deterministic mediated superdense coding with linear optics.pdf

Upload: alfonso

Post on 24-Feb-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    1/8

    Physics Letters A 380 (2016) 848855

    Contents lists available at ScienceDirect

    Physics

    Letters

    A

    www.elsevier.com/locate/pla

    Deterministic mediated superdense coding with linear optics

    Mladen Pavicic a,b,

    a DepartmentofPhysicsNanooptics,FacultyofMathematicsandNaturalSciences,HumboldtUniversityofBerlin,Germanyb CenterofExcellenceforAdvancedMaterialsandSensingDevices(CEMS),PhotonicsandQuantumOpticsUnit,RuderBokovicInstitute,Zagreb,Croatia

    a r t i c l e i n f o a b s t r a c t

    Articlehistory:

    Received20October2015Receivedinrevisedform22December2015

    Accepted

    30

    December

    2015Availableonline6January2016CommunicatedbyP.R.Holland

    Keywords:

    QuantuminformationQuantumopticsQuantumcommunication

    We

    present

    a

    scheme

    of

    deterministic

    mediated

    superdense

    coding

    of

    entangled

    photon

    states

    employingonly linear-opticselements. Ideally,weareabletodeterministicallytransfer fourmessages

    by

    manipulating

    just

    one

    of

    the

    photons.

    Two

    degrees

    of

    freedom,

    polarization

    and

    spatial,

    are

    used.

    A new

    kind

    of

    source

    of

    heralded

    down-converted

    photon

    pairs

    conditioned

    on

    detection

    of

    another

    pair

    with

    an

    efficiency

    of

    92%

    is

    proposed.

    Realistic

    probabilistic

    experimental

    verification

    of

    the

    scheme

    with

    suchasourceofpreselectedpairsisfeasiblewithtodaystechnology.Weobtainthechannelcapacityof1.78

    bits

    for

    a

    full-fledged

    implementation. 2016ElsevierB.V.All rights reserved.

    1. Introduction

    Superdensecoding(SC)[1] (sendinguptotwobitsofinforma-tion,i.e.,fourmessages,bymanipulatingjustoneoftwoentangled

    subsystems

    of

    a

    quantum

    system)

    is

    considered

    to

    be

    a

    protocol

    thatcangivequantumcomputationyetanotheredgeoveraclas-sicalone.

    So

    far

    the

    attempts

    to

    implement

    photon

    SC

    concentrated

    on

    the

    Bell

    states.

    The

    idea

    was

    to

    send

    four

    messages

    via

    four

    Bell

    states [see Eq. (1)] and herewith achieve a log2 4= 2 bit trans-fer.Tothisaim,arecognitionofallfourBellstateswasrequired.However,Vaidmans[2]andLtkenhaus[3]groupsprovedthefol-lowing no-go result: Deterministic discrimination of all four Bellstateswithlinearopticselementsandonlyonedegreeoffreedom(DOF)

    (e.g.,

    polarization)

    is

    not

    possible.

    One

    can

    deterministically

    discriminate

    only

    three

    Bell

    states

    and

    they

    enable

    the

    so-called

    densecoding(channelcapacitylog2 3= 1.585 bits)[4].Fortunately,theno-goproofdoesallowadeterministicdiscriminationwithtwo

    DOFs

    in

    a

    hyperentanglement

    setup.

    Such

    hyperentanglement

    ex-periments

    have

    been

    put

    forward

    and

    carried

    out

    [58].Hyperentanglement

    of photon polarization and its orbital an-gular

    momentum

    recently

    served

    Barreiro,

    Wei,

    and

    Kwiat

    to

    beat

    the

    channel

    capacity

    of

    the

    dense

    coding

    [4] by

    a

    tight

    margin

    1.63>1.585[8] inapostselectionexperiment.TheresulthasbeenrecognisedasbreakingthecommunicationbarrierandsuchaSC

    * Correspondenceto:CenterofExcellence forAdvancedMaterialsandSensingDevices(CEMS),PhotonicsandQuantumOpticsUnit,RuderBokovicInstitute,Za-greb,Croatia.

    E-mailaddress:[email protected].

    bymeansofachosenprimaryDOFsupportedbyanotherDOFhasbeenreferredasamediatedSC[9].

    Another

    kind

    of

    hyperentanglement

    of

    photon

    polarization

    me-diated by a time-spatial DOF has been proposed by Kwiat andWeinfurter[10] andcarriedoutbySchuck,Huber,Kurtsiefer,andWeinfurter

    [5].

    They

    make

    use

    of

    the

    spatial

    DOF

    in

    order

    to

    achieveatimedelay.ThemainfeatureofmediatedSCsisthatphotonsstatesarede-

    fined

    by

    one

    main

    DOF

    (e.g.,

    polarization)

    and

    one

    ancillary

    DOF

    (e.g.,

    a

    time-spatial,

    spatial,

    or

    photon

    angular

    momentum).

    The

    latteroneenablesadiscriminationofthestatesoftheformerone.Theyrequireasophisticatedlevelofcontrollingqubitstates,butatthe

    same

    time

    in

    the

    existing

    designs

    we

    actually

    loose

    more

    in-formationthaninthedensecoding.Forinstance,intheaforemen-tionedhyperentanglementeachhyperentangledstateisauniquesuperposition

    of

    four

    of

    the

    sixteen

    possible

    combinations

    of

    two-photon

    spinorbit

    Bell

    states

    [8].On the other hand, it was shown that more entanglement

    doesnotnecessarily implymorecomputationalpower[11] and

    therefore

    we

    considered

    it

    viable

    examining

    whether

    SC

    with

    me-diated photons might be less entangled. We make use of theso-calledmixedbasisstates,twoofwhicharemediatedbyaspatialDOF,

    to

    implement

    an

    ideally

    deterministic

    2

    bit

    transfer.We proposed another mixed basis SC protocol previously in

    Ref.[12] butthatonecouldnottransfermorethan1.43bits.Thepresent

    protocol

    enables

    Alice

    to

    transfer

    log2 4= 2 bitsof infor-mation,

    via

    sending

    4

    messages

    to

    Bob,

    by

    manipulating

    only

    one

    photoncalled a travel photonfrom a pair of entangled pho-tons inaBellstate | generatedbyBob.Bobkeeps theotherphotoncalled

    a

    home

    photondelayed

    in

    a

    fibre spool.

    Alice

    encodes2of4messagesbymanipulatingthetravelphotonsoas

    http://dx.doi.org/10.1016/j.physleta.2015.12.0370375-9601/ 2016ElsevierB.V.All rights reserved.

    http://dx.doi.org/10.1016/j.physleta.2015.12.037http://www.sciencedirect.com/http://www.elsevier.com/locate/plamailto:[email protected]://dx.doi.org/10.1016/j.physleta.2015.12.037http://crossmark.crossref.org/dialog/?doi=10.1016/j.physleta.2015.12.037&domain=pdfhttp://dx.doi.org/10.1016/j.physleta.2015.12.037mailto:[email protected]://www.elsevier.com/locate/plahttp://www.sciencedirect.com/http://dx.doi.org/10.1016/j.physleta.2015.12.037
  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    2/8

    M. Pavicic / Physic s Letters A 380 (201 6) 848855 849

    Fig. 1. Schematicoftheprotocol;Alicesendsmessages,3,4;Sisasourceofphotonsinstate|seeSubsec. 3.1;r1,r2arerouters(seetext)whicheitherletthephotonsthrough(off mode,r1,r2)ordeflectthem(on mode,r1+,r2+)intodetectorsdV,dH,respectively;D14 arephotonnumberdissolvingdetectors;BSisastandardbeamsplitter;PBSsarepolarizingbeamsplitters;gisaglassplatewhichpreservespolarizationandmakes-pathlengthidenticaltotheothers;Alicesends

    byturningtheroutersoffand+ bykeepingthemoffandslidinginHWP(0);shesends3 (4)byslidinginHWP(45 )andturningr1(r2)onandr2(r1)off,indicatedbyr1+ (r2+)andr2 (r1),respectively;photonsrandomlychoosetoexitPBS1eitherintheH orV stateindicatedas3a vs. 3b an d4a vs. 4b options;in3band4b vacuum(vac)issenttoBob;dV (dH)istriggered[3b ( 4b)]ornot[3a ( 4a)];Bobreceives3-message( 4-message)as|H1|H2 (|V1|V2)3a ( 4a),oras|V1|vac2 (|H1|vac2)3b (4b).

    togenerate | statesandsendsthetravelphotonstoBobwhocombines

    them

    with

    his

    home

    photons

    at

    a

    beam

    splitter

    (BS)

    andmeasures

    them.

    To

    send

    the

    other

    2

    messages

    Alice

    first

    generates

    a | Bellstateand thencollapses it to2computationalstatesmediatedbyaspatialDOF:twophotonpaths;oneleadstoBobsBSandhemeasuresthetravelandhomephotons;theotherleadsto

    Alices

    detector

    and

    Bob

    combines

    his

    home

    photon

    with

    the

    vacuum

    state

    at

    his

    BS.As in the aforementioned experiments [8,5], we consider the

    SCprotocolprimarilyasacomputationalresource.Thus,weonlyelaborate

    on

    the

    information

    transferred

    from

    Alice

    to

    Bob

    without

    Eve

    (eavesdropping)

    being

    involved

    although

    we

    briefly

    discuss

    a

    possiblecryptographicimplementationinSec.4.ThespatialDOF,Bobmakesuseof,whenmeasuringthepho-

    tons

    encoded

    by

    Alice,

    does

    not

    contain

    any

    information

    about

    the

    polarization

    states

    Alice

    imposes

    on

    photons

    taking

    different

    paths

    and

    therefore

    there

    is

    no

    classical

    information

    transfer

    involved

    in

    Alicesencoding.Theclassical informationcarriedbyphotonspa-tial

    DOF

    is

    tantamount

    to

    the

    mediation

    of

    messages

    via

    these

    modes

    as

    in

    [5].For our protocol to be feasible, a source of entangled photon

    pairsondemandoraveryefficientsourceofheraldedpairsarere-quired

    because,

    for

    an

    equal

    efficiency

    of

    measuring

    both

    vs. only

    one

    of

    two

    photons,

    Bob

    cannot

    rely

    on

    a

    postselection

    as

    in

    a

    cryptographyapplicationwhereonlydetectionofbothphotonsarekept and those of single ones are discarded. None of the so farexperimentally implemented candidates for such a source, eventhe

    most

    developed

    quantum

    dots,

    is

    sufficiently

    reliable

    and

    ef-ficient.

    Therefore inthispaperwecomeforwardwithaproposalforaveryefficientsourceofheraldedpreselectedentangledpho-

    ton

    pair

    in

    a

    Bell

    state

    conditioned

    on

    a

    detection

    of

    another

    pair.

    The

    source

    can

    be

    implemented

    with

    todays

    technology

    so

    as

    to

    havearealisticefficiencyof92%.An experiment in a postselection mode, similar to postselec-

    tion experiments carried out in [5,6,8], can be carried out withtodays

    technology

    as

    proposed

    in

    detail

    in

    Sec. 2.

    Actually,

    also

    afull-fledgedexperimentoftheproposalcanbecarriedoutwithtodaystechnologywithevenhigherefficiency,however,withhighendversionsofallcomponents.

    The

    paper

    is

    organised

    as

    follows.

    In

    Sec.2we

    give

    physical

    and

    technical

    details

    of

    our

    protocol

    and

    all

    the

    definitions

    of

    states,

    messages,andopticalelementsusedinthepaper.InSec.3 wede-scribethenewsourceofpreselectedentangledphotonpairs(Sub-sec.3.1)

    and

    propose

    a

    postselection

    proof-of-principle

    experiment

    (Subsec.3.3).

    At

    the

    end

    of

    the

    section

    we

    compare

    channel

    capac-

    ityofourproposalwithpreviousexperimentallyobtainedones.In

    Sec.4we

    summarise

    and

    discuss

    the

    obtained

    results.

    At

    the

    endof the section we discuss (in)applicability of our SC protocol to

    quantum

    cryptography.

    2.

    Protocol

    The

    superdense

    coding

    (SC)

    is

    an

    encoding

    of

    four

    messages

    intothestatesofentangledpairsofqubitsbymeansofan inter-action

    with

    one

    of

    the

    qubits

    only.WemakeuseofthefollowingthreeBellstates

    | = 12

    (|H1|V2 |V1|H2),

    | =

    1

    2(|H1|

    H2 |

    V1|

    V2

    ), (1)

    and

    the

    following

    two

    states

    from

    the

    computational

    basis

    |H1|H2, |V1|V2. (2)The

    Bell

    states

    |givenbyEq.(1) togetherwiththestatesgivenbyEq.(2)formabasiscalledmixedstatebasisorsimplymixedbasis.

    Bob

    prepares

    | photon pairs ideally by using a source ofentangledphotonpairsondemandbutrealisticallybymakinguseof

    the

    source

    we

    propose

    in

    Subsec.3.1which

    can

    be

    realised

    with

    todaystechnologysoastohavetheefficiencyofpreselectingpairsof

    92%.

    Bob

    then

    sends

    one

    photon

    from

    each

    pair

    to

    Alice

    who

    manipulates it soas tosend fourdifferent messages to Bob. Wecall

    her

    photon

    a travel photon.Theother (Bobs)photon froma

    pair

    we

    call

    a

    home photon.

    Alice

    ideally

    deterministically

    encodesthe

    following

    four

    messages

    and

    sends

    them

    to

    Bob:

    +-message, -message, 3-message, 4-message, (3)

    as

    shown

    in

    Fig. 1.

    We

    will

    discuss

    non-ideal

    realistic

    implementa-tionoftheprotocolandtakelossesintoaccountinSec.3.Wealsodiscuss

    a

    particular

    aspect

    of

    a

    realistic

    implementation

    at

    the

    end

    ofthissection.To

    send

    a -message Alice keeps both routers (r1, r2) off,

    meaning that they let photons through without affecting theirstates,

    indicated

    as

    r1 and

    r2 in

    Fig. 1.

    The

    routers

    make

    use

    of

    electro-optical modulators based on rubidium titanite phosphate[13].

    When

    they

    are

    turned

    on,

    they

    can

    deflect

    incoming

    pho-tonsindependentlyoftheirpolarizationunlikethestandardoptical

    switches

    like,

    e.g.,

    Pockels

    cells,

    based

    on

    polarization

    selection.

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    3/8

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    4/8

    M. Pavicic / Physic s Letters A 380 (201 6) 848855 851

    amountstoapreselectionofanentangledpairconditionedonde-tection

    of

    another

    pair

    [20].

    The

    spontaneous

    emission

    occurs

    only

    once

    and

    with

    them

    we

    have

    a

    genuine

    preselection:

    by

    detecting

    two photons at a beam splitter we entangle theother two pho-tonsintothestate| althoughtheirtrajectoriesnevermixorcross

    [20].

    With

    photon

    pairs

    down-converted

    in

    two

    nonlinear

    crystals,

    on

    the

    other

    hand,

    the

    probabilities

    of

    their

    conversion

    in

    eachofthecrystalsorinjustoneofthemareaboutthesameand

    the

    latter

    ones

    will

    ruin

    the

    preselection

    if

    we

    stick

    to

    the

    stan-dard

    way

    of

    combining

    photons

    from

    two

    different

    crystals

    at

    a

    BS

    in

    an

    attempt

    to

    entangle

    the

    other

    two

    photons.Having such standard way of combining photons at a BS in

    mind, SliwaandBanaszekwrote:generationofadoublepair inone

    crystal

    and

    none

    in

    the

    second

    crystal

    [23][is]

    a

    fundamental

    obstacle in theconditionalpreparationofmaximalentanglementfromfourdown-convertedphotons:ithasbeenshown[byKokandBraunstein[24]]thatamaximallyentangledstatecannotbegen-erated

    [conditioned]

    on

    detection

    of

    two

    auxiliary

    photons.

    This

    rules

    out

    the

    possibility

    [making

    use]

    of

    overall

    four

    photons,

    to

    producemaximallyentangledpairsbymeansofconditionaldetec-tion[25].

    Kok

    and

    Braunstein

    obtained

    their

    result

    under

    the

    following

    assumption:

    every

    detector

    needs

    to

    detect

    at

    most

    one

    photon[24]andifwefoundawaytopreselectapairofentangledphotons

    conditionedondetectingmorethanonephotonbysomedetectorswe

    would

    be

    able

    to

    go

    around

    Sliwa

    and

    Banaszeks

    conclusion.

    This

    is

    exactly

    what

    we

    did

    in

    the

    design

    of

    our

    source

    below.However,beforewedwellonit,letusfirstdealwiththeprob-

    lem of low collection efficiency. To overcome it, we turn to ex-periments

    with

    heralded

    generations

    of

    entangled

    signal

    and

    idler

    colinearphotonsinapairofoppositepolarizationdown-convertedin a type II poled potassium titanyl phosphate (PPKTP) crystalplaced inacavitycarriedoutbyBensonsgroups[2629].Signaland

    idler

    are

    filtered

    from

    the

    central

    peak

    of

    a

    comb-like

    distribu-tionofphotonfrequenciesinacavity[30]soastohavethesamefrequency what makes them indistinguishable up to their polar-ization.Avery importantfeatureofsofilteredsignaland idler isthat

    the

    visibility

    of

    their

    coincidence

    rate

    is

    over

    96.5%,

    without

    backgroundsubtraction[28,31].Closelyrelatedistheefficiencyofgeneratinganentangledpairincontrasttogeneratingjustoneofthe

    photons

    (i.e.,

    loosing

    one

    of

    them)

    which

    can

    be

    extrapolated

    from

    the

    recently

    obtained

    experimental

    results

    [31] for

    which

    data show that with the current setup an efficiency of 80% canbeachieved.

    Now, in Fig. 2 we present the design of our source in whichwe

    make

    use

    of

    a

    MachZehnder

    interferometer

    (MZI)

    to

    single

    out photons entangled in a Bell state while discriminating be-tween them and the photons coming fromjust one crystalthelatter

    photons

    will

    bunch

    at

    either

    exit

    of

    the

    MZI

    obeying

    its

    ba-sic

    symmetry:

    what

    comes

    in

    from

    one

    of

    its

    sides,

    will

    exit

    from

    theother.Asfortheformerphotons,thedesignenablesthemto

    interfere

    after

    taking

    either

    of

    two

    indistinguishable

    paths,

    like

    in

    Fransons interferometer [3234]onlyherewedonothave longvs. short

    paths

    but

    equally

    balancedi vs. ii pathsaswellascorre-

    latediiivs. iv paths.The intensity of the pump beam is lowered down so as to

    down-convert

    predominantly

    two

    pairs

    of

    entangled

    photons,

    each

    in

    state

    |H V within a chosen time window. Each pair can bedown-convertedineachcrystalorbothoftheminoneofthecrys-tals,withthesameprobability.

    Photons

    from

    a

    cavity

    can

    take

    four

    different

    paths

    after

    being

    split

    at

    the

    first

    polarizing

    beam

    splitter

    (PBS).

    When

    we

    look

    at

    optionstodetectexactlytwophotonsbyourdetectorsbehindMZI,weseethatthisisrealisedinexactlytwoways.

    The

    first

    way

    is

    when

    the

    signal

    (H)comingfromthetopcavity

    takes

    path

    i and

    idler

    (V)

    from

    the

    bottom

    one

    takes

    path

    ii.

    The

    Fig. 2. Proposalofaheraldedgenerationofanentangledphotonpairinthe|stateconditionedondetectinganotherpairofphotonsinthe|+ state.Allpathsareequalinlengthtoenableinterference(notshown).Routers(r)whichblockexitphotonsthatarenotinstate| aretriggeredbydetectorsdi ,i= 1,. . . ,4.

    top

    idler

    (V)isthengoingto iii andthebottomsignal(H)to iv.This combination is indistinguishable (with respect to BS1) fromthe

    top

    idler

    (V)

    going

    to

    i and

    bottom

    signal

    (H)

    to

    ii while

    top

    signal(H)isgoingtoiiiandbottomidler(V)toiv.Becauseoftheaforementionedindistinguishability,theinputstatetoBS1 is

    |+ = 12

    (|H1|V2 + |V1|H2). (4)

    At

    BS1 ittransformsto[35,Eqs. (1.160,1),pp. 72,73],[36,Eq. (4.28),p. 68]

    |+ BS1 12

    (|H1|V1 |H2|V2)= |12, (5)

    andatBS2 itgivesthefollowingoutput

    |

    12

    BS2

    1

    2(|H

    1|V

    2+ |

    V

    1|H

    2)= |

    +

    . (6)

    ThephotonswillbedetectedatoppositesidesofBS2 andthede-tectors

    will

    trigger

    two

    rs

    so

    as

    to

    let

    theiii,ivphotonsthrough.

    The

    companion

    photons

    go

    toiiiandivintwoaforementioned

    indistinguishablecombinationsandformthefollowingstate

    |+ = 12

    (|H1|V2 + |V1|H2), (7)

    whichHWPtransformsintothefinaloutputstate:

    | = 12

    (|H1|V2 |V1|H2). (8)

    Whenrouters(r)doletthephotonsthroughinstate| theymustrelayphotonssoasnottoaffecttheirpolarization.Thereforewe

    make

    use

    of

    routers

    with

    electro-optical

    modulators

    based

    on

    rubidium

    titanite

    phosphate

    so

    as

    to

    preserve

    the

    entangled

    state

    [13].Theonlyotherwayofhavingonlytwophotonswithdifferent

    polarizationgoingtoi andiiiswheneitherboththetopidlerandsignalaregoingto i (whilethebottomsignalandidleraregoingto

    iv)or(indistinguishably)thebottomidlerandsignalaregoingto

    ii (whilethetopsignalandidleraregoingtoiii)inwhichcasewehave

    |+12 =1

    2(|H1|V1 + |H2|V2) (9)

    asaninputtoBS1 .MZIdoesnotchangethestate,i.e.,thephotonswillbedetectedbunchedatonesideofBS2 andthedetectorswill

    trigger

    two

    routers

    (r)

    so

    as

    not

    to

    let

    the

    iii,

    ivphotons

    through.

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    5/8

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    6/8

    M. Pavicic / Physic s Letters A 380 (201 6) 848855 853

    Fig. 3. Proposalofaproof-of-principlepostselectionexperiment.PathsthatleadtoBSarebalanced.

    3.3. Postselectionexperiment

    We make use of the source described in Subsec. 3.1. As forthe other components needed for the postselection experimentwewillkeeptothestandardoff-the-shelfelements,exceptforat

    least

    three

    of

    the

    detectors

    that

    should

    have

    a

    rather

    low

    dark

    countrate.ThesuperconductingTESdetectorshavepracticallynodarkcountsatall,butInGaAsavalanchephotodiodesoperatingat60 Cwithca. 0.1%darkcountprobability[40] wouldserveourpurpose as D4 and D

    4 as shown in Fig. 3. A review of 16 de-

    tectorswithrespect to theirefficiencies,darkcountrates,etc., isgivenin[41].Forourpostselectionexperimentitisactuallybettertochoosedetectorswith lowerefficiencybecausethedarkcountprobability always rises with the efficiency. We shall assume tohavedetectorswithanefficiencyof50%andthedarkcountprob-ability of 1%. Alice needs to have reliable confirmations on sentmessageswithonlyhomephotonsarrivingatD4 orD

    4 sothather

    dH shouldalsobeanInGaAsone.We need not have a full fledged setup but only its essential

    part

    as

    for

    example

    in

    the

    SC

    experiment

    carried

    out

    by

    Wein-furtersgroup[5].Thismeansthatweshouldbeabletocarryoutcalibratedcomparisonofdatacollectedforallfourmessages.ForthatBobneedsonlyhistwoInGaAsdetectorsD4 andD

    4 andthe

    fourotherones (D1D3)canbe thestandardoff-the-shelfdetec-

    tors operating at the room temperature, because he can alwayscalibratetheobtaineddatawithrespecttotheformertwodetec-tors.Tosimplifythecalculationweshall,however,assumethatallsixBobsdetectorsD1D

    4 areofthesamekind.

    WhentwophotonswithparallelpolarizationarriveatBS1 andBS2 showninFig. 3theyhave50%probabilityofsplittingatthemand

    we

    should

    calibrate

    all

    other

    measurements

    with

    respect

    to

    the measurements by detectors aftersuch apossible splitting asfollows.

    Bob

    detects

    both

    photons

    of messages. -message

    triggers

    either

    [D1 and

    (either

    D3 or

    D3)]

    or

    [D2 and

    (either

    D4 or

    D4)](seeTable 1)withthedetectionprobabilityof100%(ideally).Similarly,

    +-messagetriggerseither[D1 andD2]or[(eitherD3 orD3)and (eitherD4 orD

    4)]alsowith thedetectionprobabilityof

    100%

    (ideally).As

    for 3,4-messages with both home and travel photons at

    BS,

    they

    will,

    according

    to

    the

    HongOuMandel

    effect

    [14],

    ei-ther

    go

    to

    the

    left

    or

    to

    the

    right

    from

    BS

    in

    Fig. 3.

    Those

    going

    to

    the

    left

    (50%

    of

    them)

    will

    end

    up

    either

    in

    D1 (bothphotons)orD2 (bothphotons).SincetheywillgiveBobasingleclickinei-ther

    D1 orD2,Bobwilldiscardtheserecordings.Theotherhalfof3,4-messages withbothhomeand travelphotonswillgo to theright

    and

    half

    of

    them

    will

    bunch

    together

    and

    the

    other

    half

    will

    split

    at

    either

    BS1 (4) or BS2 (3). Here the HongOuMandel

    effect

    does

    not

    apply

    because

    both

    photons

    come

    from

    the

    same

    side.ThusD3-and-D3 simultaneousclicksaswellasD4-and-D

    4 si-

    multaneousclickswillaltogethercollect25%ofall3,4 messagesof

    home

    and

    travel

    photons

    and

    the

    statistics

    of

    postselected

    mea-surements

    of

    all

    four

    kinds

    of

    messages

    should

    be

    then

    calibrated

    because

    when

    a

    correlated

    detection

    is

    carried

    out

    and

    two

    detec-torsareusedandtheefficiencyofeachofthemis0.5,thentheir

    joineddetection iscarriedoutwiththeefficiencyof0.52 = 0.25.However,whensingledetectionsarecarriedoutfortheotherhalf

    3,4-messageswith

    only

    home

    photons

    which

    did

    not

    split

    at

    ei-ther BS1 or BS2 (altogether 75% of

    3,4-messages) then they arecarried

    out

    with

    the

    efficiency

    of

    0.5,

    which

    means

    that

    Bob

    will

    have

    to

    divide

    the

    number

    of

    these

    detections

    by

    2

    what

    corre-spondstotheefficiencyof0.52 = 0.25.forcorrelateddetectionsoftwodetectorsforalltheothermeasurements.Intheend,hemul-tiplies all the obtained 3,4 data by two to compensate for thediscardedD1 ,D2 data.

    Thenextstepistoseewhichlossesandefficienciescanaffectour

    final

    result.

    The

    efficiency

    of

    the

    source

    is

    0.92

    and

    the

    ef-ficiencies

    of

    the

    optical

    elements

    we

    obtain

    as

    follows.

    BS

    losses

    can

    be

    lower

    than

    1%

    but

    only

    the

    differences

    between

    the

    right

    side with additional two BS and the left side without them arerelevantforourpostselectionexperiment.Misalignmentsandpath

    differences

    might

    cause

    up

    to

    3%

    of

    losses.

    Router

    losses

    can

    beaslowas1%.Thenwetakethedarkcountsintoaccountbymul-

    tiplying the50%ofsplit 3,4-messages by0.99,corresponding tothe

    detector

    efficiency

    (1

    0.01= 0.99, where 0.01 is the darkcount

    probability).

    We

    should

    add

    ca. 4%

    for

    miscalibration.

    So,

    the element losses, detector dark count gains, and miscalibra-tionamount(bymultiplication)toanefficiencyofca. 0.91,whatislowerthanforafullfledgedexperimentobtainedinSubsec.3.2but this isdueto themiscalibrationanddarkcounterrors.Alto-gether,anoverallefficiencyof0.92 0.91 0.84 coverslossesinthe

    source,

    in

    the

    optical

    elements,

    by

    dark

    counts,

    and

    miscalibra-tion.

    To

    obtain

    the

    number

    of

    successfully

    transferred

    messages

    we

    assume tohave10m low-lossfibre andfollowing theprocedure

    from

    Subsec. 3.2we

    get

    3.36

    messages.

    From

    this

    we

    obtain

    that

    the

    mutual

    information

    between

    Alice

    and

    Bob,

    i.e.,

    the

    channel

    capacityislog2 3.36 1.75 bits.Thiscanbecomparedwith thebestpostselectionchannelca-

    pacities

    achieved

    so

    far:

    1.63>log2 3 1.585[8] and1.18[5].

    4. Resultsanddiscussion

    WehaveshownthatAlicecancarryoutafullmediateddeter-ministicsuperdensecoding(SC)bymanipulatingonlyonephotonfromapairofentangledphotonstogeneratefourmessageswhichBob can unambiguously discriminate by beam splitters (BS) andtwo

    polarizing

    beam

    splitters

    (PBS)

    as

    shown

    in

    Fig. 1.For

    this

    to

    work,

    ideally

    a

    would-be

    source

    of

    such

    pairs

    on

    demand

    would

    be

    required

    but

    for

    an

    immediate

    implementation

    with

    todays

    technology,

    in

    Subsec.3.1,

    we

    propose

    a

    new

    source

    of

    heraldedpairsinaBellstateconditionedondetectionofanotherpairofancillaryphotons(seeFig. 2)whoserealisticefficiencycanbeashighas92%.

    Alice

    makes

    use

    of

    two

    Bell

    states

    | tosend-messagesand

    one

    |tosend3,4-messages[seeEqs.(1) and(3)].Tosendthe

    latter

    messages

    she

    first

    collapses

    | into twostates fromthecomputationalbasis,|H1|H2 and|V1|V2 ,atherPBS1withthe50:50probability, i.e.,completely randomly. Thatmeans thatAlice is not able to obtain |H1|H2 or |V1|V2 at will (such apossibilitywouldbetantamounttohersendingsuperluminalmes-sagestoBob)butacleverdesignwithopticalroutersandherowndetectors

    dV anddH shown inFig. 1 enablesher toneverthelessideally

    deterministically

    send3-message (4-message)mediated

    by

    the

    spatial

    degrees

    of

    freedom

    (DOF)two

    paths:

    one

    leading

  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    7/8

    http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6F752D626F6F6B3037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib706176696369632D626F6F6B2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib706176696369632D626F6F6B2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C617273736F6E2D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C617273736F6E2D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6672616E736F6E2D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6672616E736F6E2D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6672616E736F6E2D3839s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6672616E736F6E2D3839s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6865727A6F672D7363686F6C7A2D62656E736F6E2D3132s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6865727A6F672D7363686F6C7A2D62656E736F6E2D3132s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6865727A6F672D7363686F6C7A2D62656E736F6E2D3132s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7761686C2D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7761686C2D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7761686C2D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7761686C2D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib61686C72696368732D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib61686C72696368732D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib61686C72696368732D62656E736F6E2D3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib686F636B656C2D6B6F63682D62656E736F6E2D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib686F636B656C2D6B6F63682D62656E736F6E2D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib686F636B656C2D6B6F63682D62656E736F6E2D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62656E736F6E2D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62656E736F6E2D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62656E736F6E2D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib736C6977612D62616E61737A656B2D3033s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib736C6977612D62616E61737A656B2D3033s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F6B2D627261756E737465696E2D303061s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F6B2D627261756E737465696E2D303061s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F6B2D627261756E737465696E2D3030s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F6B2D627261756E737465696E2D3030s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib702D6A6F7361623935s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib702D6A6F7361623935s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B776961742D7A65696C2D742D49492D3935s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B776961742D7A65696C2D742D49492D3935s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B776961742D7A65696C2D742D49492D3935s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib702D733934s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib702D733934s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6A6179612D712D646F742D656E742D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6A6179612D712D646F742D656E742D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D756C6C65722D656E742D646F742D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D756C6C65722D656E742D646F742D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D756C6C65722D656E742D646F742D3134s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib66756B7564612D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib66756B7564612D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib66756B7564612D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib66756B7564612D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6E616D2D61706C3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6E616D2D61706C3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6E616D2D61706C3133s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C6974612D6E616D2D3130s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C6974612D6E616D2D3130s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C6974612D6E616D2D3130s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C6974612D6E616D2D3130s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib686F6E672D6F752D6D616E64656Cs1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib686F6E672D6F752D6D616E64656Cs1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D612D7A65696C696E6765722D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D612D7A65696C696E6765722D3131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib706176696369632D737570657264656E73653131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib706176696369632D737570657264656E73653131s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib67726F73732D666C616D69612D6569736572743039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib67726F73732D666C616D69612D6569736572743039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B776961742D7765696E2D3938s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B776961742D7765696E2D3938s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib77616C626F726E2D3038s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib626172726569726F2D6B776961742D3038s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib626172726569726F2D6B776961742D3038s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7765692D6B776961743037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib7765692D6B776961743037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62617262696572692D64652D6D617274696E692D3037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62617262696572692D64652D6D617274696E692D3037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62617262696572692D64652D6D617274696E692D3037s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636875636B2D7765696E6675727465722D3035s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636875636B2D7765696E6675727465722D3035s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D6174746C652D7A65696C2D3936s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6D6174746C652D7A65696C2D3936s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C7565746B656E686175732D3939s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6C7565746B656E686175732D3939s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib766169646D616E3939s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib766169646D616E3939s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62656E6E6574742D776965736E65722D3932s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib62656E6E6574742D776965736E65722D3932s1
  • 7/25/2019 Deterministic mediated superdense coding with linear optics.pdf

    8/8

    M. Pavicic / Physic s Letters A 380 (201 6) 848855 855

    [37] M.Pavicic,O.Benson,2015,unpublished.[38] V.Scarani,H.Bechmann-Pasquinucci,N.J.Cerf,M.Duek,N.Ltkenhaus,M.

    Peev,Thesecurityofpracticalquantumkeydistribution,Rev.Mod.Phys.81(2009)13011350.

    [39] B.Korzh,C.C.W.Lim,R.Houlmann,N.Gisin,M.J.Li,D.Nolan,B.Sanguinetti,R.Thew,H.Zbinden,Provablysecureandpracticalquantumkeydistribution

    over307kmofopticalfibre,Nat.Photonics9(2015)163168.[40] M.A.Albota,E.Dauler,Singlephotondetectionofdegeneratephotonpairsat

    1.55mfromaperiodicallypoledlithiumniobateparametricdownconverter,J.Mod.Opt.51(2004)14171432.

    [41] R.H.Hadfield,Single-photondetectorsforopticalquantuminformationappli-cations,Nat.Photonics3(2009)696705.

    http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6861646669656C642D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib616C626F74612D3034s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib6B6F727A682D676973696E2D3135s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1http://refhub.elsevier.com/S0375-9601(15)01116-0/bib73636172616E692D3039s1