design reconfigurable computing in wireless communication ... · design tools for reconfigurable...

45
Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing Systems Computer Science Department Univ. of California, Irvine [email protected] Reconfigurable Hardware Hardware on chip that could implement various functionalities Provides flexibility and adaptability Software Programmability Coarse Grained and Fine Grained Field Programmable Gate Arrays (FPGA) 6/4/2009 2 Virginia Tech Symposium on Wireless Communications

Upload: haphuc

Post on 23-May-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Design tools for

Reconfigurable Computing in Wireless Communication Systems

Eli BozorgzadehCenter for Embedded Computing Systems

Computer Science DepartmentUniv. of California, Irvine

[email protected]

Reconfigurable Hardware

• Hardware on chip that could implement various functionalities

• Provides flexibility and adaptability• Software Programmability• Coarse Grained and Fine Grained• Field Programmable Gate Arrays (FPGA)

6/4/2009 2Virginia Tech Symposium on Wireless 

Communications

Page 2: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Design Technology

Virginia Tech Symposium on Wireless Communications

3

Manufacturing Volume

Time To

 Market

System

 Comp

lexity

Reconfigurable Logic (FPGA)

Reconfigurable Logic (FPGA)

Structured ASIC

Structured ASIC

System‐On‐Chip

System‐On‐Chip

Source: ITRS 2005, Design Technology

6/4/2009

System Driver: SOC Architecture

Virginia Tech Symposium on Wireless Communications

4

Source: ITRS 2005 System Drivers (Fig. 12)

System on Chip Architecture Template6/4/2009

Page 3: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

System On Chip Predictions

Virginia Tech Symposium on Wireless Communications 5

Source: ITRS 2005 System Drivers (Figure 13)

6/4/2009

Reconfigurability in SOC

Percentage Reconfigurability of SOC

23 26 28 28 3035 38 40 42 45 48 50 53 56 60 63

010203040506070

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

Year

%ag

e R

econ

figur

abili

ty

Virginia Tech Symposium on Wireless Communications

6

Source: ITRS 2005 Design Technology (Table 13)

6/4/2009

Page 4: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Heterogeneous FPGA as SOC

Virginia Tech Symposium on Wireless Communications

7

Xilinx Virtex 4 FX FPGA

6/4/2009

Embedded Macros in Virtex 4 FX

• 1‐2 450 MHz PowerPC• 32‐192 500 MHz DSP• 4‐20 500 MHz Digital Clock Manager and Phase Matched Clock Dividers

• ChipSync blocks at every IO (SERDES –serializer deserializer) – synchronizes with external memory, network.

• 2‐4 Ethernet MAC• 10Mb Block and distributed RAM/ROM

6/4/2009Virginia Tech Symposium on Wireless 

Communications8

Page 5: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

MPSoC on FPGA• Millions of logic gates on chip that could implement various 

functionalities• Embedded dedicated blocks such as memory blocks, 

multipliers, etc. • Wide range of interconnection standards, such as PCI and 

high‐speed serial protocols • Open Research Issues:

– Use of soft/hard processors and customization to realize HW/MP (multi‐processor) SoC systems on FPGAs

• HW/SW partitioning tool support• Interconnect between processors• Memory Hierarchy• Architectural Support

Virginia Tech Symposium on Wireless Communications 96/4/2009

PowerPC

Co‐processorA

Cache

Softprocessor

Coprocessor B

Coprocessor C

Page 6: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Fragment‐based sequentialPartial reconfiguration

PowerPC

Heterogeneity

•ASIC Blocks•Block RAMs

EmbeddedSoftware

RuntimeReconfiguration

•Frame‐based•Controller

RuntimeReconfiguration

•Frame‐based•Controller

T2

T1

T3

Task Ti beingImplemented 

Virginia Tech Symposium on Wireless Communications

12

Reconfiguration Framework Reconfiguration Framework Xilinx Virtex 4 ArchitectureXilinx Virtex 4 Architecture

Unit of reconfiguration is a frame.

A frame includes both logic and routing

Frame Bits are inserted externally or stored in memory

Number of frames determines reconfiguration delay

Virtex 4 FPGA

16 CLBs

1 CLB has 22/23 vertical frames

Frames

6/4/2009

Page 7: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Dynamically Reconfigurable Architectures

Coarse‐grain Fine‐grain

NEC DRP, IPFLEX DAPDNA, Morphosys,  Piperench, ……

Device granularity

Altera Stratix 

Bit granularity

Xilinx  XC6200, Triscend 

Columnar granularity

Xilinx Virtex‐II

Block granularity

Xilinx Virtex‐4 (V‐5 ?) 

6/4/2009 13Virginia Tech Symposium on Wireless 

Communications

Software Defined Radios Application

• Composed of – A set of processors (mostly DSP)

– Co‐processors for computationally intensive computation such as filters, modulation, decoding/encoding, etc.

– Integrated with data and multimedia applications 

6/4/2009Virginia Tech Symposium on Wireless 

Communications14

Page 8: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfigurable Architectures for SDR

• Programmability and flexibility is the necessity– Multi‐processor based

– Coarse‐grain reconfigurable architectures

– Hardware Acceleration

• Dynamic reconfiguration and heterogeneity enable adaptation to application and environment– Brings another dimension of design complexity

6/4/2009Virginia Tech Symposium on Wireless 

Communications15

Reconfigurable Physical Layer for SDR

• SDR base stations provide the capability of assimilating different communication technologies  (e.g., in disaster scenarios).

• FPGAs because of their ultimate flexibility and also DSP computation power are important platforms for SDR base stations .

Internet

SDR (PHY)

WiFi B

GPRS linkWiFi link

U1 U2

GPRS

ISM Band

Up/

Dow

nC

onve

rter

6/4/2009 16Virginia Tech Symposium on Wireless 

Communications

Page 9: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Support for Reconfigurable Computing

• Architectural Support

• Runtime configuration 

• Design Automation and Tool Support

• Hardware/software Co‐design environment

6/4/2009Virginia Tech Symposium on Wireless 

Communications17

Overview of the tutorial

• System design tools for dynamically reconfigurable architectures

• Application‐dependent techniques for hardware adaptation

• Challenges for software defined radios on reconfigurable architectures

• Highlights of our contributions

6/4/2009 18Virginia Tech Symposium on Wireless 

Communications

Page 10: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfiguration‐awareDesign Tools 

Layout Generation

System Synthesis

Application to SDR

Simple Codesign FlowApplicationSpecification

SW

Partitioning (+ Scheduling) 

HW

Partial Dynamic Reconfiguration (RTR)

Layout and configuration

6/4/2009 20Virginia Tech Symposium on Wireless 

Communications

P HWM

Communication

….

Page 11: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfiguration Technique

Virginia Tech Symposium on Wireless Communications

21

FIR

Div

Mult

FFT

Mult FIR

Div

Mult

FFT

MultRAM

RAM

Mult

Maximize ReuseMaximize Reuse

Place common blocks in same locations and do not

reconfigure them

Design 1 Design 2

6/4/2009

Floorplan for Reconfiguration

Virginia Tech Symposium on Wireless Communications

22

reconfigure to

Case I

Case II

Case III

m1

m3

m2

m4

m7

m5 m6

m1 m3m2

m14

m4m5

m6

m7 m35

m16

m4 m7m6

m5

m26 m37m14

Design 1 Design 2Reconfigured and reusedregions on the chip

m1

m3

m2

Independent Floorplan.

Minimum Reuse.

Dependent Floorplan.

Limited Reuse.

Combined Floorplan.

Maximum Reuse.

6/4/2009

Page 12: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Maximum Reuse of Components

• Reconfigured Region= A1 + A2 – A1,2 – Areused

• Maximize the overlap of static (Areused) and non static (A1,2) regions to save reconfiguration bits

• Find floorplan such that the components could be placed in locations with these objectives along with minimum area and wirelength

Virginia Tech Symposium on Wireless Communications

23

A2-A1,2

A1-A1,2

A1,2-Areused

Areused

A1

A2

6/4/2009

Problem Statement

• Given sequence of k designs for reconfiguration, find a placement that– Optimizes area, wirelength and congestion for all the designs

– Maximize overlap of non‐fixed blocks and fixed blocks in the designs.

Virginia Tech Symposium on Wireless Communications

246/4/2009

Page 13: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Research Contributions

• Develop a floorplanner that maximizes reuse of frames by isolating components (RAW 2006)

• Multi‐layer floorplanning for handling multiple designs simultaneously (FPL 2006)*received the Best Paper Award.

Virginia Tech Symposium on Wireless Communications

256/4/2009

Floorplanner Overview

Virginia Tech Symposium on Wireless Communications

26

Generate Sequence Pair

Find Floorplan

Evaluate Total Cost(Area, Wirelength,

Congestion and Frames)

Floorplan Accepted?

Apply Moves(Swap, Orientation,

Whitespaceand Matching)

No

Yes

Simulated Annealing

Final Floorplan

6/4/2009

Applications

Page 14: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Floorplanner for Partial Reconfiguration (FFPR)

• Simulated Annealing• Design Representation Model

– Sequence Pair• Moves

– Orientation, Block Swap Moves– Whitespace Allocation Moves– Matching Moves

• Cost Function– Wirelength and Total Area– Total Congestion– Total Frames

Virginia Tech Symposium on Wireless Communications

276/4/2009

Whitespace Requirement

Virginia Tech Symposium on Wireless Communications

28

Fixed Fixed

Whitespace AllocationWhitespace Allocation

6/4/2009

Page 15: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

FFPR Moves ‐Whitespace Allocation

• Empty space is added in the design to allow global wires to pass without crossing modules.

• The four offset parameters, n, s, e, w, are changed during simulated annealing iterations.

Virginia Tech Symposium on Wireless Communications

29

w

n

Block

s

e

whitespace

Floorplan with block offsets6/4/2009

Research Contributions

• Develop a floorplanner that maximizes reuse of frames by isolating components (RAW 2006)

• Multi‐layer floorplanning for handling multiple designs simultaneously (FPL 2006)

Virginia Tech Symposium on Wireless Communications

306/4/2009

Page 16: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Representation: Sequence Pair

• Sequence Pair consists of two sequences of blocks in the design. <(A, B, C), (B, A, C)>

• Placement of blocks follow the relationship{(.., a, .., b, ..), (.., a, .., b, ..)} => a is left of b{(.., a, .., b, ..), (.., b, .., a, ..)} => a is top of b

• Each block has one and only one relationship with the other blocks.

• O(n2) Time to calculate the placement

Virginia Tech Symposium on Wireless Communications

316/4/2009

Working of Sequence Pair

• Sequence Pair <(1,3,2), (2,1,3)> 

Virginia Tech Symposium on Wireless Communications

32

1 3Horizontal Graph

(left‐right property)

2

1Vertical Graph

(top‐bottom property)

3

2

X = 0 X = 2 X = 0

Y = 0

Y = 2

Y = 2

6/4/2009

Page 17: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Working of Sequence Pair

• Sequence Pair <(1,3,2), (2,1,3)> 

Virginia Tech Symposium on Wireless Communications

33

2

31

1 3

2

1

3

2

X=0 X=2 X=0

Y=0

Y=2

Y=2

6/4/2009

Multi Layer Sequence Pairs

• One sequence pair for all designs• Fixed Blocks occur only once• {(.., a, .., b, ..), (.., a, .., b, ..)} => a is left of b

if a and b belong to same design• {(.., a, .., b, ..), (.., b, .., a, ..)} => a is top of b

if a and b belong to same design

Virginia Tech Symposium on Wireless Communications

346/4/2009

Page 18: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Working of Multi‐Layer Sequence Pair

Virginia Tech Symposium on Wireless Communications

35

Design 1: 1,2,3,4,5Design 2: 3,4,5,6,7,8

Sequence Pair: (<3, 2, 7, 8, 5, 4, 1, 6 >,< 8, 1, 3, 5, 6, 7, 2, 4 >)

3

5

4

2

1

Horizontal Graph (using left‐right property)

X=2, W=2

8

7

6

X=0, W=2 X=0, W=2

X=2, W=2

X=0, W=2

X=2, W=2

X=4, W=1

X=4, W=1

6/4/2009

Working of Multi‐Layer Sequence Pair

Virginia Tech Symposium on Wireless Communications

36

3

5

4

2

1

Vertical Graph (using top‐bottom property)

Y=2, H=2

8

7

6

Y=2, H=2Y=0, H=2

Y=4, H=1

Y=0, H=2

Y=4, H=1

Y=3, H=2

Y=0, H=3

Design 1: 1,2,3,4,5Design 2: 3,4,5,6,7,8

Sequence Pair: (<3, 2, 7, 8, 5, 4, 1, 6 >,< 8, 1, 3, 5, 6, 7, 2, 4 >)

6/4/2009

Page 19: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Working of Multi‐Layer Sequence Pair

Virginia Tech Symposium on Wireless Communications

37

Reused moduleReconfigured modulesOverlapped/Reconfiguredmodules

1,8

3 5

42,7

6

Final Placement

Design 1: 1,2,3,4,5Design 2: 3,4,5,6,7,8

Sequence Pair: (<3, 2, 7, 8, 5, 4, 1, 6 >,< 8, 1, 3, 5, 6, 7, 2, 4 >)

6/4/2009

Properties of Multi‐Layer Sequence Pair 

• Theorems: – All possible overlapping floorplans can be represented using multi‐layer sequence pair.

– Any multi‐layer sequence pair represents a valid overlapping floorplan.

– Of all the floorplans defined using a given multi‐layer sequence pair, the longest path algorithm gives area‐minimal floorplan for that sequence pair.

Virginia Tech Symposium on Wireless Communications

386/4/2009

Page 20: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Experiment Results• Effect of finding common components• Could result in more than 4.8 times savings in frames.

Virginia Tech Symposium on Wireless Communications

39

Number of frames with and without common placementPair Common

PlacementNo Common Placement

P1 962 1753

P2 2078 2978

P3 1994 2975

P4 3414 7662

P5 886 4329

Average 1869 2929

Reuse reduces Reconfiguration Delay

6/4/2009

Dependent Floorplan: Direction

Virginia Tech Symposium on Wireless Communications

40

Direction of floorplanning could affect the savings in frames.

Number of Reconfiguration Frames using Opposite Flows in Dependent Mode

Pair Design 1 -> 2 Design 2 -> 1

P1 962 698

P2 2078 821

P3 1994 1491

P4 3414 Unrouteable

P5 886 Unrouteable

Dependent Mode leads to Infeasibility and Limited Reuse

6/4/2009

Page 21: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Design A Design BTiming Constraint (ns)

CombinedFloorplan(seconds)

Dependent Floorplan(B A)

Timing Constraint (ns)

Combined Floorplan(seconds)

Dependent Floorplan(A B)

6.5 3476 X 5.5 X X

7 1662 X 6 525 X

7.5 1627 5250 6.5 479 X

8 1568 2410 7 469 1318

8.5 1636 2017 7.5 460 853

Reconfiguration‐aware Floorplanner

Reconfigurable Physical Layer for SDR

• SDR base stations provide the capability of assimilating different communication technologies  (e.g., in disaster scenarios).

• FPGAs because of their ultimate flexibility and also DSP computation power are important platforms for SDR base stations .

Internet

SDR (PHY)

WiFi B

GPRS linkWiFi link

U1 U2

GPRS

ISM Band

Up/

Dow

nC

onve

rter

6/4/2009 42Virginia Tech Symposium on Wireless 

Communications

Page 22: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Software Defined Radio Components on FPGA

• FFT Cores– data processing of 200 Mega‐samples/sec and transform lengths between 16 and 16,384 points

• Viterbi Decoder/encoder• decoding rates of 199 MSPS for a single channel and 273 MSPS for multi‐channel designs

• Serial vs. parallel implementations

• Turbo Decoder/encoder

• CORDIC, MAC, FIR, etc.

6/4/2009Virginia Tech Symposium on Wireless 

Communications43

Control PlaneInformation PlaneData Plane

MediumAccess

Controller

ConfigurationManager

Static FPGAConfigurationGeneration

Implementation

Library

Sequence of configuratio

n

Configuration Controller

PowerPC

WiMAX

WiFi

GPRS

ConfigurationMemory

WiMAXDriver

GPRSDriver

WiFiDriver

Radio Front End

Data Sources NetworkMobilityManager

Medium Access Planner

CommunicationSoftware Server

Communication Software LibraryMobile Device 

Profiles

SDR Hardware Platform and Network Applications Off-SDR Storage andComputing Server

HW/SW Cross‐LayerAdaptation

6/4/2009 44Virginia Tech Symposium on Wireless 

Communications

Joint NSF projectWith Prof. Luke Bao

Page 23: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfiguration Aware Physical Layer Planning in SDR

• While today FPGAs provide dynamic partial reconfiguration capability, their reconfiguration time overhead is a deterrence considering QoS required for real time traffic like VoIP

• Sequence of reconfiguration of communication protocols affects total reconfiguration time overhead thus the result of Sequence Generation Problem (SGP)can find the right sequence to minimize total reconfiguration time

• SGP can be embedded in a floorplanner to generate Sequence Aware Floorplans which systematically reduces reconfiguration time overhead

6/4/2009 45Virginia Tech Symposium on Wireless 

Communications

Model of Reconfiguration

FPGA

Ti

TjCij

6/4/2009 46Virginia Tech Symposium on Wireless 

Communications

Page 24: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Sequence Matters

T1

T2

T3

C23

C13

C12

T4

C14C34

T1‐>T2‐>T4‐>T3‐>T1

Reconfiguration Cost:

C12 + 0 + C34 + C13

T1‐>T2‐>T3‐>T4‐>T1

Reconfiguration Cost:

C12 + C23 + C34 + C14

<

6/4/2009 47Virginia Tech Symposium on Wireless 

Communications

Problem Modeling

T1

T2

T3

C23

C13

C12

T4

C14C34

V1 V2

V3 V4

C12C12

C13C13 C24C24

C14C14

C23C23

6/4/2009 48Virginia Tech Symposium on Wireless 

Communications

Page 25: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Multiple Implementations per Design

C12,21C12,21C11,22C11,22 C11,21

C11,21

C12,22

C12,22

V11 V12 A

V22 V21 B

I11

I21

I12

I22

C12,21

C11,22 C12,22

C11,21

6/4/2009 49Virginia Tech Symposium on Wireless 

Communications

Parallel Implementation

V11A

B

V11,2

V2

V3

V12

I11

I12

I2

I3

C3,12

C3,11

C23

C2,12

6/4/2009 50Virginia Tech Symposium on Wireless 

Communications

Page 26: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Sequence‐Aware Floorplanner ‐Methodology

Multi‐Layer SP Generation

Initialize Temperature

Layout‐Compaction

Random Moves

Input Netlist1, Netlist2, …, Netlistn

Sequence Generation Problem

Cost Calculation

Move Evaluation

Move Accepted?

YES

Update Floorplan

Store the Best Floorplan

Cool Down Temp.NO

6/4/2009 51Virginia Tech Symposium on Wireless 

Communications

Partial Reconfiguration Scheme

Number of

Frames

Delay (ms)

Phase 1 Phase 2 Phase 3

1 1.7 0.104 0.033

2 3.2 0.218 0.065

MicroBlaze

ICAP

BRAM

SysAce Controller

Compact Flash

OPB_Timer

Local Memory

LMB

6/4/2009 52Virginia Tech Symposium on Wireless 

Communications

Page 27: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Protocol Configuration Statistics

Wireless Protocols Design Size (slices)

Similarity to A (%)

Similarity to B (%)

Similarity to C (%)

Similarity to D (%)

Protocol A (802.16a) 20640 100 67 21 33

Protocol B (802.11a) 20160 67 100 25 40

Protocol C (WCDMA) 14240 21 25 100 45

Protocol D (CDMA) 12640 33 40 45 100

6/4/2009 53Virginia Tech Symposium on Wireless 

Communications

Experiments Description

• Experiment 1: Comparing Best/Worst sequence and cost for the floorplanner while we do not consider configuration cost in the cost function

• Experiment 2: Comparing the two approaches where we try to find the best sequence once it is floorplanned Vs. when we floorplan the designs

• Comparing the Best/Worst sequence within the floorplanner

6/4/2009 54Virginia Tech Symposium on Wireless 

Communications

Page 28: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Experiment 1

(Cost in ms)

Device (row x column) (slices)

Custom FPGA (100 x 320)

LX80(112 x 320)

LX100(128 x 384)

LX160(176 x 384)

Best Seq/Cost ABCD/26.9 ABCD/35.3 ABCD/6.7 ABCD/2.9

Worst Seq/ Cost ACBD/53.7 ACBD/67 ACBD/14.7 ACBD/5.9

6/4/2009 55Virginia Tech Symposium on Wireless 

Communications

Experiment 2

(Cost in ms)

Device (row x column) (slices)

Custom FPGA (100 x 320)

LX80(112 x 320)

LX100(128 x 384)

LX160(176 x 384)

System-level ABCD/26.9 ABCD/35.3 ABCD/6.7 ABCD/2.9

Floorplan-level ABCD/0 ABCD/0 ABCD/0 ABCD/0

6/4/2009 56Virginia Tech Symposium on Wireless 

Communications

Page 29: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Experiment 3

(Cost in ms)

Device (row x column) (slices)

Custom FPGA (100 x 320)

LX80(112 x 320)

LX100(128 x 384)

LX160(176 x 384)

Best Seq/Cost ABCD/0 ABCD/0 ABCD/0 ABCD/0

Worst Seq/ Cost ABDC/25.2 ABDC/9.0 ABDC/0 ABCD/0

Worst Seq/ Cost in Solution Space ACBD/159.5 ACBD/159.1 ACBD/175.9 ACBD/100.8

6/4/2009 57Virginia Tech Symposium on Wireless 

Communications

Example of Best and Worst Solution

I3

I1

I2

A

I3 I1I2 B

I3

I1

I2

C

I3 I1I2 D

30.24ms

87.36ms

178.08ms

50.4ms

174.7

2ms

184.8ms

137.7

6ms

164.64ms

6/4/2009 58Virginia Tech Symposium on Wireless 

Communications

Page 30: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Control PlaneInformation PlaneData Plane

MediumAccess

Controller

ConfigurationManager

Static FPGAConfigurationGeneration

Implementation

Library

Sequence of configuratio

n

Configuration Controller

PowerPC

WiMAX

WiFi

GPRS

ConfigurationMemory

WiMAXDriver

GPRSDriver

WiFiDriver

Radio Front End

Data Sources NetworkMobilityManager

Medium Access Planner

CommunicationSoftware Server

Communication Software LibraryMobile Device 

Profiles

SDR Hardware Platform and Network Applications Off-SDR Storage andComputing Server

HW/SW Cross‐LayerAdaptation

6/4/2009 59Virginia Tech Symposium on Wireless 

Communications

Reconfigurable Physical Layer

SDR Reconfigurable Hardware

DLL/MAC

Upper Layers (Net/Trans/App)

WiMAXDriver

GPRSDriver

WiFiDriver

Data Sources

PHY Radio Frontend

WiMAXModem

GPRSModem

WiFiModem

6/4/2009 60Virginia Tech Symposium on Wireless 

Communications

Seamless Sequence of Software Defined Radio Designs through Hardware Reconfigurability of FPGAs

Page 31: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfiguration‐aware Time slot allocation per protocol

Reconfiguration Overhead at the physical layer to switch between the protocolscan lead to missing packets for processing.

6/4/2009 61Virginia Tech Symposium on Wireless 

Communications

Real Time Task Scheduling

6/4/2009 62Virginia Tech Symposium on Wireless 

Communications

Page 32: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Network flow based model for time slot allocation

6/4/2009 63Virginia Tech Symposium on Wireless 

Communications

Case I

6/4/2009 64Virginia Tech Symposium on Wireless 

Communications

Page 33: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Case II

6/4/2009 65Virginia Tech Symposium on Wireless 

Communications

Case III

6/4/2009 66Virginia Tech Symposium on Wireless 

Communications

Page 34: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

reconfiguration overhead between protocols

to Wi-Fi to WiMax to GPRS to WCDMA

from Wi-Fi 0 .38 .25 1.07from WiMax .29 0 .54 1.06from GPRS 1.4 1.73 0 1.08from WCDMA 2.15 2.24 1.01 0

6/4/2009 67Virginia Tech Symposium on Wireless 

Communications

New Scheduling EDFScenario a (19 tasks) 16 11Scenario b (30 tasks) 24 17Scenario c (34 tasks) 35 27Scenario d (20 tasks) 20 11Scenario e (36 tasks) 27 17

Best Effort Comparison between our scheduler and EDF algorithm

6/4/2009 68Virginia Tech Symposium on Wireless 

Communications

Page 35: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

New Scheduling EDFScenario a 1.4 4.69Scenario b 1.94 10.24Scenario c 2.32 10.34Scenario d 0.79 7.17Scenario e 3.08 23.26

Reconfiguration Overhead comparison between our scheduler and EDF

6/4/2009 69Virginia Tech Symposium on Wireless 

Communications

Adaptive‐aware Synthesis for Reconfigurable Systems

Page 36: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Reconfigurable MPSoCs

• Reconfigurability for self‐adaptive systems to respond to unsupervised events – Adaptivity to enhance performance/power (e.g. communication and DSP applications)

– Response to embedded sensor networks• Reconfigurability for self‐healing systems

– Reliability concerns due to transient errors, thermal runways, process variation, etc.

• Requirements– Architectural support for dynamic and static adaptivity/healing management

– Early design planning with system‐level CAD tools

Virginia Tech Symposium on Wireless Communications 716/4/2009

Dynamic Architecture Model (Virtex‐II like) 

CLB

Off‐chip memory

Width

Height

Task  Ti

On‐chip shared memory

Tj

Frame

Computation

Memory +Communication

Page 37: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Key Concerns in Commercial Architectures with partial RTR

Off‐chip memory

On‐chip shared memory

Column‐based partial RTR

Reconfiguration delay for convolution task (@100 MHz)greater than task execution time (for 256X256 image)    !!

Sequential reconfiguration

Placement constraints

Exactly one task reconfigured in a single time‐instant

Significant reconfiguration delay

Delay‐hiding techniques such as configuration prefetch,configuration re‐use, etc

Criticality of linear placement: simple example

Infeasible

T1T3

T2

C1 C2 C3 C4

Execution tim

e

Width

T4

t2

T1 T3

T4

T2

t2

T1T3

T2

C1 C2 C3 C4

Execution tim

e

Width

T4

Feasible 6/4/2009 74

Virginia Tech Symposium on Wireless Communications

Page 38: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Modified  Codesign Flow with partial RTR

ApplicationSpecification

SW

Partitioning + Scheduling+ Block‐level placement

Placed HWI/f

P HWM

Communication

….

6/4/2009 75Virginia Tech Symposium on Wireless 

Communications

EST computation: Example

Task HW time

SW time

HW area

1 5 23 32 2 9 33 2 11 24 3 14 15 2 10 26 3 7 4

Time C1 C2 C5C4C3 C6 Proc

1

2

6

7

8

9

10

5

3

4

E1

E2

R3

R4

E3E4

R5

E5

P6

C65

Gap

T1 T2

T3T4

T5

T6

EXECUTE Task 1

RECONFIG  Task 5

HW‐SW comm (6,5)

PREFETCH gap

Task 6 on SW

6/4/2009 76Virginia Tech Symposium on Wireless 

Communications

Page 39: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Problem Overview (contd)

T1

T2

Task chain 

2T1

1T1

3T1

2T2

1T2

T1

2T2

1T2

Determine number of instances  of each task

Key challenges: Physical (placement), architectural constraints

Maximize application performance by selecting  parallelism granularity for individual data‐parallel tasks

Determine  workload of  each task instanceGranularity

Key IssuesReconfiguration overhead

Width

E1

Time

Sequential execution

E14E1

3E12E1

1

Width

Time

“Ideal” parallel execution

Ideal gain

Load balancing

E12E1

1

Width

Time R1

2

R14

R13

Reduced gain

E13

Execution with reconfigoverhead

E14

E12E1

1

Width

Time R1

2

R14

R13

Target gain

E13

“Load‐balanced” Execution Simple equationsfor single  task

Page 40: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Key issues: Precedence constraints

T1

T2

2T1

1T1

3T1

2T2

1T2

Width

Time E1

E2

R2 E11

Width

Time

R12

E12 R2

1

R22

E22 E2

1

E11

Width

Time

R12

E12

R21

R22

E22E2

1

R13

E13

2T2

1T2

1T1

2T1

Case A Case BTask chain

Experiments: JPEG encoding 

RGB2YCrCB_1 RGB2YCrCB_2

DCT

Quantize

Huffman

Colour image

Compressed Image

256X256/less area

RGB2YCrCB

DCT_1

Quantize

Huffman

Colour image

Compressed Image

DCT_2

256X256/more area

RGB2YCrCB_1

DCT_1

Quantize_1

Huffman

Colour image

Compressed Image

DCT_2

512X512/more area

Quantize_2

RGB2YCrCB_2

Page 41: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Problem Overview: Exploiting limited bandwidth 

Memory

Memory controller

High‐performance shared bus

OFF‐CHIP

Platform

 FPG

A

Local Memory

STATICALLYCONFIGURED

RUN‐TIME(RE)CONFIGUREDTask‐j

Task‐i

PPC Other Static

System Architecture for on‐the‐fly computing

6/4/2009 81Virginia Tech Symposium on Wireless 

Communications

Problem Overview: Exploiting limited bandwidth 

Platform

 FPG

A

Memory

Memory controller

High‐performance shared bus

OFF‐CHIP

STATICALLYCONFIGURED

RUN‐TIME(RE)CONFIGURED

Task‐jTask‐i

PPCOther Static

System Architecture for on‐the‐fly computing

Bandwidth key system resourceTask execution time depends on bandwidth availability

Problem Objective:  Minimize application execution time with limited bandwidth

6/4/2009 82Virginia Tech Symposium on Wireless 

Communications

Page 42: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Task Microarchitecture

Shared

 Com

mun

ication Med

ium

Interface logic

Mem

ory Access Logic

Interface Clock Domain Task Clock Domain

Rx Buffer

TxBuffer

(Data PREFETCH) (Task CORE)

Core Logic

6/4/2009 83Virginia Tech Symposium on Wireless 

Communications

Theoretical principles for single task

Width

Time

E11

E13

R13

R12

E12

L1

BW = 3*BW_1 Constraint = 2.5*BW_1

L2Width

Time

E11

E13

R13

R12

E12

Width

Time

E11

E13

R13

R12

E12

L3

EqualBandwidth

Width

Time

E11

E13

R13

R12

E12

L4

DifferentBandwidth

Lemma:Assigning remaining bandwidth to lastinstance results in fastest execution

HalfFrequency

6/4/2009 84Virginia Tech Symposium on Wireless 

Communications

Page 43: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Experimental results for unsharp masking (512 X 512)

Bandwidth =  630 MB/sSchedule length = 18.8 ms

RGB2YCbCr

Blur

Sub

Add

YCbCr2RGB

Colour Image

Filtered Image

140

110

210

210

140

Constraint =  600 MB/s

Schedule length = 16.25 ms

RGB2YCbCr_1

Blur

Sub

Add

YCbCr2RGB_1

Colour Image

Filtered Image

140

110

197

197

140

RGB2YCbCr_2

YCbCr2RGB_2

60

60

6/4/2009 85Virginia Tech Symposium on Wireless 

Communications

Challenges in System Design Tools

• Lack of design automation tools that are aware of hardware/software adaptation in the system

• No feedback and back‐end tool awareness to application layer– Not aware of reconfiguration challenges at physical layer

• Need to develop automation tools to guide the designers both at physical layer and higher levels to converge and close the loop for effective adaptive systems

6/4/2009 86Virginia Tech Symposium on Wireless 

Communications

Page 44: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

StaticComputationStaticComputation

Adaptivity‐driven System SynthesisAdaptivityAdaptivity‐‐driven System Synthesisdriven System Synthesis

Dynamic SystemConfiguration 

Manager

Dynamic SystemConfiguration 

Manager

p1

timer DMA

FFT

mem

Sensing and monitoringSensing and monitoring

p2

Turbo decoding

Configuration

Input (image size, frame, packet)

Constraints(power, QoS, throughput)

System SynthesisAnd

Layout Planning

System SynthesisAnd

Layout Planning

Application Specifications(Task graphs)

Configuration Generation

Configuration Generation

System ConstraintGeneration

System ConstraintGeneration

Configuration Sequence Predication/GenerationConfiguration Sequence Predication/Generation

6/4/2009 87Virginia Tech Symposium on Wireless 

Communications

Supported by NSF CAREER grant

Ongoing and Future Work

• System Synthesis and Layout planning to exploit hardware reconfiguration for further adaptation to system constraints.

• Integrating concepts such as resource upgradability and configuration sequences in the design tools.

• Provide feedback from layout synthesis to application layers for effective adaptive systems

• Use Software defined radio as target application

6/4/2009 88Virginia Tech Symposium on Wireless 

Communications

Page 45: Design Reconfigurable Computing in Wireless Communication ... · Design tools for Reconfigurable Computing in Wireless Communication Systems Eli Bozorgzadeh Center for Embedded Computing

Acknowledgment

• NSF– CAREER

– ECCS‐IHCS (with Prof. :Luke Bao)

• Majority of work done by PhD students– Sudarshan Banerjee  (PhD 2007)

– Love Singhal (PhD 2009)

– Hessam Kooti (PhD student)

6/4/2009 89Virginia Tech Symposium on Wireless 

Communications

Thank you!Any Comments?

Email: [email protected]

http://www.ics.uci.edu/~eli