designing analog and rf circuits for ultra-low supply voltages

54
Designing Analog and RF Circuits for Ultra-Low Supply Voltages Peter Kinget

Upload: others

Post on 03-Feb-2022

6 views

Category:

Documents


0 download

TRANSCRIPT

Designing Analog and RF Circuits for Ultra-Low Supply

Voltages

Peter Kinget

(c) 2007 Peter Kinget 3

Motivation

• Past 4 decades in electronics:

IC Technology Progress ! Device Scaling

IC Design Progress ! More Integration

• Sub 100nm technologies…

(c) 2007 Peter Kinget 4

Thick oxide VDD

Thin oxide VDD

Thin oxide VT

Technology node [nm]

[ITRS'05]

–O– High Perf.–!– Low Standby–V– Low Power

Nano CMOS : Supply Voltage

(c) 2007 Peter Kinget 5

World is Analog *^%&*$ ;-)

Digital Core

Analog/RF Interfaces

SOC

‘Analog & RF bring the bits to life’

(c) 2007 Peter Kinget 6

D

VDD Scaling

SCALE!!

Do NOT Scale!!

Lower CostLess LeakageLess Power

Less SNR, Less Accuracy,

More Power

A

(c) 2007 Peter Kinget 7

Lowest Energy Digital VDD

• [Hanson 2006] 8-bit microprocessor in 0.13um CMOS

Energ

y p

er

instr

. (a

.u.)

VDD

0.3 - 0.5V

(c) 2007 Peter Kinget 8

System on a Chip

Scale!!

Do NOT Scale!!

A

D Digital: 80-95%

Analog: 5-20%

(c) 2007 Peter Kinget 9

Of course

• There are thick oxide devices;

• There are DC-DC converters or custom supplies;

• Heterogeneous technologies can be

combined with system in a package,….

(c) 2007 Peter Kinget 10

“Disappearing Electronics”

• E.g., pico nodes in wireless sensor nets

– Scavenge energy with one solar cell

– VDD 0.4 to 0.5V

[Rabaey 2006]

(c) 2007 Peter Kinget 11

Analog Assist for Digital

• Embed analog monitors in digital circuits to monitor temperature, VTH, VDD, substrate interference, signal

integrity, ….

• Need to be fully compatible to digital (layout, VDD, technology, …)

[Petrescu 2006]

Supply Noise Monitor

Digital Gates

(c) 2007 Peter Kinget 12

So, let’s explore,

how we can design

ultra-low voltage analog & RF ICs?

(c) 2007 Peter Kinget 13

Outline

• Motivation

• The Challenges

• The Opportunities

– Device Sizing & Biasing

– Building Block Topologies

– System Level Solutions

• Outlook & Conclusions

(c) 2007 Peter Kinget 14

MOST Biasing: CS or VCCS

• Transconductor or Current Source VDS > 0.1V to 0.15 V (for VGS-VTH ! 0.2 V)

• Moderate to Strong Inversion (VGS-VTH) " 0.15 V & |VTH| = 0.35V ! VGS = 0.5V

ro,n//ro,p

Vout [V]

Swing0.2 - 0.25V

Vout

ro,n

ro,p

90nm W=2u

VGS,p

VGS,n

|VTH| = 0.15V ! VGS = 0.3V

(c) 2007 Peter Kinget 15

Ultra-LV Challenges in OTAs

CMFB

Vin+ Vin-Vout+ Vout-

Vcasp Vcasp

VcasnVcasn

0.5V

0.25V0.25V"" "

""

"0.15V

0.15V0.15V

0.15V

0.15V

0.3V0.15V

0.15V

0.3V

(c) 2007 Peter Kinget 16

Gate current decreases

exponentiallywith decreasingoxide voltage

Gate Leakage

[Taur 1999]

Gate Voltage [V]

Gate

Curr

ent D

ensity [A

/cm

2]

(c) 2007 Peter Kinget 17

Reliability

[Stathis 2002]

Time to Breakdown increases

exponentiallywith decreasing

gate voltage

Gate Voltage [V]

Tim

e to B

reakdow

n (

63%

) [s

]

(c) 2007 Peter Kinget 18

Device Level Solutions

VDD

VBS=0.5V #VT~ -50mV

VTH

deep n-well

NMOS

VBS

L/Lmin

180nm130nm90nm

VTH

• RSCE

• Forward Body-Bias

400mV270mV150mV

4

VT as L

(c) 2007 Peter Kinget 19

Building Block Solutions

• Examples:– 0.18um OTAs

• VT = 500mV = VDD

– 90nm OTAs

• VT= 150-300mV

Rethink your topologies!!

(c) 2007 Peter Kinget 20

OTAs: CM Level Shifting

0.5 V

0.4 V

0.4 V

0.5 V

Rb = 2/3 • Ri||Rf

0.25 V 0.25 V

[Bult 2000][Karthikeyan 2000]

(c) 2007 Peter Kinget 21

0.5V Gate-Input OTA Stage

Vin+ Vin-

Vout+Vout-

VbnVNR

0.5 V• Local Common-

Mode Feedback

• Common-Mode

Feed Forward

Cancellation

• Neg. G Gain

Boost

(c) 2007 Peter Kinget 22

0.5V Two-Stage OTA in 0.18um

• VT,nom=0.5V; CMin 0.4V

• 62dB DC gain; 10MHz GBW; 10pF CL,diff; 75uW

(c) 2007 Peter Kinget 23

On-Chip Biasing Circuits

DC CM bias

Level shift bias

Gain biasError amp. bias

OTA (one stage)

OTA replica

(c) 2007 Peter Kinget 24

0.5V Two-Stage OTA in 90nm

• VT,nom=0.3V; CMin 0.25V

• 8dB -G gain boost 1st stage; 45dB DC gain;

• 175MHz GBW; 4pF CL,diff; 625uW

Vin+ Vin-

Vout+ Vout-

INR

0.5 V

ILS

ITAIL

Bias circuitsnot shown

FBB not shown

(c) 2007 Peter Kinget 25

System Functions

• THA, ADCs

– Floating switch problem

• RF Receivers & Synthesizers

• Continuous-time filters

– Tuning challenge

(c) 2007 Peter Kinget 26

Floating Switch Challenge

90nm: VTH = 0.3V

180nm: VTH = 0.55V

Vin

Vin

Conductance

NMOS2u/80n

PMOS4u/80n

0.5V

0.50

10k$

NMOS4.4u/180n

PMOS9u/180n

(c) 2007 Peter Kinget 27

Addressing Floating Switches

[Nakagome 1991] [Abo 1999]

[Crols 1994]

[Ahn 2005]

%1%2

%2%1

-+

%1%2

%2

%1

-+

%1%2

%20

2VDD or Vin+VON

-+

%1%2

%2-+

-+

CLK Boost orBootstrap

Switched Opamp

Switched R-C

Low VTH switch

(c) 2007 Peter Kinget 28

Addressing Floating Switches

• Low VT switch devices

• Clock boosting or bootstrap

• Switched opamp

• Switched R-C

• RTO signaling for CT !" ADCs

• Cascaded sampling to reduce low-VTH

switch leakage

• Common-mode level shift

(c) 2007 Peter Kinget 29

Digital

Output

Q

Q

+

Vin

-

%DAC

3rd order CT !" Modulator

Using Active RC integrators

%DAC

(c) 2007 Peter Kinget 30

RZ Challenge: Switches at VDD/2

0.25 V

0.25 V

0.25 V

0.5V 0V

RZ DAC_n

0.5V 0V

RZ DAC_p

Ri

C

CRdac

Rdac

VCM

%RZ

D0 D1

VCM

%RZD1 D0

+Vin 0.25 V

Switch Conductance

v2

v1

Vcm,ota

V1

V2

(c) 2007 Peter Kinget 31

Solution: Return-to-Open

v2

v2

v1

Vcm,ota

v1

When RZ:(Q=1)

Ri

C

CRdac

Rdac

0.5V 0V

D0 D1

0.5V 0V

D1 D0

RTO DAC_n

RTO DAC_p

+Vin

RZ

Problemswitchesremoved

0.25 V

(c) 2007 Peter Kinget 32

0.5V 74 dB SNDR 25kHz !" Modulator

• Operation for VDD = 0.45V to 0.8V

• Return-to-open architecture, body-input gate-clocked circuits

• 74dB SNDR, 25kHz, 64x OSR, 300#W, 0.18um CMOS

• [Pun, Chatterjee, Kinget, ISSCC 06, JSSC 07]

1mm

(c) 2007 Peter Kinget 33

CM Level Shift & Switches

•TRACK Phase

•Switch @ 0.4V CM

•Switch @ virtual short no signal swing across

•Switch: clk gate & body!

0.5V Differential Track and Hold

(c) 2007 Peter Kinget 34

CM Level Shift & Switches

•HOLD Phase

•Switch @ 0.4V CM

•Switch: no signal swing across

•Switch: clk gate & body!

0.5V Differential Track and Hold

(c) 2007 Peter Kinget 35

0.5V 1Msps 60dB T/H amplifier

• 0.25!m CMOS

• |VTH|= 0.6V

• 60dB SNDR

• 1Msps

• 0.6mA at 0.5V

Track-and-holds

Biasing circuits

• True low voltage

• No CLK boosting

• [Chatterjee, Kinget, VLSI 06,

JSSC07]

Input amplitude [dBV]

SN

DR

(c) 2007 Peter Kinget 36

‘Low VTH’ switch leakage:

W/L=12/0.36|VTH|=0.15V

35

0.12mV/ns

0.01mV/ns

(c) 2007 Peter Kinget 37

0.5V 8bit 10Msps Pipelined ADC

• No internal voltage or clock boosting; regular devices; cascaded sampling technique.

• Aux. S/H for the sub-ADC to eliminate front-end SHA.

• 10Msps: SNDR 48dB@101kHz, [email protected].

• 2.4mW in 90nm CMOS [Shen, Kinget, VLSI07].

100kHz 10MHz

(c) 2007 Peter Kinget 38

VTUNE >> VDD

VTUNE

VIN VOUT

Tuneable Lossy RC Integrator

VIN

VOUT

VLS

VIN

VOUT

VLS

VIN

VOUT

MOSFET-C

Variable Duty CycleSwitched-R

CM Level ShiftSwitched Tuning

[Kurahashi 2006][Huang 2001]

[Yoshizawa 2002]

(c) 2007 Peter Kinget 39

Low-voltage tunable integratorusing varactor

0.25 V0.25 V

0.4 V

+

-Vin Vout

+

-

VDD

VDD

Vtune [V]

Cg

s/

Co

x

(c) 2007 Peter Kinget 40

Frequency [Hz]G

ain

[dB

]

0.5V Fully Integrated 5th Order LPF

• Operation at 0.45 V to 0.6 V• 1.1 mW power dissipation• 57 dB dynamic range

Filter PLL

Biasing circuits

OTAs

1mm

1m

m

[Chatterjee, Tsividis, Kinget, ISSCC05, JSSC05]

135 kHz

(c) 2007 Peter Kinget 41

A 0.5V 2.4GHz Receiver

• ISM band applications

• Sliding IF topology: only 1 RF Mixer

• LNA, Mixers, VGA + on chip RF, IF & BB filtering

(c) 2007 Peter Kinget 42

LNA

Mixer

IMR Filter IF Filter

LNA, IMR, & RF Mix

Switched Gm Mixer [Klumperink 2004]

(c) 2007 Peter Kinget 43

A 0.5V 2.4GHz Receiver• Gain 30dB; NF 18dB;

IIP3 -22dBm

• 90nm CMOS

• 8.5mW

[Stanic, Balankutty, Kinget, Tsividis, RFIC07]

(c) 2007 Peter Kinget 44

0.65V/0.5V 2.4-2.6GHz Fractional-N Synthesizer in 90nm CMOS

[Yu, Kinget, ISSC07]

• VCO swing within the supply rails for reliability.

• Fractional-N DSM dithering shifted to later divider stages to prevent noise injection into forward biased body.

• Staggered clock to prevent jittering caused by simultaneous switching.

• ISM Band applications: -120dBc/Hz @ 3MHz for 6mW

Outlook

(c) 2007 Peter Kinget 47

Where do we go from here…

• Other nanoscale challenges:

– Smaller gm/go.

– Gate & subthreshold leakage.

– Reduced body effect: gm,b # for L #.

• Opportunities:

– Device speed significantly improves.

– Calibrate using abundant digital gates.

– FinFETs, dual gate devices, ….

(c) 2007 Peter Kinget 48

Nanoscale Opportunities

• FinFETs,

• dual gate devices, ….

[Mathew 2005]

GATE 2

GATE 1

VGATE1

VGATE2=-1.2 to 1.2V

(c) 2007 Peter Kinget 49

LV Challenge: Interfaces

50"

CKT

0.5 - 1.0V4dBm (2.5mW) @ 1.0Vpp

-2dBm (0.625mW) @ 0.5Vpp

ZTransf.

Filt./ZMatch

CKT

50"

out

in

(c) 2007 Peter Kinget 50

Power Dissipation Limits

• Noise limited circuits [Vittoz90]:

• Mismatch limited circuits [Kinget96]:

ideal class B

(c) 2007 Peter Kinget 51

Low Voltage Power Penalty

• Finite VDSsat:

VDSsat

(c) 2007 Peter Kinget 52

ADC FOM vs VDD

pJ

/Co

nv.

VDD

Most data taken from B. Murmann, “A/D Converter ISSCC Performance Data”

(c) 2007 Peter Kinget 53

Ultra-low Voltage Analog & RF Design Techniques

• Exploit full device characteristics

– RSCE, Body-bias

• Rethink your topologies

– Eliminate stacks, LCMFB, CMFF, Neg. G

• Revise your architectures

– Eliminate switches, address leakage, revise

tuning paradigms

Plenty of open opportunities!!

(c) 2007 Peter Kinget 54

Acknowledgments

• Collaborators: Y. Tsividis, K. P. Pun (City Univ. Hong Kong), S. Chatterjee (now IIT Delhi), A. Balankutty, Y. Feng, J. Shen, N. Stanic, S. Yu.

• U.K. Moon (Oregon State Univ.) for technical discussions.

• Analog Devices, Bell Labs, Intel, Realtek, Silicon Labs, for financial support.

• Europractice, Philips (now NXP) and UMC for fabrication support.

• Integrand Software for EMX software.

(c) 2007 Peter Kinget 55

0.5V Analog Roadmap

2004 2005 2006

Body-input OTA

Gate-input OTA & Biasing

0.5V Varactor

10b 1Ms THA

135kHz LPF + Tuning

CT 74dB 25kHz#" A/D

2007

DT "# ADC

Basic blocks

Co

mp

lexit

y

Comparators

2.4GHz RCV

2.4GHz Synth.

8b 10Ms A/D

90nm

180nm

250nm

900MHz RF Front-end

Thank you for your attention!

(c) 2007 Peter Kinget 56

References

• [Rabaey 2006]: J. Rabaey et al., “The roadmap to disappearing electronics and ambient intelligence,” IEEE Circuits and Devices Magazine, pp. 23-29, July/August 2006.

• [Hanson 2006]: S. Hanson et al., “Ultralow-voltage, minimum-energy CMOS,” IBM J. Research & Development, Vol. 50, No. 4/5, pp. 469-490, July/september 2006.

• [Mathew 2004]: L. Mathew et al., “CMOS Vertical Multiple Independent Gate Field Effect Transistor (MIGFET),” IEEE International SOI Conference, 2005.

• [Stathis 200]: J.H. Stathis, “Reliability limits for gate insulator in CMOS technology,” IBM J. Research & Development, Vol. 46, No. 2/3, pp. 265-286, March/May 2002.

• [Karthikeyan 2000] S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-voltage analog circuit design based on biased inverting opamp configuration,” IEEE Trans. Circuits Syst. II,vol. 47, no. 3, pp. 176-184, March 2000.

• [Bult 2000] K. Bult, “Analog design in deep sub-micron CMOS,” in European Solid-State Circuits Conference (ESSCIRC), September 2000, pp. 11-17.