digital integrated circuits { eecs 312 - robert dickrobertdick.org/eecs312/lectures/dic-l7.pdf ·...

41
Digital Integrated Circuits – EECS 312 http://robertdick.org/eecs312/ Teacher: Robert Dick Office: 2417-E EECS Email: [email protected] Phone: 734–763–3329 Cellphone: 847–530–1824 GSI: Shengshou Lu Office: 2725 BBB Email: [email protected] HW engineers SW engineers 0 1 2 3 4 5 6 7 8 9 10 200 220 240 260 280 300 Current (mA) Time (seconds) Typical Current Draw 1 sec Heartbeat 30 beats per sample Sampling and Radio Transmission 9 - 15 mA Heartbeat 1 - 2 mA Radio Receive for Mesh Maintenance 2 - 6 mA Low Power Sleep 0.030 - 0.050 mA Year of announcement 1950 1960 1970 1980 1990 2000 2010 Power density (Watts/cm 2 ) 0 2 4 6 8 10 12 14 Bipolar CMOS Vacuum IBM 360 IBM 370 IBM 3033 IBM ES9000 Fujitsu VP2000 IBM 3090S NTT Fujitsu M-780 IBM 3090 CDC Cyber 205 IBM 4381 IBM 3081 Fujitsu M380 IBM RY5 IBM GP IBM RY6 Apache Pulsar Merced IBM RY7 IBM RY4 Pentium II(DSIP) T-Rex Squadrons Pentium 4 Mckinley Prescott Jayhawk(dual) IBM Z9

Upload: vothien

Post on 24-Aug-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Digital Integrated Circuits – EECS 312

http://robertdick.org/eecs312/

Teacher: Robert DickOffice: 2417-E EECSEmail: [email protected]: 734–763–3329Cellphone: 847–530–1824

GSI: Shengshou LuOffice: 2725 BBBEmail: [email protected]

HW engineers SW engineers

0

1

2

3

4

5

6

7

8

9

10

200 220 240 260 280 300

Cu

rre

nt

(mA

)

Time (seconds)

Typical Current Draw 1 sec Heartbeat

30 beats per sample

Sampling andRadio Transmission

9 - 15 mA

Heartbeat1 - 2 mA

Radio Receive for

Mesh Maintenance

2 - 6 mA

Low Power Sleep0.030 - 0.050 mA

Year of announcement

1950 1960 1970 1980 1990 2000 2010

Pow

er d

ensi

ty (

Wat

ts/c

m2 )

0

2

4

6

8

10

12

14

Bipolar

CMOS

VacuumIBM 360

IBM 370 IBM 3033

IBM ES9000

Fujitsu VP2000

IBM 3090S

NTT

Fujitsu M-780

IBM 3090

CDC Cyber 205IBM 4381

IBM 3081Fujitsu M380

IBM RY5

IBM GP

IBM RY6

Apache

Pulsar

Merced

IBM RY7

IBM RY4

Pentium II(DSIP)

T-Rex

Squadrons

Pentium 4

Mckinley

Prescott

Jayhawk(dual)

IBM Z9

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Announcement

1 I will be in Montreal on Tuesday presenting a research paper atEmbedded Systems Week.

2 I will lecture at the Friday discussion time and location.

3 Mr. Lu will hold discussion at the Tuesday lecture time slot andlocation.

2 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Review

1 How many metal layers are there in modern processes?

2 What is the problem with isotropic etching?

3 Explain a method of anisotropic etching.

4 Why Cu?

5 Why damascene?

6 What is CMP?

7 What is DRC?

3 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Example low-k dielectric materials

Still active area.

Porous SiO2.

Carbon-doped SiO2.

Polymer.

4 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Synchronous integrated circuit organization

Combinational networks separated by memory elements.

When memory elements clocked, changed signals race throughnext stage.

Clock frequency must be low enough to allow signal to propagatealong worst-case combinational path in circuit.

Derive and explain.

5 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Lecture plan

1. Transistor dynamic behavior

2. Inverter switch model

3. Inverter transfer curves and parameter optimization

4. Homework

6 Robert Dick Digital Integrated Circuits

RC curves

0

1

2

3

4

5

0 2 4 6 8 10

VC

(V

)

Time (s)

f(vi, vf, τ, t) = vf + (vi - vf) e-t/τ

f(0, 5, 1, x)f(5, 0, 1, x)f(0, 5, 5, x)f(5, 0, 5, x)

v(t) = vf + (vi − vf )e−t/RC

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Diode dynamic behavior

t (s)

t (s)

I (A)

Vin (V)

8 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

MOSFET capacitances

9 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Gate capacitance

10 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Gate capacitance schematic

Mode CGCB CGCS CGCD CG

Cutoff CoxWL 0 0 CoxWL + 2COWTriode 0 CoxWL/2 CoxWL/2 CoxWL + 2COW

Saturation 0 2/3CoxWL 0 2/3CoxWL + 2COW

CO is the overlap capacitance.

11 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Gate capacitance variation with VGS

12 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Gate capacitance variation with saturation

13 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Diffusion capacitance diagram

14 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Diffusion capacitance expression

Cdiff = Cbot + Csw

Cdiff = CjA + CjswP

Cdiff = CjLSW + Cjsw (2LS + W )

Cbot : Bottom capacitance to substrate.

Csw : Side-wall capacitances for three non-channel sides.

Cj : Junction capacitance constant in F/m2 (base units).

A: Diffusion area.

Cjsw : Junction side-wall capacitance constant in F/m.

P: Perimeter for three non-channel sides.

LS : Length of diffusion region.

W : Width of diffusion region (and transistor).

15 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Junction capacitance

Cjsw is actually the diode capacitance we considered before.

What happens as reverse bias increases?

Can use worst-case approximation.

16 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Capacitance linearization I

Can approximate variable capacitance as fixed capacitance.

Uses fitting.

Ceq =∆Qj

∆VD

Ceq =Qj (Vhigh) − Qj (Vlow )

Vhigh − Vlow

Ceq = KeqCj0

Keq =−φm

0

(Vhigh − Vlow ) (1 −m)

((φ0 − Vhigh)1−m − (φ0 − Vlow )1−m

)

17 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Capacitance linearization II

Cj0: Capacitance when voltage bias of diode is 0 V.

m: Grading coefficient used to model effects of sharp (0.5) orlinear (0.33) junction transition (see Page 82 in textbook).

φ0 = φT ln(

NANDni

2

): Built-in potential, i.e., voltage across

junction due to diffusion at drift–diffusion equalibrium.

18 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Capacitance parameters for default 0.25 µm processtechnology

COX CO Cj

(fF/µm2) (fF/µm) (fF/µm2)

NMOS 6 0.31 2PMOS 6 0.27 1.9

mj φb Cjsw mjsw φbsw

(V) (fF/µm) (V)

NMOS 0.5 0.9 0.28 0.44 0.9PMOS 0.48 0.9 0.22 0.32 0.9

Properties of bottom and sidewall.

19 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Upcoming topics

MOSFET dynamic behavior.

Wires.

CMOS inverters.

20 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Review

What are the five most important to model capacitances forMOSFETs?

Explain their locations/sources.

How do they depend on operating region?

How are drain and source capacitances calculated?

21 Robert Dick Digital Integrated Circuits

Review: diode capacitance

CJ =CJ0

(1 − VD/Φ0)m

m = 0.5 for abrupt junctions, m = 0.33 for linear junctions

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

A change to gate insulation

Mark T. Bohr, Robert S. Chau, Tahir Ghani, and Kaizad Mistry.

The High-k Solution.IEEE Spectrum, October 2007.

What was the problem?

What was its cause?

What was the solution?

Key concepts: gate leakage, tunneling, high-κ dielectric, chargetraps, single atomic layer deposition, and threshold voltagecontrol.

23 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Lecture plan

1. Transistor dynamic behavior

2. Inverter switch model

3. Inverter transfer curves and parameter optimization

4. Homework

24 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Simple inverter context

25 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Inverter layout

26 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Implications of cell-based design

Power and ground sharing breaks isolation.

27 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Simplest switch model of inverter

28 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Switch model transient behavior

Repeatedly charging/discharging load C .

tpHL = f (RonCL).

Why?

29 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Inverter switch model tpHL derivation

Both tpHL and tpLH defined as time from 0.5VDD input crossing to0.5VDD output crossing. Assume step function on input.

VC = VDDe−t/RC (1)

Solve for VC = VDD/2.

VDD/2 = VDDe−t/RC (2)

1/2 = e−t/RC (3)

ln (1/2) = −t/RC (4)

t = −RC · −0.69 (5)

t = 0.69RC = 0.69τ (6)

30 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Lecture plan

1. Transistor dynamic behavior

2. Inverter switch model

3. Inverter transfer curves and parameter optimization

4. Homework

31 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

NMOSFET I–V characteristics

Review: Is this a velocity-saturated short-channel device? How can you tell?

32 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Inverter load characteristics

33 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

CMOS inverter transfer curve

34 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Switching threshold derivation I

Find voltage for which Vin = Vout . Known: Both NMOSFET andPMOSFET saturated at this point. Recall that

IDSAT = µCoxW

L

((VGS − VT )VDSAT − VDSAT

2

2

)(1)

35 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Switching threshold derivation II

Working to find VM . Find VGS at which NMOSFET and PMOSFETID values equal.

= kVDSAT (VGS − VT ) − VDSAT

2(2)

0 = knVDSATn

(VM − VTn − VDSATn

2

)+

kpVDSATp

(VM − VTp −

VDSATp

2

)(3)

36 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Switching threshold derivation III

Solve for VM .

VM =

(VTn + VDSATn

2

)+ r

(VDD + VTp +

VDSATp

2

)1 + r

. (4)

r =kpVDSATp

knVDSATn=νsatpWp

νsatnWn(5)

ν =µξ

1 + ξ/ξc(6)

ν: Charge carrier speed.

ξ: Field strength.

ξc : Field strength at which scattering limits further increase incarrier speed.

37 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Inverter threshold dependence on transistor conductanceratio

38 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Upcoming topics

CMOS inverter dynamic behavior.

Logic gates.

39 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Lecture plan

1. Transistor dynamic behavior

2. Inverter switch model

3. Inverter transfer curves and parameter optimization

4. Homework

40 Robert Dick Digital Integrated Circuits

Transistor dynamic behaviorInverter switch model

Inverter transfer curves and parameter optimizationHomework

Homework assignment

1 October: Read sections 3.3.3, 5.1, 5.2, 1.3.2, and 1.3.3 in

J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital IntegratedCircuits: A Design Perspective.Prentice-Hall, second edition, 2003. Read as much as you can by27 September.

26 October: Extended Homework 1 due date due to difficultygetting help during office hours.

3 October: Lab 2.

41 Robert Dick Digital Integrated Circuits