dissolution methodologies and ivivc - uvmbermejo/dissolutionc.pdf · dissolution test odd lake...

29
ODD Lake Tahoe. March 2002. Dissolution and IVIVC 1 © Prof. Bermejo Dept. of Pharmaceutics Dissolution Methodologies and IVIVC Marival Bermejo,Ph.D. Dept. Farmacia y Tecnología Farmacéutica Facultad de Farmacia. Universidad de Valencia España ODD Lake Tahoe. March 2002. Dissolution and IVIVC 2 © Prof. Bermejo Dept. of Pharmaceutics Dissolution Methodologies and IVIVC < Dissolution testing and BCS < IVIVC: - Definition and Levels - Development Calculation of fraction absorbed Mathematical modeling - Validation: predictability analysis - Approached to obtain IVIVC Non linear Mathematical models Biorelevant Dissolution media < Curve comparison

Upload: truongmien

Post on 06-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

1

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

1© Prof. BermejoDept. of Pharmaceutics

Dissolution Methodologies and IVIVC

Marival Bermejo,Ph.D.Dept. Farmacia y Tecnología Farmacéutica

Facultad de Farmacia. Universidad de Valencia

España

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

2© Prof. BermejoDept. of Pharmaceutics

Dissolution Methodologies and IVIVC

< Dissolution testing and BCS< IVIVC:

− Definition and Levels− Development

• Calculation of fraction absorbed• Mathematical modeling

− Validation: predictability analysis− Approached to obtain IVIVC

• Non linear Mathematical models• Biorelevant Dissolution media

< Curve comparison

2

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

3© Prof. BermejoDept. of Pharmaceutics

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

4© Prof. BermejoDept. of Pharmaceutics

Factors influencing dissolution rate

< Noyes Whitney equation

( )s tQ A D

C Ct h

∂ ⋅= ⋅ −

3

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

5© Prof. BermejoDept. of Pharmaceutics

Factors influencing dissolution rate

Volume of GI fluids: secretions

pH,surfactants

Viscosity of GI fluids

GI motility

Presence of surfactants

Physiological variable

Volume of medium

Ct

pH, surfactantshydrophilicityCs

Viscosity of medium

Molecular sizeD

Stirring rateSystem hydrodynamics

h

Presence of surfactants

Particle sizeA

In vitro factorPhysico-chemicalcharacteristic

Parameter

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

6© Prof. BermejoDept. of Pharmaceutics

Dissolution test

< Quality control:− Process control− Batch-to-batch quality

< Predictor of Product performance In vivo

BCS

4

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

7© Prof. BermejoDept. of Pharmaceutics

Biowaiver: permission to use dissolution test as a surrogate of pharmacokinetic data:

< For accepting product sameness under SUPAC-related changes.

< To waive bioequivalence requirements for lower strengths of a dosage form.

< To support waivers for other bioequivalence requirements.

Dissolution test

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

8© Prof. BermejoDept. of Pharmaceutics

J P C= ⋅

PermeabilitySolubility andDissolution rate In vivoLuminal degradation

•Same dissolution profile•Formulation components do not alter permeability or intestinal transit

5

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

9© Prof. BermejoDept. of Pharmaceutics

Class IV: LS/LP

Furosemide, Hydrochlorothiazide

Class III:HS/LP

Ranitidine, Cimetidine, Atenolol

Class II:LS/HP

Carbamazepine, Ketoprofen, Naproxen

Class I:HS/HP

Verapamil, ProparanololMetoprolol

Perm

eabi

lity

Volume of aqueous buffer to dissolve the highest dose

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

10© Prof. BermejoDept. of Pharmaceutics

6

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

11© Prof. BermejoDept. of Pharmaceutics

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

12© Prof. BermejoDept. of Pharmaceutics

IVIVC Definition

< An In-vitro in-vivo correlation (IVIVC) has been defined by the Food and Drug Administration (FDA) as “a predictive mathematical model describing the relationship between an in-vitro property of a dosage form and an in-vivo response”.

7

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

13© Prof. BermejoDept. of Pharmaceutics

< Bioequivalent drug products : Pharmaceutical equivalents or pharmaceutical alternatives whose rate and extent of absorption do not show a significant difference when administered at the same molar dose of the therapeutic moiety under similar experimental conditions, either single dose or multiple dose. (27 CFR 320.1(e)).

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

14© Prof. BermejoDept. of Pharmaceutics

Methods for assessing BE1

< Pharmacokinetic study< Pharmacodynamic study< Comparative clinical study< In vitro study

1.GUIDANCE FOR INDUSTRYBioavailability and Bioequivalence Studies for Orally Administered Drug Products

— General Considerations

8

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

15© Prof. BermejoDept. of Pharmaceutics

< The main objective of developing and evaluating an IVIVC is to establish the dissolution test as a surrogate for human bioequivalence studies, which may reduce the number of bioequivalence studies performed during the initial approval process as well as with certain scale-up and post approval changes.

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

16© Prof. BermejoDept. of Pharmaceutics

IVIVC Levels

< Level A correlation is a point to point relationship between in vitro dissolution and the in vivo absorption rate of a drug from the dosage form.

< Level B compares the mean in vitro dissolution time (MDTvitro) to the mean in vivo dissolution time (MDTvivo).

< Level C is a single point comparison of the amount of drug dissolved at one dissolution time point to one pharmacokinetic parameter.

< Multiple Level C is a correlation involving one or several pharmacokinetic parameters to the amount of drug dissolved at various time points.

9

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

17© Prof. BermejoDept. of Pharmaceutics

Level A correlation

Adapted from Sirisuth N and Eddington N.Int. J. Generic Drugs (IVIVC series part III)

Fdiss

0.0 0.2 0.4 0.6 0.8 1.0 1.2

Fab

s

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

18© Prof. BermejoDept. of Pharmaceutics

Level B correlation

MDT vitro (hours)

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

MR

T v

ivo

(hou

rs)

12

14

16

18

20

22

24

26

28

Adapted from Sirisuth N and Eddington N.Int. J. Generic Drugs (IVIVC series part III)

10

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

19© Prof. BermejoDept. of Pharmaceutics

MDT(hours)0 1 2 3 4 5 6

AU

C(n

g·h/

mL)

4000

6000

8000

10000

12000

Adapted from Balan G et al. J.Pharm Sci 90(8)1176-1185.(2001)

Level C correlation

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

20© Prof. BermejoDept. of Pharmaceutics

Development of IVIVC: level AOne step approachTwo steps approach

Ødevelop formulations with different release rates, such as slow, medium, fast; Øobtain in vitro dissolution profiles and in vivo plasma concentration profiles for these formulations

§estimate the in vivo absorption or dissolution time course using an appropriate technique for each formulation and subject.

§Establish the Link model between in vivo and in vitro variable§Predict plasma concentration from in vitro data using the Link model

Step

1St

ep 2

§Predict plasma concentration from in vitro profile using a LINK model whose parameters are fitted in one step

•Do not involve deconvolution•Link model is not determined separately•Can be done without a reference (IV bolus, oral solution or IR form)

11

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

21© Prof. BermejoDept. of Pharmaceutics

In vitro Dissolution

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

Rel

ease

d %

In vivo Absorption

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

abs

or. %

Plasma levels

0

10

20

30

40

50

0 100 200 300 400

time(min)

plas

ma

conc

.

IVIVC

Amount dissolved %

0 20 40 60 80 100

Am

ount

abs

orbe

d %

0

20

40

60

80

100

?

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

22© Prof. BermejoDept. of Pharmaceutics

Assumptions:Linear dispositionLinear first passLinear absorption

12

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

23© Prof. BermejoDept. of Pharmaceutics

Determining the fraction of dose absorbed

< Model dependent methods− Wagner Nelson Equation− Loo-Riegelman Method

< Model independent methods− Deconvolution

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

24© Prof. BermejoDept. of Pharmaceutics

0 at ct et

tct d et el d

Q Q Q

Q C V Q k V AUC

= +

= ⋅ = ⋅ ⋅

0

0

tat t d el d

a el d

Q C V k V AUC

Q k V AUC∞∞

= ⋅ + ⋅ ⋅

= ⋅ ⋅

0 tt t d el d

el d o

at d ct d et d

Q C V k V AUCQ k V AUC

Q V Q V Q V

∞∞

⋅ + ⋅ ⋅=

⋅ ⋅

= +

< Wagner Nelson: Mass balance

13

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

25© Prof. BermejoDept. of Pharmaceutics

0

fraction remaining to be absorbed

t c e

tt t el

el o

t

A A A

A C k AUCA k AUC

AA

∞∞

= +

+ ⋅=

=1-

< Wagner Nelson: Mass balance

1.0

21.0

41.0

61.0

81.0

101.0

121.0

0 50 100 150 200 250 300

time ( min)

At

(mg

/mL

)

1.0

10.0

100.0

0 50 100 150 200 250 300

time ( min)

At (

mg

/mL

)

ln(100 ) ln100 ta

Ak t

A∞

− = − ⋅ (100 ) 100ta

Ak t

A∞

− = − ⋅

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

26© Prof. BermejoDept. of Pharmaceutics

Time (min) C(mg/mL)5 2.29 0.55 0.55

10 4.22 2.11 1.0115 5.83 2.92 1.4030 9.29 4.64 2.2345 11.33 5.66 2.7260 12.54 6.27 3.0190 5.00 6.84 3.28 30

120 1.75 7.04 3.38 60150 0.61 2.50 3.41 90180 0.21 0.87 3.42 120210 0.07 0.31 3.43 150240 0.03 0.11 3.43 180270 0.01 0.04 1.20 210300 0.00 0.01 0.42 240330 0.00 0.00 0.15 270360 0.00 0.00 0.05 300390 0.00 0.00 0.02 330420 0.00 0.00 0.01 360

ko(mg/mL*min) 0.50 0.25 0.12 ko(calc) -0.4664 -0.2469 -0.1229kel(min-1) 0.04 Vd(L) 10t1/2(min) 19.80cinf 14.29 7.14 3.43

plasma levels

0.00

0.00

0.01

0.10

1.00

10.00

100.00

0 100 200 300 400 500time (min)

con

c m

g/m

L

Wagner Nelson Plot

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 100 200 300 400 500

time (min)

At/A

inf

(100 ) 100ta

Ak t

A∞

− = − ⋅

14

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

27© Prof. BermejoDept. of Pharmaceutics

Time (min) C(mg/mL)5 0.39 0.20 0.10

10 0.72 0.38 0.1915 1.01 0.55 0.2830 1.65 0.98 0.5245 2.03 1.30 0.7260 2.24 1.54 0.8990 2.35 1.83 1.15

120 2.26 1.94 1.32150 2.08 1.94 1.42180 1.89 1.87 1.47210 1.69 1.76 1.48240 1.51 1.63 1.46270 1.34 1.50 1.42300 1.19 1.36 1.36330 1.06 1.23 1.29360 0.94 1.11 1.22390 0.83 0.99 1.14420 0.74 0.89 1.06

ka min-1 0.025 0.013 0.006 ka(calc)min-1 -0.0250 -0.0126 -0.0069kel(min-1) 0.004t1/2(min) 173.25Vd 30.00D 100.00

plasma levels

0.10

1.00

10.00

0 100 200 300 400time (min)

con

c m

g/m

L

Wagner Nelson Plot

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 100 200 300 400 500

time (min)

At/

Ain

f

ln(100 ) ln100 ta

Ak t

A∞

− = − ⋅

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

28© Prof. BermejoDept. of Pharmaceutics

Time (min) C(mg/mL)5 0.30 0.155 0.076

10 0.44 0.236 0.11815 0.49 0.276 0.14130 0.45 0.294 0.16245 0.36 0.269 0.16060 0.28 0.240 0.15590 0.18 0.191 0.144

120 0.12 0.155 0.132150 0.09 0.127 0.121180 0.07 0.105 0.111210 0.06 0.088 0.101240 0.05 0.074 0.091270 0.05 0.063 0.083300 0.04 0.054 0.075330 0.03 0.047 0.068360 0.03 0.041 0.061390 0.03 0.035 0.055420 0.02 0.031 0.049

ka min-1 0.025 0.013 0.006 alfa 0.113781 ka (calc)min-1 #¡VALOR! #¡VALOR! -0.0122k10(min-1) 0.0600 Vc 30.00 beta 0.004219k12 min-1 0.0500k21 min-1 0.0080D 100.00

Plasma levels

0.01

0.10

1.00

10.00

0 100 200 300 400time (min)

Con

c m

g/m

L

Wagner Nelson Plot

1.00

51.00

101.00

151.00

201.00

251.00

0 100 200 300 400 500

time (min)

At/A

inf

ka k10

k21k12A C E= +

15

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

29© Prof. BermejoDept. of Pharmaceutics

< Loo-Riegelman: Mass balance

c e pa

c c

t t t t

Q Q QQV V

A C E P

+ +=

= + +

21 21

21 21

10 0

12 0

12 121 1

21

(1 )2

tt t t

tk t k tt

k t k tt t t

A C k AUC P

P k e C e t

k kP P e C e C t

k

− ⋅ ⋅

− ⋅∆ − ⋅∆− −

= + ⋅ +

= ⋅ ⋅ ⋅ ∂

= ⋅ + ⋅ − + ⋅∆ ⋅ ∆

Parameters obtained from IV dataIV and oral administration with the same subjects

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

30© Prof. BermejoDept. of Pharmaceutics

Time (min) C(mg/mL)5 0.30 0.155 0.076

10 0.44 0.236 0.11815 0.49 0.276 0.14130 0.45 0.294 0.16245 0.36 0.269 0.16060 0.28 0.240 0.15590 0.18 0.191 0.144

120 0.12 0.155 0.132150 0.09 0.127 0.121180 0.07 0.105 0.111210 0.06 0.088 0.101240 0.05 0.074 0.091270 0.05 0.063 0.083300 0.04 0.054 0.075 330 0.03 0.047 0.068360 0.03 0.041 0.061390 0.03 0.035 0.055420 0.02 0.031 0.049

ka min-1 0.025 0.013 0.006 alfa 0.113781 ka(calc)min-1 -0.0242 -0.0122 -0.0062k10(min-1) 0.0600 Vc 30.00 beta 0.004219k12 min-1 0.0500k21 min-1 0.0080D 100.00

plasma levels

0.01

0.10

1.00

10.00

0 100 200 300 400time (min)

con

c m

g/m

L

Loo-Riegelman Plot

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 100 200 300 400 500

time (min)

At/

Ain

f

ka k10

k21k12A C E P= + +

16

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

31© Prof. BermejoDept. of Pharmaceutics

Input Response

Rat

e

time timeτo τo

Amount=1

δ(t): unit impulse 1·cδ(t):unit impulse response

time timeτo τoτ1 τ1

a·δ(t-τ1) a·cδ(t-τ1)

time timeτo τoτ1 τ1

a·δ(t-τo)+b·δ(t -τ1) a·cδ(t-τ0)+b·cδ(t-τ1)

a b

conc

entr

atio

n

superposition

Time invariancetime timeτo

τo

a·δ(t) a·cδ(t)Amount=a

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

32© Prof. BermejoDept. of Pharmaceutics

time timeτo τoτ1 τ1

a*δ(t-τo)+b* δ(t -τ1) a*cδ(t-τ0)+b* cδ(t-τ1)

a b

time timeτo τoτn τ1

Rat

e

Con

cent

ratio

n

Amount= f(τn)∆τC(t)= [f(τo) ∆τ]·cδ(t-τo)+

[f(τ1) ∆τ]·cδ(t-τ1)+….[f(τn) ∆τ]·cδ(t-τn)=

,

0

( ) ( ) ( )

0

n n t

nn

c t f c tτ

δτ τ τ

τ

= =

=

= ⋅ − ⋅ ∆

∆ →

0

( ) ( ) ( )t

c t f c t dδτ τ τ= ⋅ − ⋅∫response impulse Unit impulse response

17

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

33© Prof. BermejoDept. of Pharmaceutics

Methods of Deconvolution

< Analytic: Laplace transforms< Implicit: deconvolution by curve fitting< Numeric: point-area

Convolution: solving c(t) given f(t) and cδ(t)Deconvolution: solving f(t) given cδ(t) and c(t)

or solving cδ(t) given f(t) and c(t)

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

34© Prof. BermejoDept. of Pharmaceutics

Laplace transform

( ){ } ( ) ( )0

s tf t F s e f t t∞

− ⋅= = ⋅ ⋅ ∂∫l

18

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

35© Prof. BermejoDept. of Pharmaceutics

0

( ) ( ) ( )t

c t f c t dδτ τ τ= ⋅ − ⋅∫response input Unit impulse response

[ ] [ ][ ] [ ] [ ]

1( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

c t f t c t

c t f t c t

C s F s C s

δ

δ

δ

− = ⋅ = ⋅

= ⋅

l l ll l l

<Analytic: Laplace transforms

[ ]

[ ]

( ) ( ) ( )

1 1( ) ( ) ( )

( )

a

el

k t aa

a

k t

d d el

F D kf t F D k e f t

s k

Dc t e c t

D V V s kδ δ

− ⋅

− ⋅

⋅ ⋅= ⋅ ⋅ ⋅ =

+

= ⋅ ⋅ =⋅ +

l

l

[ ] [ ]

1

( ) ( )( ) ( )

( )( ) ( ) ( )

el a

a

d a el

k t k ta a

d a el d a el

F D kf t c t

V s k s k

F D k F D ke e

V s k s k V k k

δ

− ⋅ − ⋅−

⋅ ⋅⋅ =

⋅ + ⋅ +

⋅ ⋅ ⋅ ⋅= ⋅ − ⋅ + ⋅ + ⋅ −

l l

l

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

36© Prof. BermejoDept. of Pharmaceutics

Implicit: deconvolution by curve fitting

( )

1( )

( )( )

( )

el

a el

a

k t

c

k t k ta

c el a

k ta

Dc t e

D V

F D kc t e e

V k k

f t F D k e

δ− ⋅

− ⋅ − ⋅

− ⋅

= ⋅ ⋅

⋅ ⋅= ⋅ −

⋅ −

= ⋅ ⋅ ⋅

Simultaneous fit

19

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

37© Prof. BermejoDept. of Pharmaceutics

0

( ) ( ) ( )t

c t f c t dδτ τ τ= ⋅ − ⋅∫Assuming f(τ)= R= constant in an interval: Ti-1<τ<Ti

11

( ) ( )i

Tin

Tn ii T

c R c Tn dδ τ τ−

=

= − ⋅∑ ∫

By substitution of variables, solving for Rn, if ∆τ is constant

21 1

210

nn i

n i n ii

n

c R AUCR

AUC

δ− +

− − +=

− ⋅=

Numeric: point-area

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

38© Prof. BermejoDept. of Pharmaceutics

11 1

0

cR

AUC=

22 1 1

2 10

( )c R AUCR

AUC− ⋅

=

3 23 1 2 2 1

3 10

( )c R AUC R AUCR

AUC− ⋅ + ⋅

=

4 3 24 1 3 2 2 3 1

4 10

( )c R AUC R AUC R AUCR

AUC− ⋅ + ⋅ + ⋅

=

20

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

39© Prof. BermejoDept. of Pharmaceutics

Point areaTime (min) C(mg/mL) 25 AUC(Tn-1-Tn)

5 2.250 14.51 98.77 AUC(T0-T1)10 3.302 8.56 57.68 AUC(T1-T2)15 3.699 5.19 34.38 AUC(T2-T3)20 3.749 3.27 21.16 AUC(T3-T4)25 3.621 2.18 13.63 AUC(T4-T5)30 3.411 1.56 9.34 AUC(T5-T6)35 3.169 1.19 6.87 AUC(T6-T7)40 2.924 0.98 5.44 AUC(T7-T8)45 2.688 0.86 4.60 AUC(T8-T9)50 2.468 0.78 4.10 AUC(T9-T10)55 2.266 0.73 3.78 AUC(T10-T11)60 2.083 0.70 3.57 AUC(T11-T12)

R*dT Suma(R*dT) *100 100-AR1 0.02278 0.11392 0.1139 11.39 88.61R2 0.02012 0.10060 0.2145 21.45 78.55R3 0.01777 0.08884 0.3034 30.34 69.66R4 0.01384 0.06918 0.3725 37.25 62.75R5 0.01494 0.07471 0.4473 44.73 55.27R6 0.01225 0.06127 0.5085 50.85 49.15R7 0.01083 0.05413 0.5627 56.27 43.73R8 0.00956 0.04782 0.6105 61.05 38.95R9 0.00845 0.04226 0.6527 65.27 34.73R10 0.00747 0.03734 0.6901 69.01 30.99R11 0.00660 0.03300 0.7231 72.31 27.69R12 0.00583 0.02917 0.7523 75.23 24.77

21 1

210

nn i

n i n ii

n

c R AUCR

AUC

δ− +

− − +=

− ⋅=

Loo-Riegelman Plot

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 100 200 300 400 500

time (min)

At/A

inf

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

40© Prof. BermejoDept. of Pharmaceutics

In vitro Dissolution

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

Rel

ease

d %

In vivo Absorption

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

abs

or. %

Plasma levels

0

10

20

30

40

50

0 100 200 300 400

time(min)

plas

ma

conc

.

IVIVC

Amount dissolved %

0 20 40 60 80 100

Am

ount

abs

orbe

d %

0

20

40

60

80

100

?

IVIC developmentStep 1

LINK model

21

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

41© Prof. BermejoDept. of Pharmaceutics

Dual Step method:Step1:1. IV bolus: Obtain Unit Impulse Response (UIR)2. Oral administration3. Deconvolutionof oral curve using UIR to obtain Input

function in vivo f(t)vivo4. Dissolution In vitro: f(t)vitro5. LINK model: relationship between in vitro variable and in

vivof(t)vivo=Link(f(t)vitro)

Step 2:1. Predict plasma concentration from in vitro data using link

modelC(t)=(Link(f(t)vitro)*UIR

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

42© Prof. BermejoDept. of Pharmaceutics

References to obtain UIR. Input function

< IV bolus,− UIR: disp; − Input function: diss+abs+1st pass: availability rate

< Oral Solution, − UIR (abs +1st pass)

− Input function: release rate

< IR dosage form,− UIR (diss from IR+ abs + 1st pass) − Input function: release rate from MR

22

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

43© Prof. BermejoDept. of Pharmaceutics

In vitro Dissolution

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

Rel

ease

d %

Plasma levels

0

10

20

30

40

50

0 100 200 300 400

time(min)

plas

ma

conc

.

IVIC : step 2 and predictability analysis

PREDICTED Plasma levels

05

1 01 52 02 53 03 54 04 5

0 100 200 300 400

time(min)

plas

ma

conc

.

C(t)=(Link(f(t)vitro)*UIR

<10%<10%Average

<15%<15%Slow

<15%<15%Med

<15%<15%Fast

AUCCmax

% Prediction error

PREDICTED In vivo Absorption

0.020.040.060.080.0

100.0120.0

0 100 200 300

time (min)

Am

ount

abs

or. %

f(t)vivo=Link(f(t)vitro)

•Internal validation•External validation

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

44© Prof. BermejoDept. of Pharmaceutics

Approaches to obtain an IVIVC

1. Look for an appropriate mathematical model to describe the relationship between in vitro-in vivo dissolution

2. Choose different dissolution conditions to match in vivo dissolution profile

23

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

45© Prof. BermejoDept. of Pharmaceutics

Adapted from Dunne A. et al. J Pharm Sci. 86(11)1245-1249(1997)

( )( ) ( )

( ) ( )

log log log1 1

t v i v t v i t

t viv t vit

F F

F Fα

= + − −

Proportional Odds models

Level A correlation: Approach 1. Example of non linear relationships

Tvit or viv: Time to go into solution Random variable

F(t)vit or viv: Distribution function=fraction of dose dissolved at time t

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

46© Prof. BermejoDept. of Pharmaceutics

Fraction dissolved in vitro0.0 0.2 0.4 0.6 0.8 1.0

Fra

ctio

n di

ssol

ved

in v

ivo

0.0

0.2

0.4

0.6

0.8

1.0

Adapted from Dunne A. et al. J Pharm Sci. 86(11)1245-1249(1997)

( )( ) ( )

( ) ( )

log log log1 1

t v i v tvit

t viv t vit

F FF F

α

= + − − Proportional Odds models

Level A correlation: Approach 1. Example of non linear relationships

24

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

47© Prof. BermejoDept. of Pharmaceutics

Autonomic vs non autonomic relationships

Time

0 5 10 15 20 25 30

X in

vitr

o re

leas

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Time0 5 10 15 20 25 30

X in

viv

o re

leas

e

0.0

0.2

0.4

0.6

0.8

1.0

1.2

X (in vitro release)

0 5 10 15 20 25 30

Y (

in v

ivo

rele

ase)

0.2

0.4

0.6

0.8

1.0

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

48© Prof. BermejoDept. of Pharmaceutics

Biorelevant Dissolution Media: Approach 2

qs 1 liter

qs pH 6.8

0.22M

0.029 mM

1.5 mM

5 mM

280-310±10

6.8

Qs 1 literDeionized Waterqs 1 literDeionized Water

Qs pH 5.0NaOHqs pH 6.5NaOH

15.2 gKCl7.7 gKCl

8.65 gAcetic Acid3.9 gKH2PO4

3.75 mMLecithin0.75 mMLecithin

15 mMNa Taurocholate3 mMNa Taurocholate

635±10 Osmolality(mOsmol)

270±10 Osmolality(mOsmol)

5.0pH6.5pH

Fed State simulated intestinal FluidFasted State simulated intestinal Fluids

•From Galia E et al . Pharm Res 15(5) 698-705 (1998)•From Dressman J et al. Pharm Res 15(1) 11-22 (1998)

25

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

49© Prof. BermejoDept. of Pharmaceutics

ClearSightlycloudy

Pearlescent w/TG; Cloudy without TG

Pearlescent at pH 5; Clear at pH 7.5

ClearVisual description56.555 to 7.55 to7.5pH

204103---KCl

--8585142NaCl

--32.40.75Lysolecithin

3.750.7530.60.25Lecithin

--70--Sesame oil

--103-Monocaprin

--20100.25Dodecanoic Acid

144----CH3COOH

-29---KH2PO4

153---Taurocholate

--10105Taurodeoxycholate

FeSSIFFaSSIFFeSIESFESIMSFaSIMSComponent

Concentration (mM)

Adapted from Luner P. and Vander Kamp D. et al. J. Pharm Sci 90(3) 348-359(2001)

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

50© Prof. BermejoDept. of Pharmaceutics

Biorelevant Dissolution Media: Approach 2

qs 1 literDistilled Water

2 gNaCl

2.5 g Na Lauryl sulfate

0.01-0.05 N6.5HCl

Fasted State simulated Gastric Fluid

From Dressman J et al. Pharm Res 15(1) 11-22 (1998)

26

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

51© Prof. BermejoDept. of Pharmaceutics

Dissolution curve comparison

< Model independent approach:− f1: difference factor− f2 similarity factor

( ) 0.5

21

11

1

150 log 1 100

100

n

t tt

n

t tt

n

tt

f R Tn

R Tf

R

=

=

=

= ⋅ + ⋅ − ⋅

− = ⋅

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

52© Prof. BermejoDept. of Pharmaceutics

< Only one data point after 85% dissolution of one of the products

Curve comparison

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0 50 100 150 200 250 300

time (min)

% d

isso

lved

<Three to four or more dissolution data point availables

<Coefficient of variation of the earlier data points less than 20% and in later data points not more of 10%

<Same data points for reference and test

27

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

53© Prof. BermejoDept. of Pharmaceutics

< A f2 value =50 ensures sameness of the two curves. (An average difference between two profiles of 10% at all sampling data points corresponds to an f2 value of 50)

Average difference %

f2

10

100

50

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

54© Prof. BermejoDept. of Pharmaceutics

< Model dependent approach. − Select the most appropriate model for the dissolution

profiles from the reference batches.− A similarity region is set based on variation of

parameters of the fitted model from the reference batches.

− Calculate the MSD in model parameters between test and reference batches.

− Estimate the 90% confidence region of the true difference between the two batches.

− Compare the limits of the confidence region with the similarity region.

Dissolution curve comparison

28

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

55© Prof. BermejoDept. of Pharmaceutics

Reference batches

Par21n

Par212

Par211

Par 1

Par 1 1n

Par 1 12

Par111

Par1

…………

Par 2 2nUnit 2 nPar 1 2nUnit 1 n

Par 2 22Unit 2 2Par 1 22Unit 1 2

Average± SD

Par 2 21Unit 2 1Par121Unit 1 1

Par2Batch2Par2Batch1

Pooled SD=Sqrt((var 1+var2/2)+var(interbatch))Construct similarity region

Difference in Par 1

Dif

fere

nce

in P

ar 2

00

1 std region

2 std region2 std region

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

56© Prof. BermejoDept. of Pharmaceutics

Par21n

Par212

Par211

Par 1

Par 1 1n

Par 1 12

Par111

Par1

…………

Par 2 2nUnit 2 nPar 1 2nUnit 1 n

Par 2 22Unit 2 2Par 1 22Unit 1 2

Average± SD

Par 2 21Unit 2 1Par121Unit 1 1

Par2BatchRefPar2BatchTest

29

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

57© Prof. BermejoDept. of Pharmaceutics

( ) ( )

( ) ( ){ }

2 1

2 2

1

( , 1 2 1,0.90)

1 2 1 1 2( 1 2 2) 1 2

( ) ( )

tT R pooled T R

tT R pooled T R

P N N P

D X X S X X

T K D

N N P N NK

N N P N N P

CR K Y X X S Y X X

CR F

+ − −

= − ⋅ ⋅ − = ⋅

+ − − ⋅ = ⋅ + − ⋅ + −

= ⋅ − − ⋅ ⋅ − − ≤

D2= squared Mahalanobis distance (M)T2=Scaled M distance (Hotelling T2)K= scaling factorNn=number units of lot nP= number of parametersCR= confidence regionXn= vectors of mean parameters of test and ref.S-1pooled=inverse of pooled sample variance-covariance matrix

ODD Lake Tahoe. March 2002. Dissolution and IVIVC

58© Prof. BermejoDept. of Pharmaceutics

Difference in Par 1

Dif

fere

nce

in P

ar 2

0

0

1 std region

2 std region2 std region

90%Confidence region

Contrast CR with similarity region