details of ebac-dcc model

38
Details of EBAC-DCC model Details of EBAC-DCC model Hiroyuki Kamano Hiroyuki Kamano Informal EBAC meeting, May 24-26, 2010 (revised version of the talk at 2009 EBAC meeti

Upload: jasmine-lancaster

Post on 04-Jan-2016

50 views

Category:

Documents


2 download

DESCRIPTION

Details of EBAC-DCC model. Hiroyuki Kamano. Informal EBAC meeting, May 24-26, 2010 (revised version of the talk at 2009 EBAC meeting). e.g.) D13  Total J = 3/2 , Isospin = 1/2 , Parity =. MB ( LS ). EBAC-DCC model: hadronic part. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Details of EBAC-DCC model

Details of EBAC-DCC modelDetails of EBAC-DCC model

Hiroyuki KamanoHiroyuki Kamano

Informal EBAC meeting, May 24-26, 2010(revised version of the talk at 2009 EBAC meeting)

Page 2: Details of EBAC-DCC model

Partial wave (LSJ) amplitude of a b reaction:

Reaction channels:

Potential:

EBAC-DCC model: hadronic part

2-body v potential(no N cut)

2-body v potential(no N cut) bare N* statebare N* state

For details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

2-body Z potential(with N cut)

2-body Z potential(with N cut)

e.g.) D13 Total J = 3/2 , Isospin = 1/2 , Parity =

MB( LS )

Page 3: Details of EBAC-DCC model

Meson-baryon Green’s functions

Stable channels = (, N), (, N), (K,), (K,) :

Unstable channels = (, ), (, N), (, N) :

() self-energy in the presence of spectator particle

Page 4: Details of EBAC-DCC model

Meson-baryon Green’s function

Branch point of unstable Green functions (MeV)

Unstable channels = (, ), (, N), (, N) :

Page 5: Details of EBAC-DCC model

Meson-baryon Green’s function

Model 2:

Unstable channels = (, ), (, N), (, N) :

Betz-Lee PRC23 375 (1981)

Simple s-wave (separable) model

Original Model 2

Branch points now have more realistic values.N Green function has two branch points.

Page 6: Details of EBAC-DCC model

2-body “v” potentials (non-strange channels)

5 diagramss-ch Nu-ch Nu-ch t-ch t-ch

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

3 diagramss-ch Nu-ch Nt-ch

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nt-ch t-ch

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nu-ch t-ch

1 diagrams-ch N

1 diagrams-ch N

2 diagramss-ch Nu-ch N

2 diagramss-ch Nt-ch

Total 36 diagrams

Page 7: Details of EBAC-DCC model

2-body “v” potentials (channels with strange hadrons)

3 diagramss-ch Nu-ch t-ch K*

4 diagramss-ch Nu-ch t-ch t-ch

Total 18 diagrams

At present, KY couples to non-strange channelsthrough N channel only.

3 diagramss-ch Nu-ch u-ch t-ch K*

3 diagramss-ch Nu-ch t-ch

5 diagramss-ch Nu-ch t-ch t-ch t-ch

Page 8: Details of EBAC-DCC model

2-body “v” potentialsAll potentials are described in Matsuyama, Sato, Lee, Phys. Rep. 439 193 (2007)

Page 9: Details of EBAC-DCC model

Partial wave decomposition

Plane wave matrix elementin helicity representationPlane wave matrix elementin helicity representation

Used for thecoupled-channelsequation

Page 10: Details of EBAC-DCC model

Unitary transformation (UT) method

e.g.) N N “v” potential (s-channel nucleon)

Independent of total scattering energy s1/2 !!

Potentials agree with usual Feynman diagram at on-shell. The off-shell behavior is uniquely defined within UT method.

UT methodUT method

See e.g., Ann. Phys. 322, 736 (2007)nucl-th/0102037for details of UT method

See e.g., Ann. Phys. 322, 736 (2007)nucl-th/0102037for details of UT method

Page 11: Details of EBAC-DCC model

Rules for attaching cutoff factors

Attach cutoff factors to each vertex (currently dipole form is used)

For s- and u-channel potential, use 3-momentum of external meson

For t-channel potential, use 3-momentum of exchanged meson

For contact potential, use product of two cutoff factors

Page 12: Details of EBAC-DCC model

2-body “Z” potentials

Feshbach projection:

Page 13: Details of EBAC-DCC model

2-body “Z” potentials

Page 14: Details of EBAC-DCC model

Numerical treatment of Z potentials

Z(E)(k,k’;E) potentials have logarithmic singularity.Z(E)(k,k’;E) potentials have logarithmic singularity.

N N, N, KY

Contour-rotation method

N N

Spline method

e.g., Larson et al, PRC9 699 (1974)

e.g., Matsuyama, PLB152 42 (1985); Matsuyama Lee, PRC34 1900 (1986)

Z as a function of kat k’=0.3 GeV, E=1.88 GeVZ as a function of kat k’=0.3 GeV, E=1.88 GeV

Page 15: Details of EBAC-DCC model

Bare N* MB vertex function

e.g.) D13 state ( I = 1/2, J = 3/2, Parity = minus) 18

# of parameters for a bare N* state

# of bare N* stateS11 2, S31 1P11 2, P13 1, P31 1, P33 2D13 1, D15 1, D33 1, D35 0F15 1, F17 0, F35 1, F37 1 total 16 bare N* state (as of today)

# of bare N* stateS11 2, S31 1P11 2, P13 1, P31 1, P33 2D13 1, D15 1, D33 1, D35 0F15 1, F17 0, F35 1, F37 1 total 16 bare N* state (as of today)

17

×

9

Use same cutoff

Page 16: Details of EBAC-DCC model

Meson-exchange amplitude:

Dressed N* propagating amplitude:

EBAC-DCC model: electromagnetic partFor details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

= hadronic process

Page 17: Details of EBAC-DCC model

gamma N MB potentials

7 diagramss-ch Nu-ch Nu-ch t-ch t-ch t-ch contact

2 diagramss-ch Nu-ch N

2 diagramss-ch Nu-ch N

4 diagramss-ch Nu-ch Nt-ch contact

Total 32 diagrams

5 diagramss-ch Nu-ch Nu-ch t-ch contact

6 diagramss-ch Nu-ch u-ch t-ch Kt-ch K*contact

6 diagramss-ch Nu-ch u-ch t-ch Kt-ch K*contact

Page 18: Details of EBAC-DCC model

gamma N MB potentialsAll potentials are described in Matsuyama, Sato, Lee, Phys. Rep. 439 193 (2007)

Page 19: Details of EBAC-DCC model

gamma N MB potentials

helicity-JLS mixed representation(angular projection of N part is not needed for our purpose)

Page 20: Details of EBAC-DCC model

gamma N N* bare vertex function

Bare N* helicity amplitude:

for transverse photon

for longitudinal photon

where

Page 21: Details of EBAC-DCC model

Parameterizations of bare helicity amplitudes

Introduce appropriate threshold behavior + dipole form factorIntroduce appropriate threshold behavior + dipole form factor

Page 22: Details of EBAC-DCC model

Plan for EBAC-DCC analysis in 2010

Full combined analysis (global fit) of:

N N (W < 2 GeV)

N N (W < 2 GeV)

N N (W < 1.6 GeV 2 GeV)

N N (W < 2 GeV)

N KY (W < 2 GeV)

N N (W < 2 GeV)

N N (W < 1.5 GeV 2 GeV)

EBAC second generation modelEBAC second generation model

~ End of 2010

2010 ~ 2011

Page 23: Details of EBAC-DCC model

pi- p K0 Lambda

Julia-Diaz, Saghai, Lee, Tabakin PRC73 055204

PreliminaryPreliminary

EBAC-DCC

Page 24: Details of EBAC-DCC model

gamma p K Lambda

PreliminaryPreliminary

Page 25: Details of EBAC-DCC model

gamma p K Lambda

PreliminaryPreliminary

Page 26: Details of EBAC-DCC model

Coupling effect of KY channels on piN PWA

PreliminaryPreliminary

Add KY channels5ch calc.SAID-EDS

P11 Re

P11 Im P13 Im

D13 Im

D15 Im F15 Im

F17 Im

S11 Re

P13 Re

D13 Re

F15 Re

F17 Re

S11 Im

D15 Re

Page 27: Details of EBAC-DCC model

Coupling effect of piN, pipiN, etaN channels on KY observables

Meson-exchange amplitudesMeson-exchange amplitudes

Amplitude with Dressed N*Amplitude with Dressed N*

Page 28: Details of EBAC-DCC model

Coupling effect of piN, pipiN, etaN channels on KY observables

Couplings to N, N, N channels off

Current EBAC-DCC result

PreliminaryPreliminary

(At least) about 20% reduction except backward angles is observed.(At least) about 20% reduction except backward angles is observed.

Page 29: Details of EBAC-DCC model

Back upBack up

Page 30: Details of EBAC-DCC model

pi N pi N PWAs

PreliminaryPreliminary

Add KY channels5ch calc.SAID-EDS

P11 Re

P11 Im P13 Im

D13 Im

D15 Im F15 Im

F17 Im

S11 Re

P13 Re

D13 Re

F15 Re

F17 Re

S11 Im

D15 Re

Page 31: Details of EBAC-DCC model

gamma p K LambdaKamano, Nakamura, Lee, Sato in preparation

Effect of N channels on p KEffect of N channels on p K

Couplings to N (D,N,N) channels are turned off

Current EBAC-DCC result

PreliminaryPreliminary

Page 32: Details of EBAC-DCC model

pi N pi N @ W=1232 MeV

V

Re(T)

Im(T)

EBAC

Juelich

Output is T,

not

Page 33: Details of EBAC-DCC model

pi N pi N @ W=1600 MeV

V

Re(T)

Im(T)

EBAC

Juelich

Page 34: Details of EBAC-DCC model

pi N pi @ W=1232 MeV

V

Re(T)

Im(T)

Page 35: Details of EBAC-DCC model

pi N pi @ W=1600 MeV

V

Re(T)

Im(T)

Page 36: Details of EBAC-DCC model

Meson-exchange amplitude:

Dressed N* amplitude:

EBAC-DCC model: hadronic partFor details see Matsuyama, Sato, Lee, Phys. Rep. 439,193 (2007)

Page 37: Details of EBAC-DCC model

Parameters

29 + 247 (15 bare N*) = 271

nonresonantpotentialnonresonantpotential

N* parametersN* parameters

Hadronic part:

Electromagnetic part:

N* barehelicity amps.N* barehelicity amps.

2 + 39 (15 bare N*) = 41

& couplings & couplings

(roughly 20 parameters for each partial wave)

(roughly 3 parameters for each partial wave)

Page 38: Details of EBAC-DCC model

Pion-nucleon elastic scatteringJulia-Diaz, Lee, Matsuyama, Sato, PRC76 065201 (2007)

                      coupled-

channels is considered.

Fitted to the SAID N partial wave amplitudes up to 2GeV.

MINUIT library is employed for the numerical minimization.

Unitarity is satisfied in ~ 1 % !!Unitarity is satisfied in ~ 1 % !!

Re(T) with I = 1/2