do np-hard problems require exponential time? - video.ias.edu · example: sch oning’s alg....

113
Do NP-Hard Problems Require Exponential Time? Andrew Drucker IAS April 8, 2014 Andrew Drucker (IAS) NP and the ETH April 8, 2014

Upload: others

Post on 28-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Do NP-Hard Problems Require Exponential Time?

Andrew Drucker

IAS

April 8, 2014

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 2: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

NP-completeness theory gives great guidance about which problemsare efficiently solvable.

2-SAT, 2-Coloring, Euler Tour ∈ PTIME;

3-SAT, 3-Coloring, Hamilton Path ∈ NP-complete.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 3: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

NP-completeness theory gives great guidance about which problemsare efficiently solvable.

2-SAT, 2-Coloring, Euler Tour ∈ PTIME;

3-SAT, 3-Coloring, Hamilton Path ∈ NP-complete.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 4: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

NP-completeness theory gives great guidance about which problemsare efficiently solvable.

2-SAT, 2-Coloring, Euler Tour ∈ PTIME;

3-SAT, 3-Coloring, Hamilton Path

NP-complete.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 5: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

NP-completeness theory gives great guidance about which problemsare efficiently solvable.

2-SAT, 2-Coloring, Euler Tour ∈ PTIME;

3-SAT, 3-Coloring, Hamilton Path NP-complete.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 6: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Want to solve NP-complete problems =⇒ must accept compromise!

Popular approach: find approximately-optimal solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides greatguidance!

I .5-approx Max-LIN (F2) ∈ PTIME;

I (.5 + ε)-approx Max-LIN (F2): NP-Complete. [Hastad’97]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 7: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Want to solve NP-complete problems =⇒ must accept compromise!

Popular approach: find approximately-optimal solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides greatguidance!

I .5-approx Max-LIN (F2) ∈ PTIME;

I (.5 + ε)-approx Max-LIN (F2): NP-Complete. [Hastad’97]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 8: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Want to solve NP-complete problems =⇒ must accept compromise!

Popular approach: find approximately-optimal solutions.

(for optimization probs.)

Here too, NP-completeness theory (+ PCPs) often provides greatguidance!

I .5-approx Max-LIN (F2) ∈ PTIME;

I (.5 + ε)-approx Max-LIN (F2): NP-Complete. [Hastad’97]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 9: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Sometimes we need an exact solution to an NP-C problem.

Then, compromise =⇒ must accept an inefficient algorithm!

(at least, inefficient in the worst case—our focus)

Key question: Can we at least beat brute-force search??

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 10: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Sometimes we need an exact solution to an NP-C problem.

Then, compromise =⇒ must accept an inefficient algorithm!

(at least, inefficient in the worst case—our focus)

Key question: Can we at least beat brute-force search??

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 11: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

NP-completeness

Sometimes we need an exact solution to an NP-C problem.

Then, compromise =⇒ must accept an inefficient algorithm!

(at least, inefficient in the worst case—our focus)

Key question: Can we at least beat brute-force search??

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 12: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexity

Known results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlak, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(√n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

(Strictly: F (n)’s above should be O∗(F (n)) , F (n) · |instance|O(1) . )

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 13: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Given: a k-CNF F = C1 ∧ C2 ∧ . . . ∧ Cm.

(each Ci an OR of ≤ k literals)

Goal: find a satisfying solution to F if one exists.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 14: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Given: a k-CNF F = C1 ∧ C2 ∧ . . . ∧ Cm.

(each Ci an OR of ≤ k literals)

Goal: find a satisfying solution to F if one exists.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 15: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Claim: if F ∈ SAT, then

Pr[A(F)finds a solution] ≥ 2−(1−c/k)n.

=⇒ repeat for 2(1−c/k)n trials to find one w.h.p.!

Analysis idea is very simple!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 16: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Claim: if F ∈ SAT, then

Pr[A(F)finds a solution] ≥ 2−(1−c/k)n.

=⇒ repeat for 2(1−c/k)n trials to find one w.h.p.!

Analysis idea is very simple!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 17: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Claim: if F ∈ SAT, then

Pr[A(F)finds a solution] ≥ 2−(1−c/k)n.

=⇒ repeat for 2(1−c/k)n trials to find one w.h.p.!

Analysis idea is very simple!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 18: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Claim: if F ∈ SAT, then

Pr[A(F)finds a solution] ≥ 2−(1−c/k)n.

=⇒ repeat for 2(1−c/k)n trials to find one w.h.p.!

Analysis idea is very simple!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 19: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!Hope is that Y0 � n/2.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 20: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!Hope is that Y0 � n/2.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 21: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!Hope is that Y0 � n/2.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 22: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!Hope is that Y0 � n/2.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 23: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Example: Schoning’s alg.

Algorithm A(F):

1 Let x ←− (random assignment).

2 Choose any unsat. clause Ci ; flip a rand. variable in Ci .

3 Repeat Step 2 for 3n steps.

Suppose F(x∗) = 1. Let x t = state of x after t execs. of Step 2.Let

Yt , ||x t − x∗||1 .

Key fact: if Yt > 0, then Pr[Yt+1 = Yt − 1] ≥ 1/k .

Can lower-bound Pr[mint Yt = 0] in terms of a biased random walk.

(biased against us, but not too badly!Hope is that Y0 � n/2.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 24: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexityKnown results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlak, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(√n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 25: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexityKnown results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlak, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(√n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

NP-C theory: no prediction about relative difficulty, best runtimes for these probs!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 26: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexityKnown results for some popular NP-C problems:

Problem Parameter Trivial Improved Ref.

CNF-SAT n = #vars 2n 1.99n ??

k-SAT 2(1−1/k)n [Paturi, Pudlak, Zane ’97]

IND. SET n = #vertices 2n 1.23n [Tarjan, Trojanowski’77; more...]

PLANAR

IND. SET 2O(√n) [Ungar ’51; Lipton, Tarjan ’79]

HAM. PATH n! 2n , 1.7n [Held, Karp ’62; Bjorklund ’10]

Challenge for complexity theory: explain the seeming differences in difficulty!Identify barriers to further progress!Guide search for faster algorithms!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 27: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexity

Could P 6= NP conjecture imply that NP-C probs require exponentialtime?

No idea. Seems hopeless!

Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 28: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Time complexity

Could P 6= NP conjecture imply that NP-C probs require exponentialtime?

No idea. Seems hopeless!

Influential approach: strengthen the conjecture!

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 29: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 30: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 31: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Exponential Time Hypothesis—informal (Impagliazzo, Paturi, Zane ’98)

No 2o(n)-time algorithm for n-variable 3-SAT.

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 32: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

s3 ≤ s4 ≤ s5 ≤ . . .

Best known: s3 ≤ .388, s4 ≤ .555, sk ≤ 1−Θ(1/k).

[Paturi, Pudlak, Saks, Zane ’98; Hertli ’11]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 33: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

s3 ≤ s4 ≤ s5 ≤ . . .

Best known: s3 ≤ .388, s4 ≤ .555, sk ≤ 1−Θ(1/k).

[Paturi, Pudlak, Saks, Zane ’98; Hertli ’11]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 34: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The ETH

Formally: for k ≥ 3, define sk ∈ [0, 1] by

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

(allowing randomized algs with 1/3 error prob.)

Exponential Time Hypothesis—formal (IPZ)

s3 > 0 .

s3 ≤ s4 ≤ s5 ≤ . . .

Best known: s3 ≤ .388, s4 ≤ .555, sk ≤ 1−Θ(1/k).

[Paturi, Pudlak, Saks, Zane ’98; Hertli ’11]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 35: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 36: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 37: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 38: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 39: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

ETH

Much stronger belief than P 6= NP.

Payoff in explanatory power?

YES! But, story is more complex than NP-completeness.

Issue: ETH studies dependence on key param.

n = # vars(F) � |F|.

Measures dimension of search space, not input size!

c.f. [Hunt, Stearns’90], “power index”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 40: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 41: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 42: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 43: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 44: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 45: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 46: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Consider IND. SET problem. Solvable in O∗(1.23N) time onN-vertex graphs.

Can we hope for 2o(N)? Or, would that violate ETH?

Given: 2o(N)-time alg for IND. SET; try to solve 3-SAT instance F .(n , # vars, m , #clauses)

Usual NP-C reduction: F −→ (G , k), where

|V (G )| = Θ(n + m) = Θ(m) .

=⇒ We solve F in time 2o(m). WEAK!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 47: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

Solve k-SAT in time 2o(m) =⇒ Solve k-SAT in time 2o(n) !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 48: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

Solve k-SAT in time 2o(m) =⇒ Solve k-SAT in time 2o(n) !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 49: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

Solve k-SAT in time 2o(m) =⇒ Solve k-SAT in time 2o(n) !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 50: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0 !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 51: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

2o(N) time alg for IND. SET =⇒ Solve 3-SAT in time 2o(m).

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0 !!

So, 2o(N) time alg for IND. SET violates ETH.

Similar: HAM PATH, DOMINATING SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 52: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 53: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 54: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 55: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 56: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 57: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 58: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Consequences of ETH

Planar IND. SET problem: Solvable in 2O(√N) time on

N-vertex planar graphs.

Can we hope for 2o(√N)?

Usual NP-C reduction: 3-CNF F −→ (planar) (G , k), where

|V (G )| = Θ(m2) .

Solve Planar IND SET in time 2o(√N) =⇒

solve 3-SAT in time 2o(m).Again, violates ETH!

Similar: (Planar) HAM PATH, DOM. SET, VERTEX COVER.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 59: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 60: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 61: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 62: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 63: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 64: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 65: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Robustness of ETH

Why focus on 3-SAT? Is it WLOG?

Could 3-SAT be much easier than 4-SAT??

Usual NP-C reduction maps F (4) −→ G(3), where

# vars(G(3)) = Θ(

# clauses(F (3))).

2o(n) time alg for 3-SAT =⇒ Solve 4-SAT in time 2o(m).

([IPZ] result, again) =⇒ Solve 4-SAT in time 2o(n) !

Theorem (IPZ)

s3 = 0 ⇐⇒ sk = 0 ∀k ≥ 3 .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 66: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 67: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 68: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 69: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 70: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 71: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

A stronger hypothesis

sk , inf {ε : k-SAT decidable in time O∗(2εn)} .

Exponential Time Hypothesis (ETH) (IPZ’97)

s3 > 0 .

Best known: sk ≤ 1−Θ(1/k). Why not “go for broke?”

Strong Exp. Time Hypothesis (SETH) (IP’98)

limk sk = 1 .

Note: SETH ⇒ ETH.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 72: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

More consequences of ETH, SETH

Many more runtime LBs shown under ETH, SETH.

Strong power to explain dependence on natural input parameters.

Major implications for parametrized complexity theory

[Downey, Fellows]; [Lokshtanov, Marx, Saurabh survey]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 73: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

Many problem instances have associated integer parameter — givessome indication of difficulty.

E.g., VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Goal of “parametrized algorithm”design: design algs that are“fast when k is small.”

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 74: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Known: VERTEX COVER solvable in time 2k · nO(1)

(n = # verts).

ETH implies: Can’t solve in time 2o(k) · nO(1).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 75: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Known: VERTEX COVER solvable in time 2k · nO(1)

(n = # verts).

ETH implies: Can’t solve in time 2o(k) · nO(1).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 76: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

VERTEX COVER:

Given: (G , k)

Decide: does G have a vertex cover of size k?

Known: VERTEX COVER solvable in time 2k · nO(1)

(n = # verts).

ETH implies: Can’t solve in time 2o(k) · nO(1).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 77: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

CLIQUE:

Given: (G , k)

Decide: does G have a clique of size k?

Known: CLIQUE solvable in time ≈ nk/k! (n = # verts).

Standard assumption (FPT 6= W[1]) implies:

can’t solve in F (k) · nO(1)...

ETH implies: Can’t solve in time F (k) · no(k).[Chen, Huang, Kanj, Xia’06]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 78: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

CLIQUE:

Given: (G , k)

Decide: does G have a clique of size k?

Known: CLIQUE solvable in time ≈ nk/k! (n = # verts).

Standard assumption (FPT 6= W[1]) implies:

can’t solve in F (k) · nO(1)...

ETH implies: Can’t solve in time F (k) · no(k).[Chen, Huang, Kanj, Xia’06]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 79: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

CLIQUE:

Given: (G , k)

Decide: does G have a clique of size k?

Known: CLIQUE solvable in time ≈ nk/k! (n = # verts).

Standard assumption (FPT 6= W[1]) implies:

can’t solve in F (k) · nO(1)...

ETH implies: Can’t solve in time F (k) · no(k).[Chen, Huang, Kanj, Xia’06]

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 80: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

k-DOMINATING SET:

Given: graph G .

Decide: does G have a dom. set of size k?

Known: solvable in time nk+o(1) .

[Eisenbrand, Grandoni’04; Patrascu, Williams’10]

Strong ETH implies:∗ Can’t solve in time nk−ε.

[Patrascu, Williams’10]

∗(Actually, a bit weaker hyp.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 81: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

k-DOMINATING SET:

Given: graph G .

Decide: does G have a dom. set of size k?

Known: solvable in time nk+o(1) .

[Eisenbrand, Grandoni’04; Patrascu, Williams’10]

Strong ETH implies:∗ Can’t solve in time nk−ε.

[Patrascu, Williams’10]

∗(Actually, a bit weaker hyp.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 82: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

k-DOMINATING SET:

Given: graph G .

Decide: does G have a dom. set of size k?

Known: solvable in time nk+o(1) .

[Eisenbrand, Grandoni’04; Patrascu, Williams’10]

Strong ETH implies:∗ Can’t solve in time nk−ε.

[Patrascu, Williams’10]

∗(Actually, a bit weaker hyp.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 83: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Parametrized problems

k-DOMINATING SET:

Given: graph G .

Decide: does G have a dom. set of size k?

Known: solvable in time nk+o(1) .

[Eisenbrand, Grandoni’04; Patrascu, Williams’10]

Strong ETH implies:∗ Can’t solve in time nk−ε.

[Patrascu, Williams’10]

∗(Actually, a bit weaker hyp.)

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 84: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Treewidth

Treewidth of a graph G : tw(G ) = measure of “fatness” of G .

Known: many NP-C graph problems solvable fast on low-treewidthgraphs (by dynamic prog.), in time∗

ctw(G) · nO(1) for some c .

*(Given a tree decomposition.)

[Lokshtanov, Marx, Saurabh ’11]: Strong ETH =⇒ some of thesealgorithms are optimal!

(constant c can’t be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 85: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Treewidth

Treewidth of a graph G : tw(G ) = measure of “fatness” of G .

Known: many NP-C graph problems solvable fast on low-treewidthgraphs (by dynamic prog.), in time∗

ctw(G) · nO(1) for some c .

*(Given a tree decomposition.)

[Lokshtanov, Marx, Saurabh ’11]: Strong ETH =⇒ some of thesealgorithms are optimal!

(constant c can’t be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 86: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Treewidth

Treewidth of a graph G : tw(G ) = measure of “fatness” of G .

Known: many NP-C graph problems solvable fast on low-treewidthgraphs (by dynamic prog.), in time∗

ctw(G) · nO(1) for some c .

*(Given a tree decomposition.)

[Lokshtanov, Marx, Saurabh ’11]: Strong ETH =⇒ some of thesealgorithms are optimal!

(constant c can’t be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 87: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Treewidth

Treewidth of a graph G : tw(G ) = measure of “fatness” of G .

Known: many NP-C graph problems solvable fast on low-treewidthgraphs (by dynamic prog.), in time∗

ctw(G) · nO(1) for some c .

*(Given a tree decomposition.)

[Lokshtanov, Marx, Saurabh ’11]: Strong ETH =⇒ some of thesealgorithms are optimal!

(constant c can’t be improved!)

E.g., IND SET, MAX-CUT: c = 2, DOM. SET: c = 3

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 88: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs insubexponential time?

Consider obtaining an r -approximation to max ind. set size,r = r(n) = ω(1).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r -approximation in time O∗(2n/r ).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for r(n) < n.49 can have runtime O∗(2n.99/r1.01) .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 89: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs insubexponential time?

Consider obtaining an r -approximation to max ind. set size,r = r(n) = ω(1).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r -approximation in time O∗(2n/r ).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for r(n) < n.49 can have runtime O∗(2n.99/r1.01) .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 90: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs insubexponential time?

Consider obtaining an r -approximation to max ind. set size,r = r(n) = ω(1).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r -approximation in time O∗(2n/r ).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for r(n) < n.49 can have runtime O∗(2n.99/r1.01) .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 91: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Hardness of subexponential-time approximation

How well can we approximate IND SET on n-vertex graphs insubexponential time?

Consider obtaining an r -approximation to max ind. set size,r = r(n) = ω(1).

Theorem (Chitniz, Hajiaghayi, Kortsarz’13)

Can get r -approximation in time O∗(2n/r ).

Theorem (Chalermsook, Laekhanukit, Nanongkai)

Under ETH, no alg. for r(n) < n.49 can have runtime O∗(2n.99/r1.01) .

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 92: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Graph diameter

diameter(G ) , maxu,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute3/2-approximation to diameter(G ) in (expected) time O(m

√n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in timeO(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-timecomputation!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 93: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Graph diameter

diameter(G ) , maxu,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute3/2-approximation to diameter(G ) in (expected) time O(m

√n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in timeO(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-timecomputation!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 94: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Graph diameter

diameter(G ) , maxu,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute3/2-approximation to diameter(G ) in (expected) time O(m

√n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in timeO(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-timecomputation!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 95: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Graph diameter

diameter(G ) , maxu,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute3/2-approximation to diameter(G ) in (expected) time O(m

√n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in timeO(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-timecomputation!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 96: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Graph diameter

diameter(G ) , maxu,v

distG (u, v) .

Theorem (Aingworth, Chekuri, Indyk, Motwani’96; Roddity, Vassilevska Williams’13 )

For a simple graph G on n verts, m edges, can compute3/2-approximation to diameter(G ) in (expected) time O(m

√n).

Theorem (Roddity, Vassilevska Williams’13 )

If we can estimate diameter(G ) to approx. factor (3/2− ε) in timeO(m2−δ), then SETH fails.

SETH =⇒ Detailed info about complexity of a poly-timecomputation!

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 97: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Further afield

[Abboud, Vassilevska Williams’14]: Improvements in certaindynamic algorithms for graph problems ⇒ ¬SETH.

[Bringmann, this morning]: Compute Frechet distance in n2−ε time⇒ ¬SETH.

Seems likely to see more results of this kind...

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 98: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 99: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 100: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 101: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 102: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→ptime F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 103: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→2o(n) time F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 104: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key theorem

Theorem (IPZ)

k-SAT in time O∗(2εm) ∀ε > 0 =⇒ k-SAT in time O∗(2εn) ∀ε > 0.

m = # clauses(F), n = # variables(F).

Let’s see the proof ideas.Main challenge: for general “dense” F , may have m� n.

Ideal approach: give a “sparsification” reduction:

F −→2o(n) time F ′ SAT (F) = SAT (F ′)

m′ , n′ ≤ O(n) .

Solve F ′ in time 2o(m′) = 2o(n) =⇒ solve F . ???

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 105: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Relax this idea further...

F →2o(n) time G1,G2, . . . ,Gs s = 2o(n)

SAT (F) =∨i

SAT (F i )

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 106: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Relax this idea further...

F →2o(n) time G1,G2, . . . ,Gs s = 2o(n)

SAT (F) =∨i

SAT (F i )

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 107: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Relax this idea further...

F →2o(n) time G1,G2, . . . ,Gs s = 2o(n)

SAT (F) =∨i

SAT (F i )

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 108: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Now suppose we could solve k-SAT in time 2δm for small δ > 0.

Use Lemma to solve k-SAT in time 2εn · 2δ(Ck,εn). Take δ � C−1k,ε ε.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 109: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Now suppose we could solve k-SAT in time 2δm for small δ > 0.

Use Lemma to solve k-SAT in time 2εn · 2δ(Ck,εn). Take δ � C−1k,ε ε.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 110: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Now suppose we could solve k-SAT in time 2δm for small δ > 0.

Use Lemma to solve k-SAT in time 2εn · 2δ(Ck,εn). Take δ � C−1k,ε ε.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 111: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

The key lemma

Sparsification Lemma (IPZ’97)

Fix k ≥ 3, ε > 0.There exists a reduction F → G1, . . . ,Gs , computable in time O∗(2εn),such that

1 F ∈ SAT iff ∃i : G i ∈ SAT ;

2 s ≤ 2εn;

3 #vars(G i ) ≤ n;

4 #clauses(G i ) ≤ Ok,ε(n).

Now suppose we could solve k-SAT in time 2δm for small δ > 0.

Use Lemma to solve k-SAT in time 2εn · 2δ(Ck,εn). Take δ � C−1k,ε ε.

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 112: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Proof of sparsification lemma (debt to D. Scheder’s notes!)

.....

Andrew Drucker (IAS) NP and the ETH April 8, 2014

Page 113: Do NP-Hard Problems Require Exponential Time? - video.ias.edu · Example: Sch oning’s alg. Algorithm A(F): 1 Letx (random assignment). 2 Choose any unsat. clauseC i; ip a rand

Thanks!

Andrew Drucker (IAS) NP and the ETH April 8, 2014