deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · deuteron...

38
Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨ onig in collaboration with S. N. More, R. J. Furnstahl, and K. Hebeler Nuclear Theory Workshop TRIUMF, Vancouver, BC February 23, 2016 More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015) and work in progress Deuteron electrodisintegration with unitarily evolved potentials p. 1

Upload: others

Post on 14-Feb-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron electrodisintegration

with unitarily evolved potentials

Sebastian Konigin collaboration with S. N. More, R. J. Furnstahl, and K. Hebeler

Nuclear Theory Workshop

TRIUMF, Vancouver, BC

February 23, 2016

More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015)

and work in progress

Deuteron electrodisintegration with unitarily evolved potentials – p. 1

Page 2: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Motivation

nuclear structureground states, stability,

transitions, etc.

Napy1kenobi/Sjlegg, Wikimedia Commons

reactionsdisintegration, scattering, . . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 2

Page 3: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Motivation

nuclear structureground states, stability,

transitions, etc.

Napy1kenobi/Sjlegg, Wikimedia Commons

reactionsdisintegration, scattering, . . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 2

Page 4: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Motivation

nuclear structureground states, stability,

transitions, etc.

Napy1kenobi/Sjlegg, Wikimedia Commons

GNOME icon artistsreactions

disintegration, scattering, . . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 2

Page 5: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Motivation

Typical ab initio calculation

(chiral) potential → SRG → many-body method → result

evolve (“soften”) interaction with unitary transformations

transform Hamiltonian with flow equation: dHs/ds = [[G,Hs], Hs], λ = 1/s1/4

equivalently: unitary transformation H → Hλ = UλH U†λ Vλ

→ interaction becomes amenable to numerical methodssee, e.g., Bogner et al., PPNP 65 94 (2010)

matrix elements 〈k|V |k′〉 evolve towards diagonal form

R. Furnstahl, HUGS 2014 lecture slides

λ = effective resolution scale

Deuteron electrodisintegration with unitarily evolved potentials – p. 3

Page 6: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity

SRG evolution is a unitary transformation→ eigenvalues stay invariant, eigenstates do not!

〈ψ|U †λ︸ ︷︷ ︸

〈ψλ|

UλH U †λ︸ ︷︷ ︸

Uλ|ψ〉︸ ︷︷ ︸

|ψλ〉

S-wave

2H, AV18

k (fm-1)0.0 0.5 1.0 1.5 2.0

ψ (

a.u.) λ=∞

λ=2.0 fm-1

λ=1.5 fm-1

D-wave

k (fm-1)0 1 2 3 4

high-momentum modes are suppressed by SRG evolution. . .

. . . but of course the physics does not go away!

Deuteron electrodisintegration with unitarily evolved potentials – p. 4

Page 7: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity

SRG evolution is a unitary transformation→ eigenvalues stay invariant, eigenstates do not!

〈ψ|U †λ︸ ︷︷ ︸

〈ψλ|

UλH U †λ︸ ︷︷ ︸

Uλ|ψ〉︸ ︷︷ ︸

|ψλ〉

S-wave

2H, AV18

k (fm-1)0.0 0.5 1.0 1.5 2.0

ψ (

a.u.) λ=∞

λ=2.0 fm-1

λ=1.5 fm-1

D-wave

k (fm-1)0 1 2 3 4

high-momentum modes are suppressed by SRG evolution. . .

. . . but of course the physics does not go away!

bottom line: all operators have to be evolved consistently!

Deuteron electrodisintegration with unitarily evolved potentials – p. 4

Page 8: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Decoupling and factorization

SRG evolution can be interpreted as a change in resolution

choice of potential and λ introduce scheme and scale dependence

treating nuclear structure and reactions separately assumes factorization

AA

e

e′

N

N

−2

kk′

qp′1

p′2

p′1

p′2p1

p2

p′′2

p′′1

q ! λ

k < λ

k′ < λ

∆λ=⇒

k < λ

k′ < λ

∆Vλ

Furnstahl, 1309.5771 [nucl-th]

Questions

is there a net simplification for reaction calculations?

how to understand knock-out reactions in the absence of SRCs?

Deuteron electrodisintegration with unitarily evolved potentials – p. 5

Page 9: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Status of SRG operator evolution

static deuteron properties Anderson et al., PRC 82 054001 (2010)

momentum distribution, 〈r2〉, . . .no pathologies in evolved operatorssmall evolution effects for low-momentum observables

Deuteron electrodisintegration with unitarily evolved potentials – p. 6

Page 10: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Status of SRG operator evolution

static deuteron properties Anderson et al., PRC 82 054001 (2010)

momentum distribution, 〈r2〉, . . .no pathologies in evolved operatorssmall evolution effects for low-momentum observables

ground-state properties of light nuclei Schuster et al., PRC 90 011301 (2014)

dipole transitions of 4He Schuster et al., PRC 92 014320(R) (2015)

→ evolution effects as important as three-body forces

Deuteron electrodisintegration with unitarily evolved potentials – p. 6

Page 11: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Status of SRG operator evolution

static deuteron properties Anderson et al., PRC 82 054001 (2010)

momentum distribution, 〈r2〉, . . .no pathologies in evolved operatorssmall evolution effects for low-momentum observables

ground-state properties of light nuclei Schuster et al., PRC 90 011301 (2014)

dipole transitions of 4He Schuster et al., PRC 92 014320(R) (2015)

→ evolution effects as important as three-body forces

density operators and short-range correlations Neff et al., PRC 92 024003 (2015)

→ essential to use evolved operators for observable sensitive toshort-range physics

Deuteron electrodisintegration with unitarily evolved potentials – p. 6

Page 12: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Status of SRG operator evolution

static deuteron properties Anderson et al., PRC 82 054001 (2010)

momentum distribution, 〈r2〉, . . .no pathologies in evolved operatorssmall evolution effects for low-momentum observables

ground-state properties of light nuclei Schuster et al., PRC 90 011301 (2014)

dipole transitions of 4He Schuster et al., PRC 92 014320(R) (2015)

→ evolution effects as important as three-body forces

density operators and short-range correlations Neff et al., PRC 92 024003 (2015)

→ essential to use evolved operators for observable sensitive toshort-range physics

What about nuclear knock-out reactions?

→ study deuteron electrodisintegration!

Deuteron electrodisintegration with unitarily evolved potentials – p. 6

Page 13: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

use deuteron electrodisintegration as controlled laboratory

study evolution of initial state,current operator, and FSI

→ all mixed under evolution

no three-body effects

rich kinematic structure

Deuteron electrodisintegration with unitarily evolved potentials – p. 7

Page 14: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

use deuteron electrodisintegration as controlled laboratory

Yang+Phillips (2013), Arenhovel et al. (1988), Donnelly+Raskin (1986), . . .

study evolution of initial state,current operator, and FSI

→ all mixed under evolution

no three-body effects

rich kinematic structure

longitudinal structure function

d3σ

dk′labdΩlabe

∼ vLfL + vT fT + · · ·

vL, vT , . . . : kinematic factors

fL, fT , . . . : observables

Deuteron electrodisintegration with unitarily evolved potentials – p. 7

Page 15: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

use deuteron electrodisintegration as controlled laboratory

Yang+Phillips (2013), Arenhovel et al. (1988), Donnelly+Raskin (1986), . . .

study evolution of initial state,current operator, and FSI

→ all mixed under evolution

no three-body effects

rich kinematic structure

longitudinal structure function

d3σ

dk′labdΩlabe

∼ vLfL + vT fT + · · ·

vL, vT , . . . : kinematic factors

fL, fT , . . . : observables

Matrix elements

fL(E′,q2; cos θ′) ∝ |〈ψf |J0|ψi〉|2

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

E′ = energy of outgoing nucleons (c.m. frame)

θ′ = angle of outgoing nucleons (c.m. frame)

q2 = momentum transfer in c.m. frame

Deuteron electrodisintegration with unitarily evolved potentials – p. 7

Page 16: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

Matrix elements

fL(E′,q2; cos θ′) ∝ |〈ψf (E′, cos θ′)|J0(q2)|ψi〉|2

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

|ψi〉 = deuteron wavefunction

|ψf 〉 = |φ〉 +G0t|φ〉 = NN scattering state

J0 = e.m. current from virtual photon

Deuteron electrodisintegration with unitarily evolved potentials – p. 8

Page 17: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

Matrix elements

fL(E′,q2; cos θ′) ∝ |〈ψf (E′, cos θ′)|J0(q2)|ψi〉|2

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

|ψi〉 = deuteron wavefunction

|ψf 〉 = |φ〉 +G0t|φ〉 = NN scattering state

J0 = e.m. current from virtual photon

e.m. current given in terms of nucleon formfactors (T, T1 = isospin):

〈k1 T1|J0(q)|k2 T = 0〉

=1

2

(GpE + (−1)T1GnE

)δ(k1 − k2 − q/2) +

1

2

((−1)T1GpE +GnE

)δ(k1 − k2 + q/2)

evolution of initial/final state: just replace V →Vλ, for current: UλJ0U†λ

Deuteron electrodisintegration with unitarily evolved potentials – p. 8

Page 18: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Deuteron disintegration

Matrix elements

fL(E′,q2; cos θ′) ∝ |〈ψf (E′, cos θ′)|J0(q2)|ψi〉|2

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

|ψi〉 = deuteron wavefunction

|ψf 〉 = |φ〉 +G0t|φ〉 = NN scattering state

J0 = e.m. current from virtual photon

e.m. current given in terms of nucleon formfactors (T, T1 = isospin):

〈k1 T1|J0(q)|k2 T = 0〉

=1

2

(GpE + (−1)T1GnE

)δ(k1 − k2 − q/2) +

1

2

((−1)T1GpE +GnE

)δ(k1 − k2 + q/2)

evolution of initial/final state: just replace V →Vλ, for current: UλJ0U†λ

study evolution of individual pieces (and their interplay)!

Deuteron electrodisintegration with unitarily evolved potentials – p. 8

Page 19: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity at work

Invariance of matrix elements

since U†λUλ = 1, matrix elements are invariant: 〈ψf |O|ψi〉 = 〈ψλ

f |Oλ|ψλi 〉

〈ψλf |Oλ|ψλi 〉 = 〈ψf |O|ψi〉

Deuteron electrodisintegration with unitarily evolved potentials – p. 9

Page 20: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity at work

Invariance of matrix elements

since U†λUλ = 1, matrix elements are invariant: 〈ψf |O|ψi〉 = 〈ψλ

f |Oλ|ψλi 〉

evolved states: |ψλi 〉 ≡ U |ψi〉 = |ψi〉 + U |ψi〉

〈ψλf |Oλ|ψλi 〉 = 〈ψf |O|ψi〉

+ 〈ψf |O U |ψi〉︸ ︷︷ ︸δ|ψi〉

Deuteron electrodisintegration with unitarily evolved potentials – p. 9

Page 21: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity at work

Invariance of matrix elements

since U†λUλ = 1, matrix elements are invariant: 〈ψf |O|ψi〉 = 〈ψλ

f |Oλ|ψλi 〉

evolved states: |ψλi 〉 ≡ U |ψi〉 = |ψi〉 + U |ψi〉, same for 〈ψf |

〈ψλf |Oλ|ψλi 〉 = 〈ψf |O|ψi〉

+ 〈ψf |O U |ψi〉︸ ︷︷ ︸δ|ψi〉

− 〈ψf |U O|ψi〉︸ ︷︷ ︸δ〈ψf |

Deuteron electrodisintegration with unitarily evolved potentials – p. 9

Page 22: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity at work

Invariance of matrix elements

since U†λUλ = 1, matrix elements are invariant: 〈ψf |O|ψi〉 = 〈ψλ

f |Oλ|ψλi 〉

evolved states: |ψλi 〉 ≡ U |ψi〉 = |ψi〉 + U |ψi〉, same for 〈ψf |

evolved operator: Oλ ≡ U O U† = O + U O − O U + O(U2)

〈ψλf |Oλ|ψλi 〉 = 〈ψf |O|ψi〉

+ 〈ψf |O U |ψi〉︸ ︷︷ ︸δ|ψi〉

− 〈ψf |U O|ψi〉︸ ︷︷ ︸δ〈ψf |

+ 〈ψf |U O|ψi〉 − 〈ψf |O U |ψi〉︸ ︷︷ ︸δO

Deuteron electrodisintegration with unitarily evolved potentials – p. 9

Page 23: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

SRG unitarity at work

Invariance of matrix elements

since U†λUλ = 1, matrix elements are invariant: 〈ψf |O|ψi〉 = 〈ψλ

f |Oλ|ψλi 〉

evolved states: |ψλi 〉 ≡ U |ψi〉 = |ψi〉 + U |ψi〉, same for 〈ψf |

evolved operator: Oλ ≡ U O U† = O + U O − O U + O(U2)

〈ψλf |Oλ|ψλi 〉 = 〈ψf |O|ψi〉

+ 〈ψf |O U |ψi〉︸ ︷︷ ︸δ|ψi〉

− 〈ψf |U O|ψi〉︸ ︷︷ ︸δ〈ψf |

+ 〈ψf |U O|ψi〉 − 〈ψf |O U |ψi〉︸ ︷︷ ︸δO

individual changes add up to zero → unitarity preserved

changes in initial and final states compensated by the evolved operator

→ physics “reshuffled” between structure and reaction

Deuteron electrodisintegration with unitarily evolved potentials – p. 9

Page 24: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Computational issues

Only a two-body system, but still computationally intensive. . .

need off-shell T-matrices in many (coupled) partial waves

delta functions in current operator

large number of intermediate sums and integrals, e.g. 〈φ|t†λG†0UJ0 U

†|ψλi 〉

Solutions

implementation completely in modern C++11

object-oriented code design → easily extendable!functional techniques → stay close to math on paper!rigorous const-ness annotations → thread-safety easily achieved!

use Schrodinger and LS equations for high-accuracy interpolation

transparent caching techniques (“memoization”)

parallel implementation with Intel TBB library (scales very well)

Deuteron electrodisintegration with unitarily evolved potentials – p. 10

Page 25: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Evolution in kinematic landscape

Importance of consistent evolution depends on kinematics!

More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015)

Deuteron electrodisintegration with unitarily evolved potentials – p. 11

Page 26: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Evolution effects

0 30 60 90 120 150 180

θ′ [deg]

0

2

4

6

8

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 10 fm−2

〈φ|J0|ψi〉

〈ψf |J0|ψi〉

〈ψf |J0|ψλi 〉

〈ψf |Jλ0 |ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

1

More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015)

Deuteron electrodisintegration with unitarily evolved potentials – p. 12

Page 27: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Evolution effects

0 30 60 90 120 150 180

θ′ [deg]

0

2

4

6

8

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 10 fm−2

〈φ|J0|ψi〉

〈ψf |J0|ψi〉

〈ψf |J0|ψλi 〉

〈ψf |Jλ0 |ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

1

More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015)

0 1 2 3 4

k [fm−1

]

10−5

10−4

10−3

10−2

10−1

100

101

102

n(k

) [

fm3]

AV18

Vλ at λ = 2 fm

−1

Vλ at λ = 1.5 fm

−1

CD-Bonn

N3LO (500 MeV)

on the quasi-free ridge:

energy transfer ω = 0

nucleons on-shell, FSI are minimal

only low-momentum modes are probed

low-momentum modes stay invariant! →

Deuteron electrodisintegration with unitarily evolved potentials – p. 12

Page 28: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Evolution away from the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.0000

0.0002

0.0004

0.0006

fL[fm]

λ = 1.5 fm−1 E ′ = 30MeV q2 = 25 fm−2

〈ψf |J0|ψi〉

〈ψf |J0|ψλi 〉

〈ψf |Jλ0 |ψi〉

〈ψλf |J0|ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

3’

0 30 60 90 120 150 180

θ′ [deg]

0.00

0.05

0.10

0.15

fL[fm]

λ = 1.5 fm−1 E ′ = 10MeV q2 = 4 fm−2

〈φ|J0|ψi〉

〈ψf |J0|ψi〉

〈ψf |J0|ψλi 〉

〈ψf |Jλ0 |ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

2

More, SK, Furnstahl, Hebeler, PRC 92 064002 (2015)

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

〈ψf |J0|ψλi 〉

〈ψλf |J0|ψi〉

〈ψf |Jλ0 |ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

4

Deuteron electrodisintegration with unitarily evolved potentials – p. 13

Page 29: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Dissection of evolution effects

Detailed look at evolution above the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

Deuteron electrodisintegration with unitarily evolved potentials – p. 14

Page 30: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Dissection of evolution effects

Detailed look at evolution above the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

〈ψf |J0|ψλi 〉

destructive interference between IA and FSI parts

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

small angles, IA dominates over FSI, vice versa for large angles

initial-state evolution suppresses IA contribution

Deuteron electrodisintegration with unitarily evolved potentials – p. 14

Page 31: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Dissection of evolution effects

Detailed look at evolution above the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

〈ψf |J0|ψλi 〉

〈ψλf |J0|ψi〉

destructive interference between IA and FSI parts

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

small angles, IA dominates over FSI, vice versa for large angles

initial-state evolution suppresses IA contribution

situation reversed for final-state evolution

Deuteron electrodisintegration with unitarily evolved potentials – p. 14

Page 32: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Dissection of evolution effects

Detailed look at evolution above the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

〈ψf |J0|ψλi 〉

〈ψλf |J0|ψi〉

〈ψf |Jλ0 |ψi〉

destructive interference between IA and FSI parts

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

small angles, IA dominates over FSI, vice versa for large angles

initial-state evolution suppresses IA contribution

situation reversed for final-state evolution

Deuteron electrodisintegration with unitarily evolved potentials – p. 14

Page 33: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Dissection of evolution effects

Detailed look at evolution above the quasi-free ridge

0 30 60 90 120 150 180

θ′ [deg]

0.000

0.005

0.010

fL[fm]

λ = 1.5 fm−1 E ′ = 100MeV q2 = 0.5 fm−2

〈ψf |J0|ψi〉x

〈ψf |J0|ψλi 〉

〈ψλf |J0|ψi〉

〈ψf |Jλ0 |ψi〉

〈ψλf |Jλ0 |ψ

λi 〉

destructive interference between IA and FSI parts

〈ψf |J0|ψi〉 = 〈φ|J0|ψi〉︸ ︷︷ ︸IA

+ 〈φ|tG0J0|ψi〉︸ ︷︷ ︸FSI

small angles, IA dominates over FSI, vice versa for large angles

initial-state evolution suppresses IA contribution

situation reversed for final-state evolution

Deuteron electrodisintegration with unitarily evolved potentials – p. 14

Page 34: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

So what exactly happens to the current operator?

→ work in progress. . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 15

Page 35: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Current evolution status

delta functions complicate analysis. . .

〈k1 T1|J0(q)|k2 T = 0〉

=1

2

(Gp

E+(−1)T1GnE

)δ(k1−k2−q/2)+

1

2

((−1)T1Gp

E+GnE

)δ(k1−k2+q/2)

look at partial-wave matrix elements of Jλ0 (q) − J0(q)

q2 = 16 fm-2

λ = 4.0 fm-1

k' (f

m-1)

L' =

0

0

1

2

3

4

k (fm-1) L = 00 1 2 3 4

λ = 2.0 fm-1

k (fm-1)0 1 2 3 4

-0.08

-0.05

-0.03

0.00

0.03

0.05

0.08λ = 1.5 fm-1

k (fm-1)0 1 2 3 4

→ development of strength at low momenta, but systematics not yet clear. . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 16

Page 36: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Current evolution status

delta functions complicate analysis. . .

〈k1 T1|J0(q)|k2 T = 0〉

=1

2

(Gp

E+(−1)T1GnE

)δ(k1−k2−q/2)+

1

2

((−1)T1Gp

E+GnE

)δ(k1−k2+q/2)

look at partial-wave matrix elements of Jλ0 (q) − J0(q)

q2 = 16 fm-2

λ = 4.0 fm-1

k' (f

m-1)

L' =

2

0

1

2

3

4

k (fm-1) L = 00 1 2 3 4

λ = 2.0 fm-1

k (fm-1)0 1 2 3 4

-0.004

-0.002

0

0.002

0.004λ = 1.5 fm-1

k (fm-1)0 1 2 3 4

→ development of strength at low momenta, but systematics not yet clear. . .

Deuteron electrodisintegration with unitarily evolved potentials – p. 16

Page 37: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Summary

operator – and FSI – evolution has to compensate suppression ofhigh-momentum modes (unitarity!)

effects of SRG evolution depend (strongly) on kinematics. . .

. . . but in a systematic way

evolution effects are minimal for quasi-free kinematics

scale and scheme dependence is, in general, very significant

→ important to use evolved operators for consistency!

Deuteron electrodisintegration with unitarily evolved potentials – p. 17

Page 38: Deuteron electrodisintegration with unitarily evolved potentials · 2016-02-26 · Deuteron electrodisintegration with unitarily evolved potentials Sebastian K¨onig in collaboration

Outlook

extend to larger systems

inclusion of three-body forcesevolution of three-body currents→ power counting for operator evolution?

understand current evolution in more detail

emergence of many-body components?impact on factorization assumptions?

study electrodisintegration in pionless EFT→ simplicity should allow analytical insights!

(ω,q)

n, −p

p, p (ω,q)

n, −p

p, p

cf. Christlmeier+Grießhammer, PRC 77 064001 (2008)

Deuteron electrodisintegration with unitarily evolved potentials – p. 18