diffusion in multicomponent solids from first-principles

70
First-principles prediction of diffusion coefficients in non-dilute, multi-component solids Anton Van der Ven Department of Materials Science and Engineering University of Michigan Ann Arbor, MI

Upload: vantuyen

Post on 11-Feb-2017

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Diffusion in Multicomponent Solids from First-Principles

First-principles prediction of

diffusion coefficients in non-dilute,

multi-component solids

Anton Van der VenDepartment of Materials Science and Engineering

University of Michigan

Ann Arbor, MI

Page 2: Diffusion in Multicomponent Solids from First-Principles

Coarse graining time

Diffusion in a crystal

Two levels of time coarse graining

Page 3: Diffusion in Multicomponent Solids from First-Principles

Coarse graining time

Diffusion in a crystal

Two levels of time coarse graining

kT

EBexp*

Short-time coarse graining:

transition state theory

- MD simulations

- Harmonic approximation

Vineyard, J. Phys. Chem. Solids 3, 121 (1957).

Page 4: Diffusion in Multicomponent Solids from First-Principles

Coarse graining time

Diffusion in a crystal

Two levels of time coarse graining

kT

EBexp*

Short-time coarse graining:

transition state theory

- MD simulations

- Harmonic approximation

A second level of coarse graining

that leads to Fick’s law

J D C

Green-Kubo

Kinetic coefficients derived from

fluctuations at equilibrium

Vineyard, J. Phys. Chem. Solids 3, 121 (1957).Zwanzig, Annu. Rev. Phys. Chem. 16, 67 (1965).

Page 5: Diffusion in Multicomponent Solids from First-Principles

Diffusion

• Distinction between:

– interstitial diffusion

– substitutional diffusion

Page 6: Diffusion in Multicomponent Solids from First-Principles

Interstitial diffusion

• C diffusion in bcc Iron (steel)

• Li diffusion in transition metal oxide host

• O diffusion on Pt-(111) surface

In all examples, diffusion occurs on a rigid lattice

which is externally imposed by a host or substrate

Page 7: Diffusion in Multicomponent Solids from First-Principles

Example of interstitial diffusion

Page 8: Diffusion in Multicomponent Solids from First-Principles

Irreversible thermodynamics:

interstitial diffusion of one component

LJ

CDJ

dC

dLD

Page 9: Diffusion in Multicomponent Solids from First-Principles

Notation

M = number of lattice sites

N = number of diffusing atoms

vs = volume per lattice site

x = N/M

C=x/vs

Page 10: Diffusion in Multicomponent Solids from First-Principles

Interstitial diffusion:

one component

LD

C

Kubo-Green relations

(linear response statistical mechanics)

L1

(2d)tMvskT

R i t

i 1

N2

Thermodynamic factor

Kinetic coefficient

A. Van der Ven, G. Ceder, Handbook of Materials Modeling, chapt. 1.17, Ed. S. Yip, Springer (2005).

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Page 11: Diffusion in Multicomponent Solids from First-Principles

More familiar form

~JDD

˜ kT

ln x

DJ

1

2d t

1

N

R i t

i 1

N2

Thermodynamic factor

Self diffusion coefficient

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

J D C

Page 12: Diffusion in Multicomponent Solids from First-Principles

R i t

DJ

1

2d t

1

N

R i t

i 1

N2

Trajectories can be sampled with

kinetic Monte Carlo simulations

R j t

Page 13: Diffusion in Multicomponent Solids from First-Principles

Common approximation

~*DD

x

kT

ln

~

D*

Ri t2

2d t

Thermodynamic factor

Tracer diffusion coefficient

R. Gomer, Rep. Prog. Phys. 53, 917 (1990)/

Page 14: Diffusion in Multicomponent Solids from First-Principles

Intercalation Oxide as Cathode in

Rechargeable Lithium Battery

LixCoO2

Page 15: Diffusion in Multicomponent Solids from First-Principles

Example:

LixCoO2

Page 16: Diffusion in Multicomponent Solids from First-Principles

Configurational Variables

Binary system alloy (A, B atoms)

Assign occupation variables to each position in crystal

1i

1i

if atom A occupies site i

if atom B occupies site i

Total of 2N configurations

Page 17: Diffusion in Multicomponent Solids from First-Principles

Polynomials of occupation variables

form a basis in configuration space

ji

m n o

kl

J. M. Sanchez et al Physica A128, 334, 1984

Page 18: Diffusion in Multicomponent Solids from First-Principles

Polynomials of occupation variables

form a basis in configuration space

ji

m n o

kl

E

Vo Vi i

i

Vi, j i j

i, j

Vi, j,k i j k

i, j,k

...

J. M. Sanchez et al Physica A128, 334, 1984

Page 19: Diffusion in Multicomponent Solids from First-Principles

First-principles energies of

a “few” excitations

Lattice Model Hamiltonian

Monte Carlo

Thermodynamics

E

Vo Vi i

i

Vi, j i j

i, j

Vi, j,k i j k

i, j,k

...

Z exp

E

kBT

F kBT ln Z

2

1

1 1

2

eN

i nuc i nuci ji i j

H V r E Rr r

Extrapolate to

all other excitations

Page 20: Diffusion in Multicomponent Solids from First-Principles

First principles energies (LDA)

of different lithium-vacancy configurations

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 21: Diffusion in Multicomponent Solids from First-Principles

Cluster expansion for

LixCoO2

, , ,

, , ,

...o i i i j i j i j k i j k

i i j i j k

E V V V V

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 22: Diffusion in Multicomponent Solids from First-Principles

Calculated LixCoO2 phase diagram

A. Van der Ven, et al, Phys. Rev. B 58 (6), p. 2975-87 (1998).

Page 23: Diffusion in Multicomponent Solids from First-Principles

Individual hops:

Transition state theory

kT

EBexp*

BE

Can be calculated with

First-principles

Density functional theory

Page 24: Diffusion in Multicomponent Solids from First-Principles

Migration mechanism in LixCoO2

Single vacancy hop

mechanism

Divacancy hop

Mechanism

Oxygen

Cobalt

Lithium

Page 25: Diffusion in Multicomponent Solids from First-Principles

Single vacancy hop Divacancy hop

Oxygen

Cobalt

Lithium

A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys Rev. B 64 (2001) 064112

Page 26: Diffusion in Multicomponent Solids from First-Principles

Many types of hop possibilities

in the lithium plane

Page 27: Diffusion in Multicomponent Solids from First-Principles

Migration barriers depend

configuration and concentration

Divacancy

mechanism

Single-vacancy

mechanism

Page 28: Diffusion in Multicomponent Solids from First-Principles

Barrier dependence on concentration

Co3+ Co4+

as lithium is removed:

increased electrostatic

repulsion for

Li+ in the activated state

Page 29: Diffusion in Multicomponent Solids from First-Principles

Calculated diffusion coefficient(First Principles cluster expansion + kinetic Monte Carlo)

JDDDiffusion coefficient

at 300 KThermodynamic

factor

A. Van der Ven, G. Ceder, M. Asta, P.D. Tepesch, Phys Rev. B 64 (2001) 064112

Due to Li-ordering

Page 30: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 31: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 32: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 33: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 34: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 35: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 36: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 37: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 38: Diffusion in Multicomponent Solids from First-Principles

Divacancy diffusion mechanism

Page 39: Diffusion in Multicomponent Solids from First-Principles

Divacancy separation

Page 40: Diffusion in Multicomponent Solids from First-Principles

Divacancy separation

Page 41: Diffusion in Multicomponent Solids from First-Principles

Diffusion in substitutional solids

Connecting atomistic hop mechanisms with macroscopic

diffusion coefficients

Real solids contain grain boundaries

and dislocations which serve as vacancy

sources and sinks

Diffusion within

a perfect crystal

Page 42: Diffusion in Multicomponent Solids from First-Principles

Individual hops:

Transition state theory

kT

EBexp*

BE

B

Page 43: Diffusion in Multicomponent Solids from First-Principles

Thermodynamic driving forces for

substitutional diffusion

BABAAAA LLJ ~~

BBBABAB LLJ ~~

VAA~

VBB~

Page 44: Diffusion in Multicomponent Solids from First-Principles

LAA

R A t

2

2d tVkT LBB

R B t

2

2d tVkT

LAB

R A t

R B t

2d tVkTLBA

Kubo Green formalism

BABAAAA LLJ ~~

BBBABAB LLJ ~~

Page 45: Diffusion in Multicomponent Solids from First-Principles

Kinetic coefficients (fcc lattice in dilute vacancy limit, ideal solution)

tMd

tRtR

L

ji

ij2

~

Kubo-Green

Page 46: Diffusion in Multicomponent Solids from First-Principles

Diffusion in Al-Li alloys

Dark field TEM

A. Kalogeridis, J. Pesieka, E. Nembach, Acta Mater 47 (1999) 1953

Page 47: Diffusion in Multicomponent Solids from First-Principles

fcc Al-Li alloy

Binary cluster expansion

, , ,

, , ,

...o i i i j i j i j k i j k

i i j i j k

E V V V V

1i

1i

Li at site i

Al at site i

Fit to LDA energies of

70 different Al-Li

arrangements on fcc

Page 48: Diffusion in Multicomponent Solids from First-Principles

Calculated thermodynamic and kinetic

properties of Al-Li alloy

First principles cluster expansion + Monte Carlo

Page 49: Diffusion in Multicomponent Solids from First-Principles

Equilibrium vacancy concentration(Monte Carlo applied to cluster expansion)

A. Van der Ven, G. Ceder, Phys. Rev. B71, 054102(2005)

Page 50: Diffusion in Multicomponent Solids from First-Principles

Vacancy surrounds itself by Al

Short range order around a vacancy

750 Kelvin

Page 51: Diffusion in Multicomponent Solids from First-Principles

Vacancies reside on lithium sublattice

in L12

Al

Li

600 Kelvin

Page 52: Diffusion in Multicomponent Solids from First-Principles

Migration barriers for lithium and

aluminum differ by ~150 meV

Li barriers

Al barriers

vAl*

4.5 1013

Hz

vLi*

7 1013

Hz

Calculated (LDA) in

107 atom supercells

Page 53: Diffusion in Multicomponent Solids from First-Principles

L-coefficients for Li-Al

contains an ordered phase

JLi LLiLi˜

Li LLiAl˜

Al

JAl LAlLi˜

Li LAlAl˜

Al

Page 54: Diffusion in Multicomponent Solids from First-Principles

Frequency of hop angles between

successive hops

Al

Li

A. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Page 55: Diffusion in Multicomponent Solids from First-Principles

BABAAAA CDCDJ

BBBABAB CDCDJ

BABAAAA LLJ ~~

BBBABAB LLJ ~~

Perfect crystalFickian flux expressions

DAA DAB

DBA DBB

˜ L AA˜ L AB

˜ L BA˜ L BB

˜ A

kT

xA

˜ A

kT

xB

˜ B

kT

xA

˜ B

kT

xB

Page 56: Diffusion in Multicomponent Solids from First-Principles

Diagonalize the D-matrix

Yields a mode corresponding to

(a) density relaxation (vacancy mobility)

(b) interdiffusion

1

0

0EE

DD

DD

BBBA

ABAA

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Page 57: Diffusion in Multicomponent Solids from First-Principles

Physical meaning of modes + and -

Page 58: Diffusion in Multicomponent Solids from First-Principles

Physical meaning of modes + and -

Density fluctuations relax with a

time constant of +

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Page 59: Diffusion in Multicomponent Solids from First-Principles

Physical meaning of modes + and -

Density fluctuations relax with a

time constant of +

Compositional inhomogeneities

decay with a time constant of

K. W. Kehr, et al, Phys. Rev. B 39, 4891 (1989)

Page 60: Diffusion in Multicomponent Solids from First-Principles

Vacancy mobility and

interdiffusion

Random alloy

Thermodynamically ideal

AlxLi1-x alloy

Non-ideal thermodynamics

Page 61: Diffusion in Multicomponent Solids from First-Principles

The role of vacancy sources and

sinks

Real solids contain grain boundaries

and dislocations which serve as vacancy

sources and sinks

Diffusion within

a perfect crystal

Page 62: Diffusion in Multicomponent Solids from First-Principles

Uniform source sink

approximation

BABAAAA LLJ ~~

BBBABAB LLJ ~~

0V

AAA CDJ

BBB CDJ

0Vd

Gibbs-Duhem

Assume vacancy concentration

in equilibrium everywhere

0BBAA dxdx

Page 63: Diffusion in Multicomponent Solids from First-Principles

Lattice frame and laboratory frame of

reference

BAmVmlattice JJVJVv

VAAA JxJJ~

Fluxes in the laboratory frame

VBBB JxJJ~

Page 64: Diffusion in Multicomponent Solids from First-Principles

Lattice frame and laboratory frame of

reference

BAmVmlattice JJVJVv

VAAA JxJJ~

Fluxes in the laboratory frame

VBBB JxJJ~

BVBB CDJxJ~

BV CWJ~

BAAB DxDxD~

BA DDW~

Drift

Interdiffusion

Page 65: Diffusion in Multicomponent Solids from First-Principles

Comparisons of different treatments

Random alloy

B=100x AB=10x A

Page 66: Diffusion in Multicomponent Solids from First-Principles

Physical difference between D and

Perfect crystalPlenty of vacancy

sources and sinks

~

D~

Page 67: Diffusion in Multicomponent Solids from First-Principles

Al

Li

Calculated interdiffusion

coefficient

A. Van der Ven, G. Ceder, Phys. Rev. Lett. 94, 045901 (2005).

Page 68: Diffusion in Multicomponent Solids from First-Principles

Conclusion

• First-principles methods can be used to

comprehensively characterize diffusion

in interstitial and substitutional alloys

• The role of vacancy sources and sinks

needs to be further investigated (both

theoretically as well as experimentally)

Page 69: Diffusion in Multicomponent Solids from First-Principles

Available migration mechanisms for

each lithium ion

Channels into a

divacancy

Number of vacancies

around lithium

Channels into

isolated vacancies

Page 70: Diffusion in Multicomponent Solids from First-Principles

Diffusion occurs with a divacancy

mechanism