“ That curve is a parametric representation with parameter ๐‘ก, and

called a trajectory of (1).

โ€“ The ๐‘ฆ1- ๐‘ฆ2 plane is called the phase plane.

โ€“ If we fill the phase plane with trajectories, we obtain the so-called

phase portrait of (1)

How to graph solutions in the phase plane

๐ฒโ€ฒ = ๐€๐ฒโ‡’๐‘ฆ1โ€ฒ = ๐‘Ž11๐‘ฆ1 + ๐‘Ž12๐‘ฆ2

๐‘ฆ2โ€ฒ = ๐‘Ž21๐‘ฆ1 + ๐‘Ž22๐‘ฆ2

โ‹ฏ(1)

โ€“ By substituting ๐ฒ = ๐ฑ๐‘’๐œ†๐‘ก and ๐ฒโ€ฒ = ๐œ†๐ฑ๐‘’๐œ†๐‘ก, we get ๐€๐ฑ = ๐œ†๐ฑ.

โ€“ Characteristic equation

โ‡’ det(๐€ โˆ’ ๐œ†๐ˆ) =โˆ’3 โˆ’ ๐œ† 1

1 โˆ’3 โˆ’ ๐œ†= ๐œ†2 + 6๐œ† + 8 = 0

โ‡’ ๐œ†1 = โˆ’2, ๐œ†2 = โˆ’4

โ€“ For ๐œ†1 = โˆ’2, ๐ฑ(๐Ÿ) = ๐Ÿ ๐Ÿ ๐‘ป, and for ๐œ†2 = โˆ’4, ๐ฑ(๐Ÿ) = ๐Ÿ โˆ’๐Ÿ ๐‘ป

โ€“ The general solution is

Phase portrait : example (1)

๐ฒโ€ฒ = ๐€๐ฒ =โˆ’3 11 โˆ’3

๐ฒ โ‡’๐‘ฆ1โ€ฒ = โˆ’3๐‘ฆ1 + ๐‘ฆ2๐‘ฆ2โ€ฒ = ๐‘ฆ1 โˆ’ 3๐‘ฆ2

๐ฒ =๐‘ฆ1๐‘ฆ2

= ๐‘1๐ฒ(1) + ๐‘2๐ฒ

(2) = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก

โ‹ฏ(1)

โ€“ Phase portrait of (1)

โ€“ The point ๐ฒ = ๐ŸŽ is a common point of all

projectories.

โ€“ Unique tangent direction for every point (๐‘ฆ1, ๐‘ฆ2)

except for the point (0, 0).

โ€“ This point (0, 0), at which ๐’…๐’š๐Ÿ/๐’…๐’š๐Ÿ is undetermined, is called

a critical point.

Phase portrait : example (1)

๐‘‘๐‘ฆ2๐‘‘๐‘ฆ1

=๐‘ฆ2โ€ฒ๐‘‘๐‘ก

๐‘ฆ1โ€ฒ๐‘‘๐‘ก

=๐‘Ž21๐‘ฆ1 + ๐‘Ž22๐‘ฆ2๐‘Ž11๐‘ฆ1 + ๐‘Ž12๐‘ฆ2

โ€“ Improper node (two distinct real eigenvalues of the same sign)

: a critical point ๐‘ƒ0 at which all the trajectories, except for two of them,

have the same limiting direction of the tangent. The two exceptional

trajectories also have a limiting direction of the tangent at ๐‘ƒ0 which,

however, is different

Five types of critical points

๐ฒโ€ฒ =โˆ’3 11 โˆ’3

๐ฒ

โ‡’ ๐ฒ = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก

โ€“ Proper node (two identical eigenvalues and two linearly independent

eigenvectors)

: a critical point ๐‘ƒ0 at which every trajectory has a definite limiting

direction and for any given direction ๐’… at ๐‘ƒ0 there is a trajectory

having ๐’… as its limiting direction.

Five types of critical points

๐ฒโ€ฒ =1 00 1

๐ฒ

โ‡’ ๐ฒ = ๐‘110๐‘’๐‘ก + ๐‘2

01๐‘’๐‘ก or ๐‘1๐‘ฆ2 = ๐‘2๐‘ฆ1

โ€“ Saddle point (two real eigenvalues of opposite signs)

: a critical point ๐‘ƒ0 at which there are two incoming trajectories, two

outgoing trajectories, and all the other trajectories in a

neighborhood of ๐‘ƒ0 bypass ๐‘ƒ0.

Five types of critical points

๐ฒโ€ฒ =1 00 โˆ’1

๐ฒ

โ‡’ ๐ฒ = ๐‘110๐‘’๐‘ก + ๐‘2

01๐‘’โˆ’๐‘ก or ๐‘ฆ1๐‘ฆ2 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก

โ€“ Center (two purely imaginary conjugate eigenvalues)

: a critical point ๐‘ƒ0 that is enclosed by infinitely many closed

trajectories.

Five types of critical points

๐ฒโ€ฒ =0 1

โˆ’4 0๐ฒ

โ‡’ ๐ฒ = ๐‘112๐‘–

๐‘’2๐‘–๐‘ก + ๐‘20โˆ’2๐‘–

๐‘’โˆ’2๐‘–๐‘ก

or 2๐‘ฆ12 +

1

2๐‘ฆ22 = ๐‘๐‘œ๐‘›๐‘ ๐‘ก

โ€“ Spiral point (two complex conjugate eigenvalues)

: a critical point ๐‘ƒ0 about which the trajectories spiral, approaching ๐‘ƒ0as ๐‘ก โ†’ โˆž (or tracing these spirals in the opposite sense, away from

๐‘ƒ0).

Five types of critical points

๐ฒโ€ฒ =โˆ’1 1โˆ’1 โˆ’1

๐ฒ

โ‡’ ๐ฒ = ๐‘11๐‘–๐‘’(โˆ’1+๐‘–)๐‘ก + ๐‘2

1โˆ’๐‘–

๐‘’(โˆ’1โˆ’๐‘–)๐‘ก

or ๐‘Ÿ = ๐‘๐‘’โˆ’๐‘ก where ๐‘Ÿ2 = ๐‘ฆ12 + ๐‘ฆ2

2

โ€“ Two identical eigenvalues and one eigenvector

โ€“ ๐ฒ(1) =1

โˆ’1๐‘’3๐‘ก, and let ๐ฒ(2) = ๐ฑ๐‘ก๐‘’3๐‘ก + ๐ฎ๐‘’3๐‘ก

โ€“ Then ๐ฒ 2 โ€ฒ= ๐ฑ๐‘’3๐‘ก + 3๐ฑ๐‘ก๐‘’3๐‘ก + 3๐ฎ๐‘’3๐‘ก - (*)

๐€๐ฒ 2 = ๐€๐ฑ๐‘ก๐‘’3๐‘ก + ๐€๐ฎ๐‘’3๐‘ก - (**)

โ‡’ ๐€ โˆ’ ๐Ÿ‘๐ˆ ๐ฎ = ๐ฑ, ๐ฎ = 0 1 ๐‘‡ (linearly independent of ๐ฑ)

โ‡’ ๐ฒ = ๐‘11

โˆ’1๐‘’3๐‘ก + ๐‘2

1โˆ’1

๐‘ก +01

๐‘’3๐‘ก

Degenerate node

๐ฒโ€ฒ =4 1

โˆ’1 2๐ฒ โ‡’ ๐œ†1 = ๐œ†๐Ÿ = ๐œ† = 3, ๐ฑ1 = ๐ฑ2 = ๐ฑ = 1 โˆ’ 1 ๐‘‡

(*)=(**) where ๐€ =4 1

โˆ’1 2

Stability

โ€“ A critical point ๐‘ƒ0 is called stable if all trajectories that at some

instant are close to ๐‘ƒ0 remain close to ๐‘ƒ0 at all future times

โ€“ For every disk ๐ท of radius ํœ€ > 0 with center ๐‘ƒ0 there is a disk ๐ท๐›ฟ of

radius ๐›ฟ > 0 with center ๐‘ƒ0 such that every trajectory that has a point

๐‘ƒ1(corresponding to ๐‘ก = ๐‘ก1 say) in ๐ท has all its points corresponding

to ๐‘ก โ‰ฅ ๐‘ก1 in ๐ท .

Criteria for critical points & stability

Stable critical point ๐‘ƒ0(The trajectory initiating at ๐‘ƒ1stays in the disk of radius ํœ€.)

Stable and attractive

critical point ๐‘ƒ0

๐ฒโ€ฒ = ๐€๐ฒ =๐‘Ž11 ๐‘Ž12๐‘Ž21 ๐‘Ž22

๐ฒCh. eqn. det ๐€ โˆ’ ๐œ†๐ˆ = ๐œ†2 โˆ’ ๐‘Ž11 + ๐‘Ž22 ๐œ† + det๐€

โ‡’ ๐‘ = ๐‘Ž11 + ๐‘Ž22, ๐‘ž = det๐€, ฮ” = ๐‘2 โˆ’ 4๐‘ž

๐‘ = ๐œ†1 + ๐œ†2, ๐‘ž = ๐œ†1๐œ†2, ฮ” = ๐œ†1 โˆ’ ๐œ†22

Stability criteria for critical points

Eigenvalue criteria for critical points

Stability chart

Criteria for critical points & stability

Stability of critical points : Example

โ€“ Free motions of a mass on a spring

๐‘š๐‘ฆโ€ฒโ€ฒ + ๐‘๐‘ฆโ€ฒ + ๐‘˜๐‘ฆ = 0

๐ฒโ€ฒ =0 1

โˆ’๐‘˜/๐‘š โˆ’๐‘/๐‘š๐ฒ

๐‘ฆ1 = ๐‘ฆ๐‘ฆ2 = ๐‘ฆโ€ฒ

det ๐€ โˆ’ ๐œ†๐ˆ = ๐œ†2 + ๐‘/๐‘š ๐œ† + ๐‘˜/๐‘š = 0๐‘ = โˆ’๐‘/๐‘š, ๐‘ž = ๐‘˜/๐‘š, ฮ” = ๐‘/๐‘š 2 โˆ’ 4๐‘˜/๐‘š

No damping (๐‘ = 0)

๐‘ = 0, ๐‘ž > 0 โ‡’ a center

Underdamping (๐‘2 < 4๐‘š๐‘˜)

๐‘ < 0, ๐‘ž > 0, ฮ” < 0โ‡’ a stable and attractive spiral point

Critical damping (๐‘2 = 4๐‘š๐‘˜)

๐‘ < 0, ๐‘ž > 0, ฮ” = 0โ‡’ a stable and attractive node

Overdamping (๐‘2 > 4๐‘š๐‘˜)

๐‘ < 0, ๐‘ž > 0, ฮ” > 0โ‡’ a stable and attractive node

Linearization of nonlinear systems

โ€“ If ๐‘“1 and ๐‘“2 in (1) are continuous and have continuous partial

derivatives in a neighborhood of the critical point ๐‘ƒ0: (0, 0), and if

det ๐€ โ‰  0 in (2), then the kind and stability of the critical point of (1)

are the same as those of the linearized system

โ€“ Exception : ๐€ has equal and pure imaginary eigenvalues

โ‡’ same kind of critical points of (3) or a spiral point

๐ฒโ€ฒ = ๐Ÿ(๐ฒ) โ‡’๐‘ฆ1โ€ฒ = ๐‘“1(๐‘ฆ1, ๐‘ฆ2)

๐‘ฆ2โ€ฒ = ๐‘“2(๐‘ฆ1, ๐‘ฆ2)

โ‹ฏ (1)Nonlinear

system

๐ฒโ€ฒ = ๐€๐ฒ + ๐ก(๐ฒ) โ‡’๐‘ฆ1โ€ฒ = ๐‘Ž11๐‘ฆ1 + ๐‘Ž12๐‘ฆ2 + โ„Ž1(๐‘ฆ1, ๐‘ฆ2)

๐‘ฆ2โ€ฒ = ๐‘Ž21๐‘ฆ1 + ๐‘Ž22๐‘ฆ2 + โ„Ž2(๐‘ฆ1, ๐‘ฆ2)

โ‹ฏ(3)๐ฒโ€ฒ = ๐€๐ฒ โ‡’๐‘ฆ1โ€ฒ = ๐‘Ž11๐‘ฆ1 + ๐‘Ž12๐‘ฆ2

๐‘ฆ2โ€ฒ = ๐‘Ž21๐‘ฆ1 + ๐‘Ž22๐‘ฆ2

Linearization : Example

Free undamped pendulum

Step 1 : modeling

Step 2 : critical points ยฑ2๐‘˜๐œ‹, 0 ๐‘˜ โˆถ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ

โ€“ Consider linearization near 0, 0 , and set ๐œƒ = ๐‘ฆ1, ๐œƒโ€ฒ = ๐‘ฆ2

โ€“ Calculate ๐‘ = 0, ๐‘ž = ๐‘˜, โˆ†= โˆ’4๐‘˜ โ‡’ a center

โ€“ Due to periodicity, critical points ยฑ2๐‘˜๐œ‹, 0 (๐‘˜ โˆถ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ) are all

centers.

๐‘š๐ฟ๐œƒโ€ฒโ€ฒ + ๐‘š๐‘”๐‘ ๐‘–๐‘›๐œƒ = 0 โ‡’ ๐œƒโ€ฒโ€ฒ + ๐‘˜๐‘ ๐‘–๐‘›๐œƒ = 0 (๐‘˜ = ๐‘”/๐ฟ)

๐œƒโ€ฒโ€ฒ + ๐‘˜๐‘ ๐‘–๐‘›๐œƒ = 0โ‡’๐‘ฆ1โ€ฒ = ๐‘ฆ2

๐‘ฆ2โ€ฒ = โˆ’๐‘˜๐‘ฆ1 (๐‘ ๐‘–๐‘›๐‘ฆ1 โ‰ˆ ๐‘ฆ1)

Linearization : Example

Step 3 : critical points ยฑ(2๐‘˜ โˆ’ 1)๐œ‹, 0 ๐‘˜ โˆถ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ

โ€“ Consider linearization near ๐œ‹, 0 , and set ๐œƒ โˆ’ ๐œ‹ = ๐‘ฆ1, (๐œƒ โˆ’ ๐œ‹)โ€ฒ= ๐‘ฆ2

โ€“ Calculate ๐‘ = 0, ๐‘ž = โˆ’๐‘˜, โˆ†= 4๐‘˜ โ‡’ a saddle point

โ€“ Due to periodicity, critical points ยฑ(2๐‘˜ โˆ’ 1)๐œ‹, 0 (๐‘˜ โˆถ ๐‘–๐‘›๐‘ก๐‘’๐‘”๐‘’๐‘Ÿ) are

all saddle points.

๐œƒโ€ฒโ€ฒ + ๐‘˜๐‘ ๐‘–๐‘›๐œƒ = 0โ‡’๐‘ฆ1โ€ฒ = ๐‘ฆ2

๐‘ฆ2โ€ฒ = ๐‘˜๐‘ฆ1 (๐‘ ๐‘–๐‘›๐‘ฆ1 โ‰ˆ โˆ’๐‘ฆ1)

Transformation to a 1st order eq. in the phase plane

โ€“ 2nd order autonomous ODE(an ODE in which ๐‘ก does not occur explicitly)

โ€“ Take ๐‘ฆ = ๐‘ฆ1 as the independent variable, set ๐‘ฆโ€ฒ = ๐‘ฆ2 and transform ๐‘ฆโ€ฒโ€ฒ

by the chain rule.

โ€“ Then, the ODE becomes of first order.

๐น ๐‘ฆ, ๐‘ฆโ€ฒ, ๐‘ฆโ€ฒโ€ฒ = 0

๐‘ฆโ€ฒโ€ฒ = ๐‘ฆ2โ€ฒ =

๐‘‘๐‘ฆ2๐‘‘๐‘ก

=๐‘‘๐‘ฆ2๐‘‘๐‘ฆ1

๐‘‘๐‘ฆ1๐‘‘๐‘ก

=๐‘‘๐‘ฆ2๐‘‘๐‘ฆ1

๐‘ฆ2

๐น ๐‘ฆ1, ๐‘ฆ2,๐‘‘๐‘ฆ2๐‘‘๐‘ฆ1

๐‘ฆ2 = 0

Example

Free undamped pendulum

โ€“ set ๐œƒ = ๐‘ฆ1, ๐œƒโ€ฒ = ๐‘ฆ2

โ€“ Using separation of variables, we get

๐‘š๐ฟ๐œƒโ€ฒโ€ฒ + ๐‘š๐‘”๐‘ ๐‘–๐‘›๐œƒ = 0 โ‡’ ๐œƒโ€ฒโ€ฒ + ๐‘˜๐‘ ๐‘–๐‘›๐œƒ = 0 (๐‘˜ = ๐‘”/๐ฟ)

๐œƒโ€ฒโ€ฒ + ๐‘˜๐‘ ๐‘–๐‘›๐œƒ = 0 โ‡’๐‘‘๐‘ฆ2

๐‘‘๐‘ฆ1๐‘ฆ2 = โˆ’๐‘˜๐‘ ๐‘–๐‘›๐‘ฆ1

1

2๐‘ฆ22 = ๐‘˜๐‘๐‘œ๐‘ ๐‘ฆ1 + ๐ถ โ‡’

1

2๐‘š ๐ฟ๐‘ฆ2

2 โˆ’๐‘š๐ฟ2๐‘˜๐‘๐‘œ๐‘ ๐‘ฆ1 = ๐‘š๐ฟ2๐ถ

Nonhomogeneous linear systems of ODEs

Example

Method 1 : method of undetermined coefficients

โ€“ ๐ฒ(โ„Ž) = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก

โ€“ Set ๐ฒ(๐‘) = ๐ฎ๐‘ก๐‘’โˆ’2๐‘ก + ๐ฏ๐‘’โˆ’2๐‘ก (by modification rule) where ๐ฎ = ๐‘Ž 1 1 ๐‘‡

โ€“ Substitute ๐‘ฆ(๐‘) into (1), then we get

๐ฎ โˆ’ 2๐ฏ = ๐€๐ฏ +โˆ’62

โ‡’๐‘Ž๐‘Ž

โˆ’2๐‘ฃ12๐‘ฃ2

=โˆ’3๐‘ฃ1 + ๐‘ฃ2

๐‘ฃ1 โˆ’ 3๐‘ฃ2+

โˆ’62

โ‡’ ๐‘Ž = โˆ’2, ๐‘ฃ1 = ๐‘˜, ๐‘ฃ2 = ๐‘˜ + 4

โ€“ We can choose any real number ๐‘˜, like ๐‘˜ = 0

๐ฒโ€ฒ = ๐€๐ฒ + ๐  =โˆ’3 11 โˆ’3

๐ฒ +โˆ’62

๐‘’โˆ’2๐‘ก โ‹ฏ(1)

๐ฒ = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก โˆ’ 211๐‘ก๐‘’โˆ’2๐‘ก +

04๐‘’โˆ’2๐‘ก

Nonhomogeneous linear systems of ODEs

Example

Method 2 : method of variation of parameters

โ€“ ๐ฒ(โ„Ž) = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก = ๐‘’โˆ’2๐‘ก ๐‘’โˆ’4๐‘ก

๐‘’โˆ’2๐‘ก โˆ’๐‘’โˆ’4๐‘ก๐‘1๐‘2

= ๐˜ ๐‘ก ๐œ

โ€“ Set ๐ฒ(๐‘) = ๐˜ ๐‘ก ๐ฎ ๐‘ก and substitute into (1) then we get

๐˜๐ฎโ€ฒ = ๐  โˆต ๐˜โ€ฒ = ๐€๐˜ , ๐ฎโ€ฒ = ๐˜โˆ’๐Ÿ๐  =1

2

๐‘’2๐‘ก ๐‘’2๐‘ก

๐‘’4๐‘ก โˆ’๐‘’4๐‘กโˆ’6๐‘’โˆ’2๐‘ก

2๐‘’โˆ’2๐‘ก=

โˆ’2โˆ’4๐‘’2๐‘ก

๐ฎ = 0๐‘ก โˆ’2โˆ’4๐‘’2๐‘ก

โˆ— ๐‘‘๐‘กโˆ— =โˆ’2๐‘ก

โˆ’2๐‘’2๐‘ก + 2โˆด ๐ฒ(๐‘) = ๐˜๐ฎ =

โˆ’2๐‘ก โˆ’ 2โˆ’2๐‘ก + 2

๐‘’โˆ’2๐‘ก +2โˆ’2

๐‘’โˆ’4๐‘ก

๐ฒโ€ฒ = ๐€๐ฒ + ๐  =โˆ’3 11 โˆ’3

๐ฒ +โˆ’62

๐‘’โˆ’2๐‘ก โ‹ฏ(1)

๐ฒ = ๐‘111๐‘’โˆ’2๐‘ก + ๐‘2

1โˆ’1

๐‘’โˆ’4๐‘ก โˆ’ 211๐‘ก๐‘’โˆ’2๐‘ก +

โˆ’22

๐‘’โˆ’2๐‘ก

โ€ข Homogeneous linear DE w/ variable coeff.

โ€“ Power series method

Frobenius method: extension of power series

โ€“ Power series

--- infinite series (in powers of )

โ€“ If , power series in powers of x

Series Solution of DE

0x x

2

0 0 1 0 2 0

0

m

m

m

a x x a a x x a x x

Center of the series

0 0x

2 3

0 1 2 3

0

m

m

m

a x a a x a x a x

Maclaurin Series

2

0

2 3

0

2 2 4

0

2 1 3 5

0

11

1

1! 2! 3!

1cos 1

2 ! 2! 4!

1sin

2 1 ! 3! 5!

m

m

mx

m

m m

m

m m

m

x x xx

x x xe x

m

x x xx

m

x x xx x

m

โ€“ Represent p(x) and q(x) as a power series of x (or )

โ€“ Assume a sol. in the form of power series

โ€“ Collect like powers of x, and solve for the coefficients.

Power Series Method

0y p x y q x y

0x x

2 3

0 1 2 3

0

m

m

m

y a x a a x a x a x

1 2

1 2 3

0

2 3

m

m

m

y ma x a a x a x

2 2

2 3 4

0

1 2 3 2 4 3

m

m

m

y m m a x a a x a x

โ€“ Insert the power series

โ€“ Collect the like powers of x

โ€“ Solve for each coefficient

โ€“ General sol.

Example: Power Series Method

0y y

2 2

1 2 3 0 1 22 3 0 a a x a x a a x a x

2

1 0 2 1 3 22 3 0 a a a a x a a x

0 01 21 0 2 3, , ,

2 2! 3 3!

a aa aa a a a

2 3

0 012! 3!

xx xy a x a e

โ€“ Nth partial sum

โ€“ Remainder

โ€“ If at , the sequence s0(x), s1(x), s2(x), โ€ฆ converges to a value

โ€“ In case of convergence

--- all sn(x1) with n > N lie between s (x1) - and s (x1) +

Theory of Power Series Method

2

0 1 0 2 0 0 n

n ns x a a x x a x x a x x

1 2

1 0 2 0

n n

n n nR x a x x a x x

1x x

1 1 1 0

0

lim

m

n mn

m

s x s x a x x Value, sum

1 1 1 n nR x s x s x for all n > N

Convergence Interval (1)

โ€“ Always converges at . If it is the only point of convergence, all

other terms except a0 are zeros.

โ€“ Further values of x for convergence

0x x

Practically no interest

Convergence interval

0 x x R

Radius of convergence1

lim

m

mm

Ra

Convergence Interval (2)

If the limit is infinite, the power series only converges at .

โ€“ If the limit is 0, the power series converges for all x.

โ€“ Example: geometric series

--- geometric series converges and represents when

1

1

lim

m

mm

Ra

a

0x x

R

2

0

11

1

m

m

x x xx

1, 1 ma R

1x 1 1 x

Operations on Power Series (1)

โ€“ Term-wise differentiation

โ€“ Term-wise addition

0

0

m

m

m

y x a x x

1

0

0

m

m

m

y x ma x x

2

0

0

1

m

m

m

y x m m a x x

0 x x R

0 0

0 0

,

m m

m m

m m

a x x b x x

0

0

m

m m

m

a b x x

Operations on Power Series (2)

โ€“ Term-wise multiplication

โ€“ Vanishing of all coefficients

--- a positive radius of convergence, a sum is identically zero.

โ€“ Shifting summation indices

0 0

0 0

,

m m

m m

m m

a x x b x x

0 1 1 0 0

0

m

m m m

m

a b a b a b x x

2

0 0 0 1 1 0 0 0 2 1 1 2 0 0 a b a b a b x x a b a b a b x x

2 2 1

2 1

1 2

m m

m m

m m

x m m a x ma x

Operations on Power Series (3)

โ€“ Shifting summation indices (contโ€™d)

โ€“ Set

โ€“ Existence of power series sol.

--- if p(x), q(x), r(x) can be represented as a power series at ,

then every sol. is analytic.

1

2 1

1 2

m m

m m

m m

m m a x ma x

1, 1 s m m s

1

2 0

1 2 1

s s

s s

s s

s s a x s a x

1

2

1 2 1

s

s s

s

s s a s a x

0x x

Legendreโ€™s Eqn. & Polynomials (1)

--- boundary value problems for spheres

โ€“ Sol.: Legendre function

โ€“ Since the coeff.โ€™s are analytic, power series method can be applied.

Apply

21 2 1 0 x y xy n n y

Theory of special functions

0

m

m

m

y a x

2 2 1

0 0 0

1 1 2 0

m m m

m m m

m m m

x m m a x x ma x k a x

Legendreโ€™s Eqn. & Polynomials (2)

โ€“ Arranging each power

โ€“ Coeff. of each power must be zero.

2

0 0

1 1 0

m m

m m

m m

m m a x m m a x

2

2 3 4 22 1 3 2 4 3 2 1 s

sa a x a x s s a x2

22 1 a x

2

1 22 1 2 2 1 s

sa x a x s s a x2

0 1 2 2 0 s

ska ka x ka x sa x

22 1 0 a n n

3 16 2 1 0 a n n a

0x

1x

Legendreโ€™s Eqn. & Polynomials (3)

โ€“ Recurrence relation (formula)

โ€“ a0, a1: arbitrary constants

22 1 1 2 1 0 s ss s a s s s n n a 2,3,s

2

1

2 1

s s

n s n sa a

s s

2 0

3 1

1,

2!

1 2,

3!

n na a

n na a

0,1,s

Legendreโ€™s Eqn. & Polynomials (4)

โ€“ General sol.

โ€“ Converges for

โ€“ y1, y2: linearly independent

0 1 1 2 y a y x a y x

2 4

1

1 2 1 31

2! 4!

n n n n n ny x x

3 5

2

1 2 3 1 2 4

3! 5!

n n n n n ny x x x

1x

Legendre Polynomials (1)

โ€“ n is a nonnegative integer in many applications. Then, when s = n,

an+2 = 0, an+4 = 0, an+6 = 0, ยท ยท ยท.

โ€“ If n is even, y1 reduces to a polynomial of degree n

โ€“ If n is odd, y2 reduces to a polynomial of degree n

โ€“ All the nonvanishing coeff. can be represented in terms of an

โ€“ an is arbitrary, and choose an = 1 when n = 1

Legendre polynomials

2

2 1

1s s

s sa a

n s n s

2s n

2

2 ! 1 3 5 2 1,

!2 !n n

n na

nn

1,2,n

Legendre Polynomials (2)

โ€“ Then,

โ€“ In general, when n โ€“ 2m โ‰ฅ 0

โ€“ Pn(x): Legendre polynomial of degree n

2

2 2 !,

2 1 ! 2 !n n

na

n n

4

2 4 !

2 2! 2 ! 4 !n n

na

n n

2

2 2 !1

2 ! ! 2 !

m

n m n

n ma

m n m n m

2

0

2

2

2 2 !1

2 ! ! 2 !

2 ! 2 2 !

2 1! 1 ! 2 !2 !

Mm n m

n nm

n n

nn

n mP x x

m n m n m

n nx x

n nn

Legendre Polynomials (3)

0

2

2

4 2

4

1

3

3

5 3

5

1,

13 1 ,

2

135 30 3 ,

8

1,

15 3 ,

2

163 70 15 ,

8

P x

P x x

P x x x

P x

P x x x

P x x x x

โ€“ First few of the functions

Legendre Polynomials (4)


Top Related