double beta decay and majorana neutrinos

50
1 Double beta decay and Majorana neutrinos Presently an essential problem in neutrino and in astroparticle physiss <= => Majorana =>1937 Ettore Fiorini, Venice March 8, 2007

Upload: coye

Post on 09-Jan-2016

66 views

Category:

Documents


9 download

DESCRIPTION

Double beta decay and Majorana neutrinos. Ettore Fiorini, Venice March 8, 2007. → → . Majorana =>1937. Presently an essential problem in neutrino and in astroparticle physiss. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Double beta decay  and   Majorana neutrinos

1

Double beta decay and Majorana neutrinos

Presently an essential problem in neutrino and in astroparticle physiss

→ → <= =>

Majorana =>1937

Ettore Fiorini, Venice March 8, 2007

Page 2: Double beta decay  and   Majorana neutrinos

2

The most sensitive way to investigate the Dirac or Majorana nature of the neutrino is neutrinoless double beta decay (DBD)This very rare process was sugested in general form by Maria Goepper Mayer just one year after the Fermi theory of beta decay. Also Bruno Pontecorvo was deeply involved.

Page 3: Double beta decay  and   Majorana neutrinos

3

Double Beta –Disintegration

M.Goeppert-Mayer, The John Hopkins University(Received May, 20 , 1935)

From the Fermi theory of disintegration the probability of simultameous emission of two electrons (and two neutrinos) has been calculated. The result is that this process occurs sufficiently rarely to allow an half-life of over 1017 years for a nucleus, even if its isobar of atomic number different by 2 were more stable by 20 times the electron mass

Double beta decay was at the beginning searched In the neutrinoless Double beta decay was at the beginning searched In the neutrinoless channel as a powerful way to search for channel as a powerful way to search for lepton number non lepton number non conservationconservation. Presently it is also considered as the most powerful . Presently it is also considered as the most powerful way to investigate the value of the way to investigate the value of the massmass of a of a Majorana neutrinoMajorana neutrino

Page 4: Double beta decay  and   Majorana neutrinos

4

1. (A,Z) => (A,Z+2) + 2 e- + 2 e¯

2. (A,Z) => (A,Z+2) + 2 e- + ( …2,3 3. (A,Z) => (A,Z+2) + 2 e-

Process 1 has been detected in ten nuclei

Process2 and 3. violate the lepton number

Process 3, normally called neutrinoless DBD, would be revealed by

the presence of a peak in the sum of the electron energies => <m>≠ 0

Page 5: Double beta decay  and   Majorana neutrinos

5

u e -

d

d

e -W

u

e

e

2 - decay

W

0 - decay

e -

e -

d

du

u

W

We

e

Neutrinoless decay

Page 6: Double beta decay  and   Majorana neutrinos

6

= G(Q,Z) |Mnucl|2 <m>2

rate of DDB-0 Phase space Nuclear matrix elements

EffectiveMajorana neutrino mass

The rate of neutrinoless DBD strongly depends on the evaluation of the nuclear matrix elements, quite

uncertain so far

Need to search for neutrinoless DBD in various nucleiA pick could be due to some unforeseen background peak

Page 7: Double beta decay  and   Majorana neutrinos

7

Page 8: Double beta decay  and   Majorana neutrinos

8

Page 9: Double beta decay  and   Majorana neutrinos

9

Possible schemes for neutrino masses

Page 10: Double beta decay  and   Majorana neutrinos

10

New calculations by.S.Pascoli and S.T.Petkov

Page 11: Double beta decay  and   Majorana neutrinos

11

Experimental approaches

Direct experiments

Source detector Source = detector

(calorimetric)

Geochemical experimentsi82Se = > 82Kr, 96Zr = > 96Mo (?) , 128Te = > 128Xe (non confirmed), 130Te = > 130Te

Radiochemical experiments238U = > 238Pu (non confirmed)

e-

e-

e-

e-

source

detector

detector

Source Detector

Page 12: Double beta decay  and   Majorana neutrinos

12

Page 13: Double beta decay  and   Majorana neutrinos

13

Incident particle

absorber crystal

heat bath

Thermal sensor

Cryogenic detectors

Page 14: Double beta decay  and   Majorana neutrinos

14

J/K 3)D

T)(

Vm

V( 1944 C V

2TVCk E

@ 5 keV ~100 mk ~ 1 mg <1 eV

~ 3 eV @ 2 MeV ~10 mk ~ 1 kg <10 eV ~

keV

Page 15: Double beta decay  and   Majorana neutrinos

15

Resolution of the 5x5x5 cm3 (~ 760 g ) crystals

:0.8 keV FWHM @ 46 keV

1.4 keV FWHM @ 0.351 MeV

2.1 keV FWHM @ 0.911 MeV

2.6 keV FWHM @ 2.615 MeV

3.2 keV FWHM @ 5.407 MeV

(the best spectrometer ever realized)

Energy [keV]

Cou

nts

210Po line

Page 16: Double beta decay  and   Majorana neutrinos

16

Nucleus Experiment % Q Enr Technique 0y <m)

48Ca Elegant IV 0.19 4271 scintillator >1.4x1022 7-45

76Ge Heidelberg-Moscow

7.8 2039 87 ionization >1.9x1025 .12 - 1

76Ge IGEX 7.8 2039 87 Ionization >1.6x1025 .14 – 1.2

76Ge Klapdor et al 7.8 2039 87 ionization 1.2x1025 .44

82Se NEMO 3 9.2 2995 97 tracking >1.x1023 1.8-4.9

100Mo NEMO 3 9.6 3034 95-99 tracking >4.6x1023 .7-2.8

116Cd Solotvina 7.5 3034 83 scintillator >1.7x1023 1.7 - ?

128Te Bernatovitz 34 2529 geochem >7.7 1024

.1-4

130Te Cuoricino 33.8 2529 bolometric >2x1024 .16-.82.

136Xe DAMA 8.9 2476 69 scintillator >1.2x1024 1.1 -2.9

150Nd Irvine 5.6 3367 91 tracking >1.2x1021 3 - ?

Present experimental situationPresent experimental situation

Page 17: Double beta decay  and   Majorana neutrinos

17

HM collaboration subset (KDHK): HM collaboration subset (KDHK): claim of evidence of 0claim of evidence of 0-DBD-DBD

In December 2001, 4 authors (KDHK) of the HM collaboration announce the discovery of neutrinoless DBD

/20 (y) = (0.8 – 18.3) 1025 y (1 1025 y b.v.)

M = 0.05 - 0.84 eV (95% c.l.)

54.98 kg•y 2.2

2001

71.7 kg•y 4

2004

skepticism in DBD community in 2001 better results in 2004

Page 18: Double beta decay  and   Majorana neutrinos

18

Two new experiments NEMO III and CUORICINO

Page 19: Double beta decay  and   Majorana neutrinos

19

100Mo 6.914 kg Q= 3034 keV

82Se 0.932 kg Q= 2995 keV

116Cd 405 g Q= 2805 keV

96Zr 9.4 g Q= 3350 keV

150Nd 37.0 g Q= 3367 keV

Cu 621 g

48Ca 7.0 g Q= 4272 keV

natTe 491 g

130Te 454 g Q= 2529 keV

measurement

External bkg measurement

search

decay isotopes in NEMO-3 detectordecay isotopes in NEMO-3 detector

Page 20: Double beta decay  and   Majorana neutrinos

20

0 analysis

100Mo /20 (y) > 4.6 1023 M < 0.7 – 2.8 eV (90% c.l.)

82Se /20 (y) > 1.0 1023 M < 1.7 – 4.9 eV (90% c.l.)

Page 21: Double beta decay  and   Majorana neutrinos

21

CUORICINO

Page 22: Double beta decay  and   Majorana neutrinos

22

Page 23: Double beta decay  and   Majorana neutrinos

23

11 modules, 4 detector each,crystal dimension 5x5x5 cm3

crystal mass 790 g

4 x 11 x 0.79 = 34.76 kg of TeO2

2 modules, 9 detector each,crystal dimension 3x3x6 cm3

crystal mass 330 g

9 x 2 x 0.33 = 5.94 kg of TeO2

Search for the 2|o in 130Te (Q=2529 keV) and other rare events

At Hall A in the Laboratori Nazionali del Gran Sasso (LNGS)

18 crystals 3x3x6 cm3 + 44 crystals 5x5x5 cm3 = 40.7 kg of TeO2Operation started in the beginning of 2003 => ~ 4 months

Background .18±.01 c /kev/ kg/ a

Page 24: Double beta decay  and   Majorana neutrinos

24

Page 25: Double beta decay  and   Majorana neutrinos

25

Present CUORICINO result (new)Present CUORICINO result (new)

60Co pile-up peak

130Te DBD Q-value

anticoincidence spectrum 208Tl line

Energy [keV]

detail

DBD

MT = 5.87 (kg 130Te) x y

b = 0.18 0.02 c/keV/kg/y

(Jul 2005)

8.35 kg year of 130Te

<m0.16 - .9 eV =>

3 x 1024 (90 % c.l.)

Klapdor et al m0.1- .9 eV

Page 26: Double beta decay  and   Majorana neutrinos

26

Cosmological disfavoured region (WMAP)

Direct hierarchym2

12=

m2sol

Inverse hierarchym2

12= m2atm

“quasi” degeneracym1 m2 m3

With the same matrix elements the Cuoricino limit is 0.53 eV

Present Cuoricino region

Possible evidence (best value 0.39 eV)

H.V. Klapdor-Kleingrothaus et al., Nucl.Instrum.andMeth. ,522, 367 (2004).

Feruglio F. , Strumia A. , Vissani F. hep-ph/0201291

Arnaboldi et al., submitted to PRL, hep-ex/0501034 (2005).

DBD and Neutrino Masses

Page 27: Double beta decay  and   Majorana neutrinos

27

Name % Q % E B

c/y

T (year) Tech <m>

CUORE 130Te 34 2533 90 3.5 1.8x1027 Bolometric 9-57

GERDA 76Ge 7.8 2039 90 3.85 2x1027 Ionization 29-94

Majorana 76Ge 7.8 2039 90 .6 4x1027 Ionization 21-67

GENIUS 76Ge 7.8 2039 90 .4 1x1028 Ionization 13-42

Supernemo 82Se 8.7 2995 90 1 21026 Tracking 54-167

EXO 136Xe 8.9 2476 65 .55 1.3x1028 Tracking 12-31

Moon-3 100Mo 9.6 3034 85 3.8 1.7x1027 Tracking 13-48

DCBA-2 150Nd 5.6 3367 80 1x1026 Tracking 16-22

Candles 48Ca .19 4271 - .35 3x1027 Scintillation 29-54

CARVEL 48Ca .19 4271 - 3x1027 Scintillation 50-94

GSO 160Gd 22 1730 - 200 1x1026 Scintillation 65-?

COBRA 115Cd 7.5 2805 Ionization

SNOLAB+ 150Nd 5.6 3367 Scintillation

Next generation experiments

Page 28: Double beta decay  and   Majorana neutrinos

28

Ionization

Page 29: Double beta decay  and   Majorana neutrinos

29

COBRAIonization

Page 30: Double beta decay  and   Majorana neutrinos

30

C0BRA

Use large amount of CdZnTe Semiconductor Detectors

Array of 1cm3

CdTe detectors

K. Zuber, Phys. Lett. B 519,1 (2001)

Page 31: Double beta decay  and   Majorana neutrinos

31

• 0n: 1000 events per

• year with 1% natural• Nd-loaded liquid

• scintillator in SNO++

Nd dissolved in SNO => tons of material;

maximum likelihood statistical test of the shape to extract 0 and 2 components…~240 units of 2 significance after only 1 year!

simulation:one year of data

by Alex Wright

Scintillation

Page 32: Double beta decay  and   Majorana neutrinos

32

Scintillation

Page 33: Double beta decay  and   Majorana neutrinos

33

Tracking SUPERNEMO

Page 34: Double beta decay  and   Majorana neutrinos

34

Page 35: Double beta decay  and   Majorana neutrinos

35

Page 36: Double beta decay  and   Majorana neutrinos

36

Tracking

Page 37: Double beta decay  and   Majorana neutrinos

37

■ conceptconcept: scale Gotthard experiment adding Ba taggingBa tagging to suppress background (136Xe136Ba+2e)

■ single Ba detected by optical spectroscopy

■ two options with 63% enriched Xe ▶High pressure Xe TPC High pressure Xe TPC ▶LXe TPC + scintillation LXe TPC + scintillation

■ calorimetry + trackingcalorimetry + tracking■ expected bkg only by -2

▶energy resolution E = 2%

Present R&DPresent R&D■ Ba+ spectroscopy in HP Xe / Ba+ extr. ■ energy resolution in LXe (ion.+scint.)■ Prototype scale:► 200 kg enriched L136Xe without tagging► all EXO functionality except Ba id► operate in WIPP for ~two years ■Protorype goals:►Test all technical aspects of EXO

(except Ba id)►Measure 2 mode►Set decent limit for 0 mode

(probe Heidelberg- Moscow)

22PP1/21/2

44DD3/23/222SS1/21/2

493 nm493 nm650 nm650 nm

metastable metastable 47s47s

LXe TPCLXe TPC

EXOEXO

Full scale experiment at WIPP or Full scale experiment at WIPP or SNOLABSNOLAB■10 t10 t (for LXe ⇒ 3 m3)

▶b = 4×10-3 c/keV/ton/y▶1/21/2 1.31.3××10102828 y y in 5 years▶⟨⟨mm 0.013 0.013 ÷÷ 0.037 eV 0.037 eV

Page 38: Double beta decay  and   Majorana neutrinos

38

Page 39: Double beta decay  and   Majorana neutrinos

39

Page 40: Double beta decay  and   Majorana neutrinos

40

Page 41: Double beta decay  and   Majorana neutrinos

41

Page 42: Double beta decay  and   Majorana neutrinos

42

Page 43: Double beta decay  and   Majorana neutrinos

43

CUORE expected sensitivityCUORE expected sensitivity

disfavoured by cosm

ology

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<m> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<m> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<m> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

11-576.5 × 1026510-3

19-1002.1 × 1026510-2

<m> [meV]T1/2 [y]

[keV]b (counts/keV/kg/y)

Strumia A. and Vissani F. hep-ph/0503246

In 5 years:In 5 years:

Page 44: Double beta decay  and   Majorana neutrinos

44

Compound Isotopic abundance Transition energy

48CaF2 .0187 % 4272 keV

76Ge 7.44 " 2038.7 "

100MoPbO4 9.63 " 3034 "

116CdWO4 7.49 " 2804 "

130TeO2 34 " 2528 "

150NdF3 150NdGaO3

5.64 " 3368“

130Te has high transition energy and 34% isotopic abundance => enrichment non needed and/or very cheap. Any future extensions are possiblePerformance of CUORE, amply tested with CUORICINO

Other possible candidates for neutrinoless DBD Other possible candidates for neutrinoless DBD

Page 45: Double beta decay  and   Majorana neutrinos

45

How deep should we go?

Page 46: Double beta decay  and   Majorana neutrinos

46

Total Muon Flux v.s. Depth Relative to Flat Overburden (cm-2 s-1)

Depth (km.w.e) Relative to Flat Overburden

Tot

al

Page 47: Double beta decay  and   Majorana neutrinos

47

Neutron Flux at Underground Sites

Page 48: Double beta decay  and   Majorana neutrinos

48

eg. Study for 60 kg Majorana Module

Page 49: Double beta decay  and   Majorana neutrinos

49

Page 50: Double beta decay  and   Majorana neutrinos

50

Neutrino oscillations m2 ≠0 <m> finite for at leaqst one neutrino

Neutrinoless double beta decay would indicate if neutrino is a lepton violating Majorana particle and would allow in this case to determine <mn> and the hierachy of oscillations.

This process has been indicated by an experiment (Klapdor) with a value of ~0.44 eV but has not yet confirmed

Future experiments on neutrinoless double beta decay will allow to reach the sensitivity predicted by oscillations

The multidisciplinarity of searches on double beta decay involves nuclear and e subnuclear physics, astrophysics , radioactivity, material science, geochronology etc. It could help in explaining the particle-antiparticle asymmetry of the Universe

CONCLUSIONS