discover)the)best) technology)for) …€™sborders,thefact...

7
Discover the Best Technology for Border Surveillance

Upload: tranhanh

Post on 16-Apr-2018

221 views

Category:

Documents


6 download

TRANSCRIPT

Page 1: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 

 

Discover  the  Best  Technology  for  

Border  Surveillance    

Page 2: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

           

When  designing  the  best  technological  solution  to  secure  your  country’s  borders,  the  fact  that  there  is  no  one-­‐size-­‐fits-­‐all  answer  for  effective  border  surveillance  is  readily  apparent.  The  obvious  reason  for  this  is  that  no  two  borders  are  the  same  in  terrain,  climate,  and  threat  profile.  In  fact,  a  single  length  of  border  can  often  require  different  tactics,  technology,  and  techniques  in  order  to  ensure  an  optimal  security  posture.  Typical  choices  include  patrolling  personnel,  fences/walls/trenches,  unattended  ground  sensors,  unmanned  aerial  sensors,  radars  and  imaging  systems.    Even  with  all  of  this  variation,  the  two  primary  technologies  used  to  detect  threats  to  border  security  are  radars  and  imaging  systems.  Radar  manufacturers  would  often  have  you  believe  that  radars  alone  are  enough.  On  the  other  hand,  makers  of  long-­‐range  imaging  systems  tout  their  ability  to  outperform  radar  at  certain  crucial  tasks,  and  do  so  at  a  lower  cost.    

 But  these  bold  assertions  only  beg  more  questions.  What  kind  of  radar?  Certainly  all  radars  are  not  created  equal,  so  which  radar  technology  is  best  suited  to  a  border  surveillance  role?  The  same  can  be  said  of  cameras  –  which  sensing  technology,  resolution,  and  lens  configurations  are  the  most  effective  when  trying  to  secure  a  border?    

So,  radars  or  cameras?  The  only  honest  answer  is:  both.  This  white  paper  will  demonstrate  how  the  use  of  radars  and  multi-­‐sensor  thermal  imaging  systems  are  more  than  just  a  tactical  necessity  in  today’s  high-­‐threat  environment,  but  that  by  deploying  systems  that  are  designed  to  work  in  tandem  this  complimentary  whole  is  indeed  greater  than  the  sum  of  its  parts.    

Overview  Border  security  and  coastal  surveillance  are  24/7  operations  that  can’t  afford  downtime  or  periods  of  reduced  readiness.  Guarding  against  illegal  immigration,  smuggling,  and  terrorism  demands  reliable  long-­‐range  threat  detection  and  positive  identification  of  potential  threats  all  day,  all  night,  and  in  all  conditions.    Any  21st-­‐century  border  surveillance  design  must  leverage  the  advanced  technologies  that  are  readily  available  in  order  to  enable  operators  to  “do  more  with  less”  while  maintaining  uncompromised  standards  of  performance.    

Page 3: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

Whether  the  inbound  targets  are  small  boats  on  the  water  or  people  crossing  borders  on  foot,  border  surveillance  needs  to  be  based  on  an  interconnected  detection  infrastructure  that  is  adaptable  enough  to  detect  and  monitor  multiple  inbound  threats,  all  at  the  same  time.  Therefore,  the  optimal  border  surveillance  solution  consists  of  the  right  mix  of  high-­‐performance  cameras  and  radars  that  covers  more  ground  with  fewer  sensors,  reducing  system  complexity  and  program  cost  while  increasing  detection  effectiveness  and  providing  persistent  surveillance  with  the  required  early  warning  and  threat  assessment.    

21st  Century  Border  Surveillance  Effective  radar  coupled  with  long-­‐range  thermal  and  visible  light  imaging  systems  provide  advanced  warning  of  inbound  threats,  as  well  as  the  visual  threat  assessment  needed  to  formulate  an  effective  response.  While  the  initial  investment  in  hardware  may  be  more  than  for  a  lesser  solution,  the  long-­‐term  operational  cost  actually  results  in  a  net  savings.  By  coupling  long-­‐range  optical  systems,  the  nature  and  threat  levels  of  intrusions  can  be  determined  remotely  in  the  command  center  or  forward  observation  post  instead  of  having  personnel  respond  to  every  alarm  in  their  sector.    In  other  words,  what’s  spent  with  the  initial  acquisition  is  saved  whenever  your  response  teams  don’t  have  to  waste  time  and  resources  visually  verifying  the  causes  of  false  alarms.    Additionally,  this  saves  having  to  put  people  out  near  the  threats  and  in  harm’s  way.    The  combination  of  radar  and  long-­‐range  imaging  is  also  more  adaptable  to  changing  threat  structures,  threat  speeds,  and  even  topography.  The  cameras,  radars,  and  other  sensors  that  can  effectively  detect  and  track  vehicles  crossing  a  long  desert  land  border  today  will  be  just  as  effective  at  spotting  people  walking  through  hilly  terrain  tomorrow,  and  boats  approaching  an  exposed,  vacant  beach  next  week.    

Each  technology  has  its  strengths  and  weaknesses.  Using  them  as  complimentary  sensors  allows  operators  to  use  the  strengths  of  one  to  overcome  the  weaknesses  of  the  other.  For  instance,  while  radar  can  provide  persistent,  360°  coverage  every  second  out  to  distances  of  more  than  5km,  it  can  neither  identify  friend  or  foe,  nor  determine  the  intent  of  what  it  detects.  Conversely,  an  imaging  system  can  identify  the  target,  but  in  doing  so  it  is  covering  a  

comparatively  narrow  field  of  view.  This  effect  is  exacerbated  as  the  distance  to  target  increases  and  the  camera  zooms  in  using  narrower  and  narrower  fields  of  view  of  the  camera.    

Page 4: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

 Combining  the  two  technologies  provides  a  persistent  coverage  of  multiple  targets,  while  the  camera  (or  cameras)  can  automatically  slew  to  targets  of  interest  and  identify  them.    Effective  radar  detects  threats  out  great  distances,  providing  important  reaction  time.  Additionally,  it  is  virtually  impossible  for  targets  to  advance  without  detection,  including  slow  moving  targets  and  even  crawlers.  Radar  provides  important  target  parameters  –  range,  bearing,  course,  speed  and  GPS  coordinates.  With  these  parameters,  and  a  long-­‐range  thermal  imager,  situational  awareness  is  greatly  increased  and  the  appropriate  response  can  be  quickly  determined  and  taken.    But  knowing  that  a  combined  radar/long-­‐range  thermal  imager  multisensory  solution  is  the  best  answer  is  only  part  of  the  decision.  Next  it  is  important  to  decide  which  radar  technology  and  frequency,  as  well  as  what  type  of  imaging  system,  should  be  selected.    

Frequency  Modulated  Continuous  Wave  (FMCW)  vs.  Pulse  Doppler  (PD)  Radar  This  diversity  in  methods  of  violating  a  border  hints  at  the  crimes  and  threats  the  invaders  seek  to  perpetrate.  From  smuggling  drugs  and  arms,  to  human  trafficking  to  terrorist  insurgencies,  todays  threats  are  ever-­‐changing  and  require  solutions  based  on  new  thinking,  new  technology,  and  new  techniques  to  be  defeated.    First,  effective  border  surveillance  solutions  must  be  able  to  detect  both  fast-­‐  and  slow-­‐moving  smaller  targets  with  equal  efficacy.  Ground  surveillance  radars  detect  and  track  

Page 5: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

multiple  threats  simultaneously,  providing  precise  location,  heading,  and  speed  details.  The  market  offers  two  radar  technologies:  Pulsed  Doppler  (PD)  and  Frequency  Modulated  Continuous  Wave  (FMCW).    Most  Pulsed  Doppler  radars  are  derivatives  of  legacy  military  battlefield  radar  being  re-­‐purposed  for  wide  area  surveillance  use,  while  the  new  generation  FMCW  radar  technology  was  developed  for  wide  area  surveillance,  site  security,  and  force  protection  from  the  beginning.  It  was  specifically  developed  to  detect  and  track  walking  personnel.  FMCW  radars  are  packaged  in  a  ruggedized,  MIL-­‐spec  design  for  exceptionally  fast,  class-­‐leading  target  detection,  acquisition  performance,  and  extremely  low  false  alarm  rate.      FMCW  radars  differ  from  PD  radar  technologies  in  a  number  of  important  ways.    Pulse  Doppler  radars  operate  on  the  Doppler  principle,  which  states  that  all  moving  objects  will  exhibit  a  frequency  shift  from  the  transmitted  signal  to  the  received  signal  that  is  proportional  to  the  speed  of  the  target  in  the  direction  of  the  radar.    However,  background  clutter  like  trees  and  bushes  also  have  some  apparent  speed  when  the  wind  blows.  In  order  not  to  have  a  large  number  of  false  alarms,  that  low  speed  signal  return  from  the  clutter  must  be  filtered  out.    

 A  virtual  velocity  threshold  (blind  speed)  is  created  below  which  targets  will  not  be  reliably  detected.  That  means  that  some  slowly  moving  targets  could  be  filtered  out  along  with  the  clutter.  It  also  means  that  higher  speed  targets  moving  “across”  the  radar  beam  may  be  filtered  out  because  speed  only  generates  a  Doppler  signal  proportional  to  the  incoming  or  outgoing  speed,  which  is  called  radial  speed  (approaching  or  receding  in  the  beam).    

Conversely,  FMCW  radars  operate  on  the  imaging  principle;  that  is,  they  break  up  the  background  into  small  segments,  or  resolution  cells,  and  then  measure  changes  in  the  signal  return  from  each  cell  to  detect  small  targets,  such  as  walking  people.  Typical  resolutions  for  long-­‐range  FMCW  radars  are  less  than  1  meter  in  range  and  less  than  1  degree  in  azimuth.  The  smaller  the  cell  the  easier  it  is  to  detect  and  track  a  target.    This  translates  into  target  discrimination  –  an  FMCW  radar  will  report  several  walkers  in  close  proximity  vs  one  target  as  reported  by  a  PD  radar.      FMCW  operation  is  independent  of  the  speed  or  direction  of  travel  of  the  target,  only  its  size  with  respect  to  the  resolution  cell  in  which  it  is  located  matters.  Modern  FMCW  radars  can  detect  people  moving  at  near  zero  speed  and  walking  in  any  direction  with  respect  to  the  radar.    

Page 6: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

These  characteristics  provide  FMCW  radar  operators  a  number  of  distinct  advantages  over  legacy  PD  radar  technologies:  Much  lower  false  alarm  rates  Detects  smaller  and  slower  moving  targets  in  any  direction  More  accurate  range  and  bearing  target  information  Higher  resolution  provides  more  valuable  target  information    All  of  these  are  key  advantages  when  detection  of  a  wide  range  of  target  profiles  is  an  absolute  necessity.  Because  each  installed  radar  can  see  more  targets  –  and  see  them  from  farther  away  –  a  given  area  of  terrain  can  be  covered  by  fewer  systems  that  are  spaced  farther  apart.  This  greatly  decreases  both  system  cost  and  complexity  while  simultaneously  increasing  detection  performance.    When  selecting  a  long-­‐range  radar,  it  is  very  important  to  consider  its  operating  frequency.  Lower  frequencies  propagate  through  the  atmosphere  and  weather  (especially  rain)  much  better,  making  them  a  better  choice  for  longer  range  radars.  The  typical  frequency  of  choice  for  longer  range  radars  is  X-­‐band  (defined  as  8.0  to  12.4  GHz),  while  shorter  range  radars  typically  use  Ka  (27  to  40  GHz)  or  Ku  (12.4  to  18  GHz)  bands.    When  selecting  a  longer  range  radar,  be  sure  to  specify  X-­‐band  or  lower.    

Multi-­‐Sensor  Thermal  Imaging    Detecting  a  potential  threat  is  just  the  first  step.  Once  an  object  of  interest  is  detected,  it  must  be  identified,  and  its  threat  level  assessed.  Without  clear,  long-­‐range  visual  analysis  of  detected  threats  on  land  or  water,  operators  can’t  discern  between  false  or  nuisance  alarms  and  alerts  that  require  interdiction.      These  long-­‐range  multi-­‐sensor  imaging  systems  must  combine  high  definition  infrared  and  visible-­‐light  imaging  sensors  in  a  stabilized,  integrated  solution  that  is  easily  networked  with  other  sensors  as  well  as  command  and  control  software.  Many  people  mistakenly  believe  that  thermal  imaging  is  only  effective  at  night  or  in  cold  climate.  Nothing  could  be  further  from  the  truth.      In  fact,  high-­‐definition  thermal  imagers  with  powerful  zoom  optics  can  often  outperform  their  visible-­‐light  counterparts,  providing  reliable  threat  detection  at  ranges  so  extreme  that  

they’re  limited  more  by  topography  or  the  curvature  of  the  earth  than  by  the  energetic  limits  of  the  sensors  themselves.  Of  course,  these  long-­‐range  cameras  must  use  the  latest  

Page 7: Discover)the)Best) Technology)for) …€™sborders,thefact thatthereisnoone6size6fits6allanswerforeffectivebordersurveillanceisreadilyapparent. The!obvious!reason!for!this!is!that!no!two!borders!are!the!same!in

 Discover  the  Best  Technology  for  Border  Surveillance  

 

   

 

Information  on  this  page  is  subject  to  change  without  notice.  ©  FLIR  Systems,  Inc.,  2016  

 

image  processing  to  cut  through  atmospheric  effects  if  they  are  to  provide  the  early  detection  and  precise  intelligence  of  advancing  threats  border  security  depends  upon.    Merlin  ASX  is  an  intelligent  image  processing  suite  that  extracts  every  last  bit  of  range  and  image  detail  performance  out  of  both  thermal  and  visible  light  imaging  systems.  Without  a  doubt,  the  number-­‐one  atmospheric  factor  limiting  the  performance  of  imaging  systems  in  hot  environments  is  scintillation  –  those  wavy  lines  you  see  rising  up  from  the  ground  and  distorting  your  view.      Merlin  ASX  essentially  eliminates  the  effects  of  scintillation  and  other  atmospheric  effects,  so  your  imaging  sensors  can  assess  threats  nearly  as  far  away  as  your  FMCW  X-­‐band  radars  

can  detect  them.  This  makes  for  the  most  effective,  efficient  system  possible.  After  all,  there’s  no  point  in  coupling  a  50km  radar  with  a  5km  camera  system,  or  vice  versa.  The  benefit  of  having  these  two  systems  together  is  not  just  that  they’re  both  deployed,  but  that  they  complement  one  another  to  create  a  solution  that  is  more  powerful  than  they  would  be  if  they  were  working  independently.    

 

Conclusion  The  mission  of  securing  a  nation’s  borders  is  challenging  for  many  reasons,  chief  among  them  is  the  sheer  size  of  the  area  that  needs  to  be  effectively  monitored  and  patrolled.    Border  surveillance  solutions  from  FLIR  provide  the  cutting-­‐edge  FMCW  radar  and  multi-­‐spectral  imaging  sensors  needed  to  meet  this  demanding  mission,  as  well  as  command  and  control  software  that  enables  the  creation  of  a  flexible,  scalable  border  security  infrastructure  that  can  meet  the  demanding,  ever-­‐changing  threats  encountered  every  day.    For  more  information,  contact  FLIR  at  [email protected]