design of smart antibody mimetics with photosensitive switches - … · 2020. 12. 3. · 1 design...

24
1 Design of smart antibody mimetics with photosensitive switches Lian He 1, *, Peng Tan 1 , Yun Huang 2,3, *, and Yubin Zhou 1,3, * Dr. Peng Tan, Dr. Lian He, Prof. Yubin Zhou Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA Email: [email protected]; [email protected] Prof. Yun Huang Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA Email: [email protected] Prof. Yun Huang, Prof. Yubin Zhou Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030 Keywords: Optogenetics, nanobody, monobody, protein design, synthetic biology, base editing ABSTRACT As two prominent examples of intracellular single-domain antibodies or antibody mimetics derived from synthetic protein scaffolds, monobodies and nanobodies are gaining wide applications in cell biology, structural biology, synthetic immunology, and theranostics. We introduce herein a generally- applicable method to engineer light-controllable monobodies and nanobodies, designated as moonbody and sunbody, respectively. These engineered antibody-like modular domains enable rapid and reversible antibody-antigen recognition by utilizing light. By paralleled insertion of two LOV2 modules into a single sunbody and the use of bivalent sunbodies, we substantially enhance the range of dynamic changes of photo-switchable sunbodies. Furthermore, we demonstrate the use of moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base editing by harnessing the power of light. . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint . CC-BY-NC-ND 4.0 International license perpetuity. It is made available under a preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in The copyright holder for this this version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936 doi: bioRxiv preprint

Upload: others

Post on 30-Jan-2021

9 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    Designofsmartantibodymimeticswithphotosensitiveswitches

    LianHe1,*,PengTan1,YunHuang2,3,*,andYubinZhou1,3,*Dr.PengTan,Dr.LianHe,Prof.YubinZhouCenterforTranslationalCancerResearch,InstituteofBiosciencesandTechnology,TexasA&MUniversity,Houston,TX77030,USAEmail:[email protected];lhe@tamu.eduProf.YunHuangCenterforEpigeneticsandDiseasePrevention,InstituteofBiosciencesandTechnology,TexasA&MUniversity,Houston,TX77030,USAEmail:[email protected],Prof.YubinZhouDepartmentofTranslationalMedicalSciences,CollegeofMedicine,TexasA&MUniversity,Houston,TX77030Keywords:Optogenetics,nanobody,monobody,proteindesign,syntheticbiology,baseediting

    ABSTRACT

    Astwoprominentexamplesofintracellularsingle-domainantibodiesorantibodymimeticsderived

    fromsyntheticprotein scaffolds,monobodiesandnanobodiesaregainingwideapplications in cell

    biology,structuralbiology,syntheticimmunology,andtheranostics.Weintroducehereinagenerally-

    applicable method to engineer light-controllable monobodies and nanobodies, designated as

    moonbodyandsunbody,respectively.Theseengineeredantibody-likemodulardomainsenablerapid

    and reversible antibody-antigen recognitionbyutilizing light. Byparalleled insertionof twoLOV2

    modulesintoasinglesunbodyandtheuseofbivalentsunbodies,wesubstantiallyenhancetherange

    of dynamic changes of photo-switchable sunbodies. Furthermore, we demonstrate the use of

    moonbodies or sunbodies to precisely control protein degradation, gene transcription, and base

    editingbyharnessingthepoweroflight.

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 2

    1.INTRODUCTION

    Intracellularsingle-domainantibodies(intrabodies)andtheirmimeticsderivedfromsynthetic

    proteinscaffolds,asmostnotablyexemplifiedbynanobodiesandmonobodies,aregainingwide

    useincellbiology,structuralbiology,syntheticimmunology,andtheranostics.[1-6]Single-domain

    intrabodiesandtheirmimeticssuchasmonobodiesornanobodiesrivalconventionalantibodies

    by theirsubstantiallysmallersizes (12-15kDavs150-160kDa), freedomfromdisulfide-bond

    formation,andeaseofinvitroandincellularexpression.Recentengineeringeffortshaveledto

    the generation of several classes of chemically or light-dependent single-domain antibodies,

    eitherbasedonsplitnanobodies (optobody)[7] orhybridproteins thatutilizeaphotosensitive

    switch (OptoNB and OptoMB)[8-9] or circularly permuted bacterial dihydrofolate reductase

    (LAMA).[10]Nontheless,theseengineeredintrabodiesexhibitarelativelyslowactivationkinetics

    orsufferfromarelativelylowormodestdynamicrangeoflight-inducedchanges.

    Bearing these unmet needs in mind, we introduce herein a set of smart monobodies and

    nanobodiesthatrespondtolightwithinseconds,intheformofON-switches(sunbody)orOFF-

    switches (moonbody). The light-oxygen-voltage domain 2 (LOV2) derived from Avena Sativa

    phototropin1hasbeenengineeredintointrabodiestoconferallostericcontrolofproteinactivity

    bylight.Wegreatlyimprovedtheperfomanceofourlight-controlledmoonbodiesbyoptimzing

    theLOV2insertionintheEFloopratherthantheDEloopasdescribedintheOptoMBtool[9].By

    optimizing LOV2 insertion sites and paralleled insertion of two LOV2 modules into a single

    sunbody, we significantly enhanced the dynamic range of light-inducible response when

    comparedtotheexistingOptoNB[8].Withthesesmartsunbodiesormoonbodies,wedemonstrate

    theirwideapplications in theremotecontrolofprotein localization,celldeath, transcriptional

    programmingandprecisebaseediting.

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 3

    2. RESULTS AND DISCUSSION

    2.1DesignofMoonbodyasLight-ControllableAntibodyMimetics

    We first setout todesigna light-controllablemonobody (termedmoonbody)by inserting the

    LOV2photoswitchintoafibronectintypeIIIdomain(FN3)scaffoldthatspecificallyrecognizes

    theSrcHomology2 (SH2)domainofAbelson tyrosinekinase (Abl).[11-12] Six insertion sites at

    exposed loop regions (Supplementary Figure 1a) were selected, with three situated in the

    antigen-recognizingBC,DE, FG loops (the equivalent of complementarity-determining regions

    (CDRs) seen in an antibody) and the other three at the opposing loops (Figure 1a-c). We

    envisionedthatlight-inducedconformationalchangesinLOV2wouldallostericallymodulatethe

    moonbody-targetinteraction,therebypermittingphotoswitchablecontrolofthemoonbody.To

    visualizethelight-dependentchangesinmoonbody-SH2associationinlivecells,weanchoredthe

    SH2domaintothenuclearenvelope(NE)viafusionwithmEmerald-laminA,andco-expressed

    theengineeredmoonbodyasacytosolicproteinwithpartialdistributioninthenucleoplasm(NP).

    InsertionofLOV2atSite4(DEloop)abolishedthemoonbody-targetinteractionregardlessofthe

    presenceof light(SupplementaryFigure1b-c), likelyowingtothedisruptionof theantigen-

    bindingpocket.TheinsertionofLOV2atSite2(BCloop)ledtoanappreciableincrease(

  • 4

    antigen upon light stimulation. We further validated the transferability of our engineering

    approachbyusingtwoadditionalmonobodies thatrecognizethesmallubiquitin-likemodifier

    protein (SUMO) and the maltose-binding protein (MBP).[13-14]. Both engineered moonbodies

    showed light-induced dissociation from their corresponding target proteins (Supplementary

    Figure 2). These moonbodies might find broad applications in the cost-effective elution or

    enrichment of recombinant MBP- or SUMO-fusion proteins by switching on and off light,

    respectively.

    2.2.Spatiotemporalcontrolofantigenrecognitionandtargetdegradationwithmoonbody

    Thegenerationofmoonbodyallowedustocontrolantibody-antigenrecognitionwithhighspatial

    andtemporalprecision.Weconfirmedthefeasibilityofspatialcontrolbyalternativelyfocusing

    the photostimulation upon two individual cells under the same imaging field (Figure 2a). As

    anticipated,onlythecellwithintheilluminatedareashowedlight-dependentdispersionofNE-

    boundmoonbodyintothenucleoplasm;whereastheothercellwithoutphotostimulationshowed

    no appreciable changes in the subcellular distribution of moonbody (Figure 2a and

    SupplementaryMovie1).Whenthewholeimagingfieldwasexposedtolightstimulation,both

    cellsshowedsimultaneouslight-dependentmoonbodyredistribution(SupplementaryMovie1).

    Temporally,themoonbody-targetinteractionturnedouttobereversible,asreflectedbyrepeated

    NE-to-NP translocation of moonbody in response to at least 10 dark-light cycles of

    photostimulation(Figure2bandSupplementaryMovie2).Theactivationanddeactivationhalf-

    livesweredeterminedtobe7.8±0.1sand46.5±0.3s,respectively(SupplementaryFigure1d).

    Together,modular insertionofLOV2 intoanFN3-derivedmoonbodyenablesnoninvasiveand

    reversiblecontrolofsingle-domainantibodymimeticsbylight.

    Wefurtheraskedwhethermoonbodycouldbeutilizedtoconditionallyfine-tunetheexpression

    levels of its binding target. To test this,we fused the SH2-specificmoonbodywith the auxin

    signalingF-box2protein(AFB2),acomponentintheSkp1-Cul-F-Box(SCF)E3ubiquitinligase

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 5

    complexthatcanrecruitauxin-inducibledegronsforproteasomaldegradation.[15]Moonbodycan

    directlyrecognizeitstarget,thusobviatingtheneedforauxinandthefusionofthedegrontagto

    atargetprotein.Wereasonedthatthelight-triggeredmoonbody-targetdissociationcanprevent

    SH2frombeingdestroyedbytheproteasomaldegradationmachinery(Figure3a).Indeed,inthe

    presenceofescalatingdosesofpulsedlightstimulation,weobservedagradualrecoveryofSH2-

    mEmeraldsignalsinthetransfectedcells(Figure3b),thusestablishingthefeasibilityofusinga

    photoswitchablemoonbodytomodulatethetargetproteinexpressionlevelsinlivecells.

    2.3.DesignofSunbodyasPhotoactivatableNanobody

    Wenext extended the similar engineering approach, aswell as theNE translocation assay, to

    screenphoto-switchablenanobodies(designated"sunbodies“;Figure4a-b).WeusedamCherry-

    specificnanobody(LaM8)[16]asatestcaseandinsertedLOV2intoflexibleloopregionsopposing

    theCDRs(Figure4bandSupplementaryFigure3a),thelatterofwhichareinvolvedindirect

    antigen recognition and thus remain unperturbed. The constructs S1, S2, and S4 exhibited

    negligibleorlittlechanges(

  • 6

    light-triggered translocation towardNE (t1/2, on = 2.6 ± 1.8 s; Figure5). The sunbody-antigen

    associationwasalsofoundtobereversible(Figure5a).Notably,theuseofadimericconcatemer

    ofsunbody(2xsunbody)couldfurtherenhancethestrengthoflight-switchableantibody-antigen

    binding, as reflected by >2-fold increase in the signal-to-background ratio reported by four

    additional subcellular translocation assays (from the cytosol to mitochondria [Mito], plasma

    membrane [PM], endoplasmic reticulum [ER], or early endosome [EE]; Figure 5b-d and

    SupplementaryMovies3-4).Thesefindingsclearlyestablishthefeasibilityofusingsunbodyto

    interrogateproteinslocatedatdifferentsubcellularorganelles.

    2.4.Sunbodyforphoto-controllablegenetranscriptionandbaseediting

    We thenmoved on to explore the use of sunbody for remote control of gene expression.We

    combinedsunbodywiththeFLAREplatform[17]tocreateaSolarFLAREsystemforlight-inducible

    transcriptional activation (Figure6a). Inour envisioneddesign, light stimulation initiates the

    translocation of a cytosolic anti-mCh sunbody-TEV hybrid protein toward PM-tetheredmCh-

    FLARE components (mCh-LOV2-TCS-tetR-VP16), and brings TEV in close proximity to the

    exposedsubstrate(TEVcleavagesiteorTCS)tocleavethepolypeptide,ultimatelyreleasingthe

    otherwisePM-restrictedtranscriptionalcoactivator(tetR-VP16)intothenucleitorecognizethe

    nucleotide tetracycline operator (tetO) sequence and activate gene expression. The

    photosensitive LOV2modules embodied in both sunbody and the FLARE system confer tight

    control over gene transcription by light. The photo-inducible gene transcription was first

    validatedbyusingbluefluorescentprotein(TagBFP)asareporter(Figure6b).Inthedark,we

    did not observe appreciable TagBFP signals, attesting to the strict control of the SolarFLARE

    system.Bycontrast,amarkedincreaseofTagBFPsignalswasnotedinthelight-illuminatedgroup,

    suggesting that the light-inducible antibody-antigen interaction effectively activates the

    SolarFLAREsystemtodrivegeneexpression(Figure6b).WenextreplacedtheTagBFPreporter

    with an N-terminal fragment of mixed lineage kinase domain-like pseudokinase (MLKL-NT;

    residues1-182)thatiscapableofelicitingnecroptoticcelldeath(necroptosis),[18]withthegoalof

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 7

    developing an optogenetic suicide device. Upon light stimulation, we observed a substantial

    increaseofcelldeath,asreflectedbytheappearanceofSYTOXbluestainingofthenucleiofdead

    cellsafterPMpermeabilizationbyMLKL-NT(Figure6candSupplementaryFigure4).These

    resultsestablishSolarFLAREasalight-controlledtranscriptionalprogrammingdevice.

    Next, we set out to combine sunbody with the CRISPR/Cas9-mediated C-to-T base editing

    technique[19]todesignaphotoactivatablecytosinebaseeditor(paCBE).Toachievethis,wesplit

    thefunctionalunitsofCBEintotwoparts(Figure6d):PartIcontainsamCherry-taggedpartially

    enzymaticallydisabledCas9(Cas9nickase,orCas9n)withsgRNA(mCh-Cas9n);whereasPartII

    contains anti-mCh sunbody fused with the cytidine deaminase APOBEC1 and a uracil DNA

    glycosylaseinhibitor(UGI)topreventU:GmismatchbeingrepairedbacktoaC:Gbasepair.[20]We

    reasonedthat,uponlight-triggeredsunbody-mChinteraction,paCBEcouldrestoreitscytosine-

    to-thymine editing function. To quickly test this idea, we used a “Gene ON” (GO) luciferase

    reportersystem[21]tomonitortheactivityofpaCBEbeforeandafterlightstimulation(Figure6e).

    TheGOsystembecomesactivatedonlywhenafunctionalCBEconvertsCtoTtocreateadenovo

    ATGcodonat thebeginningofareportergene(e.g., luciferase), therebyenablingtranslational

    initiationandsuccessfulproductionofthegene.Whenthetransfectedcellswereshieldedfrom

    blue light, we did not observe notable bioluminescent signals. Upon photostimulation, we

    detected a substantial increase of bioluminescence, presumably owing to the expression of

    luciferaseafterC>Tconversionatthestartcodon(Figure6e).Collectively,ourresultsindicate

    thesuccessfuldesignofaphotoswitchablebaseeditingsystembytakingadvantageofthelight-

    induciblesunbody-antigeninteraction.

    3.CONCLUSIONS

    Insummary,byusingwidely-applicableintrabodiesasproteinscaffolds,wehaveillustratedthe

    successfuldesignofaseriesofsyntheticsunbodiesandmoonbodies,intheformofON-switches

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 8

    (sunbody) or OFF-switches (moonbody), that respond to light within dozens of seconds.

    Complementarytotherecentlydevelopedoptobodies,optoNBsandLAMAs,[7-8,10]ourengineering

    effortsgreatlyexpandthesmartantibodytoolboxby(i)extendingtheoptogeneticengineering

    approachtoantibodymimetics,and(ii)offeringswitchableintrabodieswithvaryingkineticand

    dynamic features.Worthy tonote,wehaveenhanced the rangeofdynamic changesofphoto-

    switchable sunbodies (over2-foldcompared tooptoNB)by taking twoapproaches:paralleled

    insertionoftwoLOV2modulesintoasinglesunbodyandtheuseofsunbodyconcatemers.The

    perfomanceofmoondies(optimizedLOV2insertionintheEF-loop)hasbeengreatlyimproved

    comparedtotherecenltyreportedOptoMB.Giventhehighmodularityandfaciletransferability

    of our engineering approaches, we believe that a growing number of smart antibodies and

    antibodymimeticscanlikewisebegeneratedinthenearfuture.Thesemoleculartoolswillgreatly

    facilitate the mechanistic dissection of cell signaling and accelerate the development of

    personalized medicine, such as chimeric antigen receptor (CAR) T-cells and customized

    therapeutic biologics that respond to drugs and beverage intake. In particular, beverage-

    switchableantibodiesareofimmediatetranslationalvaluesgiventheirhighcompatibilitywithin

    vivoapplicationsandtherelativelylowbarriertowardclinicaltrials.

    4.EXPERIMENTALSECTION

    Celllinesandcultureconditions:HeLaandHEK293T(humanembryonickidney)celllineswere

    obtainedfromATCCandculturedunder37°Cata5%CO2atmosphere,andmaintainedinthe

    Dulbecco'smodifiedEagle'smedia(DMEM,Sigma-Aldrich,StLouis,MO,USA),supplementedwith

    10%fetalbovineserum(FBS).

    Molecularcloningandplasmidconstruction:Thestandardrestrictionenzymedigestion-ligation

    andNEBuilderHiFiDNAAssemblymethodswereusedtocreateplasmidsinthisstudy.TheKOD

    StartDNApolymerase(EMDMillipore,MA,USA)wasusedforPCRamplification.Allthesubcloned

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 9

    sequenceswereverifiedusingdiagnosticrestrictiondigestionandSanger’ssequencinganalysis.

    AlltheothercloningreagentswerepurchasedfromNewEnglandBiolabs(Ipswich,MA,USA).

    cDNAsequencesencodingmonobodiesandnanobodiesusedinthisstudywerecodon-optimized

    andsynthesizedasgBlockbyIntegratedDNATechnologies(IDTInc, IA,USA).Themonobody-

    encodingcDNAs(SH2Abl,MBPandSUMO)wereindividuallyinsertedintoacustomizedpcDNA-

    mCherryvectorbetweentheEcoRIandXbaIrestrictionsitestogeneratemCh-taggedmonobodies.

    To create a nuclear envelope (NE)-targeting SH2abl, cDNA of lamin A was inserted into a

    customizedmEmerald-C1vector,followedbySH2abl insertion(NheI-EcoRI).AsLOV2fragments

    werePCRamplifiedandinsertedintomonobodiesbyusingtheNEBuilderHiFiDNAAssembly

    method. Forphotoswitchabledegradation,moonbody (S5.1) cDNAwasamplifiedviaPCRand

    then inserted into the pSH-EFIRES-P-AtAFB2-mCherry vector (Addgene, #129716) between

    EcoRIandNotIsitestoreplacemCherry.

    TomakeGFPfusednanobody,cDNAencodingtheanti-mCherrynanobodyLaM8wasclonedinto

    the pTriEx-GFP vector between HindIII and XhoI sites to yield pTriEx-GFP-LaM8. AsLOV2

    fragmentswere PCR amplified and inserted viaNEBuilderHiFiDNAAssembly. The construct

    exhibitingthehighestlight-inducedchangeswasdesignatedas“sunbody”(S0+S3).Thetandem

    sunbodyexpressionvector(2xsunbody)wasmadebyinsertingoneadditionalcopyofsunbody

    intothepTriEx-GFP-sunbodyplasmid.Tomakemitochondria-targetingmCh,thecDNAsequences

    encodinghumanAKAP11-30(flankedbyNheIandBamHI)wereinsertedintomCherry-N1toyield

    AKAP1-mCh.ForERanchoredmCh,thehumanSac1fragment(residues521-587)wasclonedinto

    thepEGFP-C3backbonebyutilizingtheEcoRI-KpnIrestrictionsites,followedbyGFPreplacement

    bymCh(betweenNheIandXhoIsites).TheplasmamembranetargetingmChconstructwasmade

    asAgeI-mCh-EcoRV-CAAX-XbaIinthesamebackbone.

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 10

    TocreateaSolarFLAREsystem for light-inducible transcriptionalactivation, theTEVprotease

    component (from Ca-FLARE (protease), Addgene #92214) was assembled into pTriEx-GFP-

    sunbody to yield GFP-sunbody-TEV. The mCh and LOV2-TCS (TEV cleavage site)-tetR-VP16

    fragments (fromCa-FLARE (TF), Addgene, # 92213)moduleswere fused into a pcDNA3.1(+)

    backbone tomakePM-anchoredmCh-LOV2-TCS-tetR-VP16. TheTagBFPorMLKL expression

    cassetteusedintheSolarFLAREsystemwasmadebyputtingTagBFPcDNAorhumanMLKL-NT

    (1-182)(EcoRI/XbaI)underthecontrolofatightTREpromoter.

    For photoactivatable cytosine base editor (paCBE), mCh and Cas9n (Cas9-D10A nickase)

    fragmentswereinsertedintoapcDNA3.1(+)vectorviaHiFiassemblytomakemCh-Cas9n(Part

    I).FNLSHiFiwasreplacedbyGFP-sunbody in thepLenti-FNLSHiFi-P2A-Purovector(Addgene,

    #136902) to make the APOBEC1-GFP-sunbody-UGI fusion construct (Part II). The luciferase-

    based GO system with sgRNA in the same vector was obtained from Addgene (pLenti-mU6-

    Luc2GO-PGK-Neo,Addgene#136905).

    Celltransfection:DNAtransfectionwasperformedbyusingtheLipofectamine3000transfection

    reagent (ThermoFisherScientific,MA,USA)according to themanufacturer’s instructions. For

    live-cell fluorescence imaging experiments, cells were seeded in four-chamber 35-mm glass-

    bottomdishes(D35C4-20-1.5-N,Cellvis,MountainView,CA,USA)onedaybeforetransfection,

    and imaged 24-48 h after transfection in an imaging cage equipped with 5% CO2 with the

    temperaturesetat37°C.

    Live cell photostimulation, time-lapse imaging and imaging data analysis: Time-lapse confocal

    imagingwasperformedonaNikonA1RconfocalmodulemountedontoaninvertedNikonEclipse

    Ti-Ebody.Thelightsourcescamefromamulti-lineargonlasermodulecontaining405,488,561

    and640nmlasers.Alive-cellimagingcagedplatformwasusedtomaintainthetemperatureat

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 11

    37oCwith5%CO2tokeepcellshealthyduringtheimagingprocess.A10x,20Xairobjectivelens

    and40xor60xoilimmersionobjectivelenswereusedforimageacquisition.

    Tomonitor light-induced association or dissociation between sunbodies/moonbodies and the

    correspondingantigens,HeLacellsseededonglass-bottomdisheswereco-transfectedwiththe

    indicatedplasmidsshownintherelatedfigures.Confocalimageswereacquired24-48hoursafter

    transfection.Thecellswereimagedevery4secfor2nminunlessotherwisenoted.The488-nm

    lasersourcetoexciteGFPwasalsousedforphotostimulation(with1-5%output).Toquantify

    fluorescentsignalsatselectedareas,weusedtheregion-of-interest(ROI)toolboxinNikonNIS-

    Elementssoftwaretodefinethenuclearenvelope(NE)ornucleoplasm(NP)regions.The“Time

    Measurement”toolwasusedtodeterminethemCherryintensitiesformoonbodyvariantsand

    GFP intensities for sunbody variants. The fluorescence intensity ratio (FNE/FNP) was used as

    readout, with the changes in the ratio plotted as F/F0 or ∆F/F0. For spatially-restricted

    photostimulation,theFRAPmoduleintheNikonimagingsystemwasused,withthe488-nmlaser

    poweroutputsetat0.2%-5%.

    Moonbodyregulatedproteindegradation:TheplasmidencodingthemoonbodyfusedwiththeF-

    boxproteinatAFB2wasco-transfectedwithSH2-mEmeraldintoHeLacells.Cellsweretreated

    withorwithoutacustomizedblue lightsource(470nm,40µW/mm2)after16htransfection.

    Lightstimulationwasappliedfor10%(1minON,9minOFF),30%(3minON,7minOFF),or50%

    (5minON,5minOFF).Afteranadditional16hours,cellswereimagedandSH2-mEmeraldmean

    intensitywasmeasured.MoonbodywithoutatAFB2wasusedascontrol.

    SolarFLARE system for gene expression:The construct encoding GFP-sunbody fusedwith TEV

    protease (GFP-sunbody alone as a control) was co-transfected with PM-mCh-LOV2-TCS-tetR-

    VP16andthepTRE-TagBFPreporterinHEK293Tcells.Eighthourspost-transfection,cellswere

    exposedtopulsedbluelightstimulationfor16h(470nm,40µW/mm2)withalightcycleof1min

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 12

    ONand9minOFF.Cellskeptinthedarkwasusedasacontrol.Confocalimageswereacquired

    after48hoursoftransfectionwitha10xor20xairobjectformCh,GFPandBFPchannels.Eight

    fieldsofviewwererecordedforeachcondition.GFPexpressionareawasmaskedandthemean

    TagBFP intensity was calculated in this mask, with areas outside GFP-positive areas used as

    background.Thebackground-correctedmeanTagBFPintensitieswerecalculatedandplotted.For

    light-induciblenecroptosis,thepTRE-TagBFPvectorwasreplacedbythepTRE-MLKL-NTplasmid,

    with the remaining procedures and conditions identical to the SolarFLARE-BFP reporter

    experimentdescribedabove.Tomonitorcelldeathinreal-time,livecellswerestainedwiththe

    SYTOXbluedye(ThermoFisherScientific,S11348,1:5000dilution,Cf=1µM).

    Luciferase reporter assay: To examine the efficiency of photoactivatable cytosine base editor

    (paCBE), the mCh-Cas9n, APOBEC-sunbody-UGI, and pLenti-mU6-Luc2GO-PGK-Neo (as base

    editingreporter)wereco-transfectedintoHEK293Tcells.Cellsweretreatedwithbluelight(470

    nm,40µW/mm2,1minON-9minOFFcyclesfor16h)orkeptinthedark8hoursaftertransfection.

    Sunbody alone to replace APOBEC-sunbody-UGI was used as control. 72 h post-transfection,

    bioluminescencemeasurementswereperformedbyusingaBright-GloLuciferaseAssaySystem

    fromPromega(catalog#:E2610)bydirectlyaddingreagentstotheculturemediumata1:1ratio.

    Fiveminuteslater,theluminescencesignalswerequantifiedbyusingaCytation5CellImaging

    Multi-ModeReader(BioTek,Winooski,VT,USA).

    Statisticalanalysis:AllthedatawereplottedusingtheGraphPadPrism8.3.0graphingsoftware.

    Quantitativedatawereshownasmean±s.e.m.unlessotherwisenoted.Theanalyzednumber(n)

    ofsamplesweredescribedinthefigurelegendsforeachexperiment.Thehalf-livesandmedian

    effectiveconcentrations(EC50)weredeterminedbyusingtheGraphPadPrismsoftwarepackage.

    ACKNOWLEDGEMENTS.WethankthefinancialsupportsfromtheNationalInstitutesofHealth

    (R01GM112003 to YZ, R21GM126532 to YZ, R01CA232017 to YZ, R01HL134780 to YH, and

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 13

    R01HL146852 to YH), the Welch Foundation (BE-1913-20190330 to YZ), the John S. Dunn

    Foundation(toYZ),andtheAmericanCancerSociety(RSG-16-215-01-TBEtoYZandRSG-18-043-

    01-LIBtoYH).

    AUTHORCONTRIBUTIONS

    YZandYHconceivedtheideasanddirectedthework.LH,PTandYZdesignedthestudy.LHand

    PT performed the experiments. LH and PT analyzed the results. YZ, YH and LH wrote the

    manuscript.Alloftheauthorscontributedtothediscussionandeditingofthemanuscript.

    COMPETINGINTERESTS

    Theauthorsdeclarenocompetinginterests.

    FIGURES

    .CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under apreprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

    The copyright holder for thisthis version posted December 4, 2020. ; https://doi.org/10.1101/2020.12.03.410936doi: bioRxiv preprint

    https://doi.org/10.1101/2020.12.03.410936http://creativecommons.org/licenses/by-nc-nd/4.0/

  • 14

    Figure1.Designandoptimizationoflight-switchablemonobody(moonbody).

    a. Schematicdepictingthedesignoflight-switchablemonobody(designated“moonbody”)and

    the nuclear envelope (NE) translocation assay used for screening. A photoswitch LOV2 is

    insertedintoselectedloopregionstoenablephoto-inducibletargetrecognitioninareversible

    manner. Light-dependent shuttling of moonbody between NE and the nucleoplasm

    (quantifiedastheNE/NPratioofmChsignals)ismonitored.Yellowcirclesrepresentthethree

    CDR(complementarity-determiningregion)-likeloopregionsthatmediatemoonbody-target

    recognition.

    b. LOV2 insertion sitesmapped to the3D structure of an anti-SH2Ablmonobody (PDBentry:

    3T04).Even-numberedinsertionsiteswerecreatedinthetarget-recognitionloops,whereas

    odd-numberedsiteswerelocatedoppositetotheantigen-recognizingBC/DE/FGloops.

    c. 2Dtopologyrepresentationofananti-SH2monobody,withtheinsertionsitesindicatedby

    circles.Themonobody-LOV2 junctionregions forS5or itsvariantswereshownbelowthe

    Dar

    kLi

    ght

    mCh-moonbody(Anti-SH2Abl)

    NE-SH2Abl-Emerald (NE-Ag) Merge

    a

    d

    b

    S1

    S4

    S2

    S3S5

    S6BC loop

    FG loop

    DE loop

    N

    CLOV2 insertion sites

    c

    e

    SH2Abl

    N

    C

    ABFG C D

    S1

    S2

    S3

    S4 S6

    DE loop

    BC loop

    FG loop

    moonbody

    E

    S5

    TATISGLSPGSGLATT...EAAKELGSGGVDYTITVTATISGLSPGSGLATT...EAAKEL---GVDYTITVTATISGLSPGSGLATT...EAA------GVDYTITV

    LOV2S5S5.1S5.2

    MonobodyEF loop

    MonobodyEF loop

    WT S1 S2 S3 S4 S5 S5.1 S5.2 S6

    Ligh

    t-ind

    uced

    cha

    nges

    in

    the

    NE/

    NP

    ratio

    (mC

    h; Δ

    F/F 0

    , %)

    0

    -10

    -20

    -30

    -40

    -50

    10

    Dark

    Light

    Antigen(SH2Abl-Emerald-lamin A)

    Moonbody(Monobody + LOV2)

    Nuclear envelope (NE)

    Anti-SH2Abl moonbody LOV21-73 74-103

    Nucleoplasm (NP)

  • 15

    cartoon.SeeSupplementaryFigure1fordetailedsequenceinformationofallconstructstested

    inthestudy.

    d. Quantificationoflight-dependentresponses(astheNE/NPratio)ofmoonbodyvariants.See

    SupplementaryFigure1forrepresentativeimages.InsertionatSite5(S5)ledtothehighest

    light-inducedchange.n=6-25cells.Dataareshownasmean±s.e.m..

    e. Representativeconfocal imagesofaHeLacell co-expressingananti-SH2moonbody(mCh-

    taggedvariantS5.1;red)andNE-tetheredSH2domainofAblkinase(NEtethered-antigenor

    abbreviatedasNE-Ag;green)inthedarkorafterlightilluminationfor10sec.Scalebar,10

    µm.

  • 16

    Figure2.Spatiotemporalcontrolofmoonbodybylight.

    a. Spatial control of the moonbody-antigen interaction in live cells. HeLa cells were co-

    transfected with NE-SH2Abl (as the Ag; not shown) and mCh-moonbody (shown in gray).

    Photostimulation was sequentially applied to Cells 1 and 2 in the same imaging field as

    indicatedbythebluebox.Scalebar,10µm.AlsoseeSupplementaryMovie1.

    b. Temporal control of the moonbody-antigen binding in live cells. The nucleoplasmic mCh

    intensity(asillustratedinpanelb)inresponseto10repeateddark-lightcyclesofstimulation

    wasquantified.Photostimulationwasappliedbyusingthe488-nmlaserwith5%input.n=

    11cells.AlsoseeSupplementaryMovie2.

    Rel

    ativ

    e nu

    cleo

    plas

    mic

    mC

    herry

    inte

    nsity

    0 200 400 600 800 1000

    Time (sec)

    1.0

    1.1

    1.2 Light

    ba Dark

    S1

    Focused illumination

    S2

    Step 1. Photostimulation on Cell #1

    S1+S2

    Step 2. Photostimulation on Cell #2

    Step 3. Photostimulation on Cells #1 and #2

    Spatial control

  • 17

    Figure3.Light-tunablecontrolofproteinturnoverbymoonbody.

    a. Schematicillustratingtheuseofananti-SH2moonbodyforlight-tunabledegradationofthe

    targetproteininmammaliancells.AFB2bindstheSkp1-Cul1-Rbx1toformaubiquitinligase

    complex to mediate proteasomal degradation. Light-induced dissociation between the

    moonbodyanditstargetcanbeexploitedtoconditionallycontrolproteindegradation.

    b. Quantificationoflight-tunabledegradationofSH2-mEmeraldusingmoonbody.HEK293cells

    weretransfectedwithAFB2-moonbody(ormoonbodyaloneascontrol)andSH2-mEmerald,

    andtheneithershielded(Dark)orexposedto8-hblue light illuminationwith intensifying

    pulses(withtheONandOFFdurationsindicatedinthex-axis).Anexternal470-nmLEDlight

    wasusedas the light source (40µW/mm2). n=5 fieldsof viewper condition.Errorbars

    denotes.e.m..

    a b

    Dark

    Light

    Proteosomal degradation

    Cul1

    Skp1AFB2

    Rbx1E2

    Ub

    UbUbUbUb

    Cul1

    Skp1AFB2

    Rbx1E2

    Target(SH2-mEmerald)

    AFB2-moonbody

    SH2-mEmerald

    SH2-

    mEm

    eral

    d m

    ean

    inte

    nsity

    (a.u

    .)

    500

    1000

    1500

    2000

    moonbodyalone

    AFB2-moonbody

    Light pulse(ON:OFF)

    0 1:9 0 1:9 3:7 5:5

  • 18

    Figure4.Engineeringphotoswitchablenanobody (sunbody) toenable light-controllable

    antigenbinding.

    a. Cartoon depiction of the design and the NP-to-NE translocation assay. Photoswitchable

    redistribution of an engineered anti-mCherry (mCh) nanobody (designated “sunbody”) is

    usedasthereadout.SunbodyisexpectedtoshuttlebetweenNEandNPinalight-dependent

    manner.YellowcirclesrepresentthreeCDRsinvolvedinantigenbinding.

    b. Insertion sites for LOV2 mapped to the modeled 3D structure of an anti-mCh nanobody

    (LaM8).S1,S2andS4arelocatedattheoppositesideofCDRloops.BoththeN-terminus(S0)

    and S3 are in closeproximity to CDRs. See Supplementary Figure3 for detailed sequence

    information.

    c. Quantification of light-induced changes in the NE/NP ratio for an anti-mCh GFP-tagged

    sunbody.ThecombinationofLOV2fusiontotheN-terminus(S0)anditsadditionalinsertion

    atS3ledtothestrongestlight-induciblechanges(S0+S3).SeeSupplementaryFigure3for

    d

    Dar

    kLi

    ght

    GFP-sunbody(S0+S3)

    mCh-lamin A (NE-Ag) Merge

    c

    Ligh

    t-ind

    uced

    cha

    nges

    in

    the

    NE/

    NP

    ratio

    (GFP

    , ΔF/

    F, %

    )

    CTRL S0 S1 S2 S3

    S0 +

    S3 S40

    20

    40

    60

    80

    100

    a b

    Dark

    Light

    Nuclear envelope (NE)

    Antigen(mCh-Lamin A)

    Sunbody(Nanobody + LOV2)Nucleoplasm (NP)

    1-18 19-126LOV2

    1-46 47-126LOV2

    LOV2 1-126

    1-76 77-126LOV2

    1-92 93-126LOV2

    1-76 77-126LOV2LOV2

    S0

    S1

    S2

    S3

    S4S0+S3

    (Sunbody)S1

    S3

    S4

    CDR1

    CDR3CDR2

    C

    N

    LOV2 insertion sites

    S0

    S2

  • 19

    light-inducedchangesofeachconstruct.n=15-66cellsfromthreeindependentassays.Data

    areshownasmean±s.e.m..

    d. RepresentativeconfocalimagesofaHeLacellco-expressingsunbody(GFP-taggedLaM8-S3;

    green)andNE-tetheredmCh-laminA(red)beforeandafterlightilluminationfor10sec.Scale

    bar,10µm.

  • 20

    Figure 5. Improved sunbody shows high sensitivity for light-dependent subcellular

    targeting.

    a. Quantificationof the sunbody-antigen interaction in response to three repeateddark-light

    cycles.ThechangesinthenucleoplasmicGFPsignalswereusedasthereadout.n=23cells.

    b-d. Sunbodyusedfor light-dependentsubcellulartargetingof itsbindingpartner.HeLacells

    were transfected with an anti-mCh GFP-tagged sunbody (1x; green; top panels), or its

    concatemericform(2x;green;bottompanels),alongwiththemChasantigen(red)tethered

    toPM(b),ER(c),oroutermitochondrialmembrane(d).ThequantificationofrelativeGFP

    signalsatthecorrespondingsubcellularorganellesbeforeandafterlightilluminationwere

    shownnext to the images (n=15-75 cells). Theuseof 2xsunbody in a single construct

    substantiallyenhancedthesignal-to-noiseratio.Scalebar,10µm.AlsoseeSupplementary

    Movies3-4.

    c

    a

    1x 2x

    ER /

    cyto

    sol r

    atio

    (GFP

    )

    0

    1

    2

    3

    Anti-mChGFP-sunbody

    mCh-Sac1 (ER-Ag)

    1x

    2x

    DarkLight

    Anti-mChGFP-sunbody

    AKAP1-mCh(Mito-Ag)

    1x

    2x

    1x 2x

    Mito

    / C

    ytos

    ol ra

    tio (G

    FP)

    0

    1

    2

    3 DarkLight

    1x 2x

    PM /

    cyto

    sol r

    atio

    (GFP

    )

    0

    1

    2

    3 DarkLight

    Time (sec)0 20 40 240 260 280 480 500 520

    1.0

    1.5

    2.0

    2.5

    t½= 2.6 ±1.8 s

    Nor

    mal

    ized

    cha

    nges

    of

    NE

    -GFP

    sig

    nals

    Sunbody LOV2LOV2 1-76 77-1262

    1x

    2x

    Anti-mChGFP-sunbody

    mCh-CAAX(PM-Ag)

    d

    b

  • 21

    Figure6.Useofsunbodytoenablephotoactivatablegenetranscriptionandbaseediting.

    a. CartoonillustratingthecombinationofsunbodywithamodifiedFLAREsystem(designated

    SolarFLARE) toenable light-inducibleexpressionofgenesof interest, suchasTagBFPasa

    reporterortheN-terminaldomainofMLKL(MLKL-NT)asanecroptosisinducer.

    b. QuantificationofBFPexpressioninHeLacellstransfectedwithSolarFLARE(sunbogy-TEV+

    FLARE)orthecontrol(sunbodyalone+FLARE)vectors,aswellastheTagBFPreportergene,

    beforeandafterlightilluminationfor8h.n=10fieldsofviewfromthreeindependentassays.

    c. QuantificationofnecroptoticcelldeathasindicatedbySYTOXbluenuclearstainingofdead

    cells.HeLacellswere transfectedwithSolarFLARE(sunbogy-TEV+FLARE)or thecontrol

    (sunbody alone + FLARE) vectors, as well as the inducibleMLKL-NT expression cassette,

    a b c

    Rel

    ativ

    e Ta

    gBFP

    inte

    nsity

    (Fol

    d ch

    ange

    )

    5

    10

    15

    20 DarkLight

    sunbodyalone

    sunbody-TEV

    0 Rel

    ativ

    e SY

    TOX

    blue

    inte

    nsity

    (Fol

    d ch

    ange

    )

    5

    10

    15

    20 DarkLight

    sunbodyalone

    sunbody-TEV

    0Nuclear envelope

    Dark

    Light

    SolarFLARE

    TagBFP

    MLKL-NT

    Necroptosis (SYTOX+)

    Sunbody-TEV

    FLAREmCh

    LOV2

    TCS

    VP16

    Reporter

    PM

    d

    2 4 6 100 8

    sunbodyalone

    paCBE

    Relative luciferase activity(Fold change)

    DarkLight

    e

    Light(base editing)

    APOBECUGI

    Luc

    mCh-Cas9n

    sgRNA

    X

    ACG

    SFFV

    Luc

    ATG

    SFFV

    APOBEC

    UGI

    C > T

    APOBEC-sunbody-UGI

    paCBE

  • 22

    beforeandafterlightilluminationfor8h.AlsoseeSupplementaryFigure4forrepresentative

    images.n=10fieldsofviewfromthreeindependentassays.

    d. Designofaphotoactivatablecytosinebaseeditor(paCBE).Uponphotostimulation,sunbody-

    mChassociationre-assemblestwofunctionalunitsofCBE(PartI:themCh-Cas9n/sgRNAfor

    genome targeting; Part II: APOBEC1-sunbody-UGI for C-to-T conversion) to restore the

    activityofpaCBE.A“GeneON”(GO)luciferasereportersystemisusedtoreporttheactivityof

    paCBEbefore and after light stimulation. Successful recruitment of Part II to the targeted

    genomic locus is anticipated to cause C-to-T conversion in the start codon (ACG>ATG) to

    initiatethetranslationofaluciferasereportergene.

    e. QuantificationofthebaseeditingefficiencyofpaCBEbyusingluciferaseactivityasreadout.

    Sunbodyalonewasusedasanegativecontrol.n=3independentassays.

    Supplementarymaterialscontain:

    SupplementaryFigs.1-4

    SupplementaryMovies1-4

    CaptionsforSupplementaryMovies

    Supplementary Movie 1. Spatial control of the moonbody-antigen interaction in

    mammalian cells. Time-lapse imaging of two HeLa cells co-expressing anti-SH2Abl mCherry-

    moonbody(showningrey)andthenuclearenvelope-tetheredantigen(SH2Abl-mEmerald-lamin

    A; not shown here). Sequential localized photostimulation (488 nm laser; 0.5% output) was

    appliedasfollows:(1)Cell#1atthetop-rightcorner(0-12sOFF;16-49sON;59-129sOFF);(2)

    Cell#2atthebottom-leftcorner(139-180sON;182-262sOFF);and(3)bothcells(271-290s

    ON;300-390sOFF).

  • 23

    SupplementaryMovie 2. Temporal control of themoonbody-antigen interaction in live

    cells.Time-lapseimagingoftwoHeLacellsco-expressingananti-SH2mCherry-moonbody(grey)

    and the nuclear envelope-tethered antigen (SH2-mEmerald-lamin A; not shown). Pulsed

    photostimulationat488nmwasappliedasindicatedbytheverticalbarsontherightgraph.The

    fluorescentintensitiesoftwocircledregionsinbothcellswereplottedontheright.

    SupplementaryMovie3.Time-lapseimagingofaHeLacellco-expressingtheantigen(Mito-

    mCh;red,middle)andananti-mCherry,GFP-tagged2xsunbody(green,right).A488nm-

    laserwith1%outputwasusedforphotostimulation.

    Supplementary Movie 4. Light-induced protein translocation to different subcellular

    organelles.Shownwas timelapse imaging of HeLa cells co-expressing an anti-mCherry, GFP-

    tagged2xsunbody(green,middlepanels)andmCherryastheantigen(red,rightpanels),tethered

    toER(toppanels),PM(middlepanels)orearlyendosome(bottompanels).A488nm-laserwith

    5%outputwasusedforphotostimulation.

    References

    [1] C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, G. Robinson, C. Hamers, E. B. Songa, N. Bendahman, R. Hamers, Nature 1993, 363, 446-448.

    [2] J. R. Ingram, F. I. Schmidt, H. L. Ploegh, Annu Rev Immunol 2018, 36, 695-715. [3] V. Stein, K. Alexandrov, Trends Biotechnol 2015, 33, 101-110. [4] A. Koide, C. W. Bailey, X. Huang, S. Koide, J Mol Biol 1998, 284, 1141-1151. [5] M. Kijanka, B. Dorresteijn, S. Oliveira, P. M. van Bergen en Henegouwen,

    Nanomedicine (Lond) 2015, 10, 161-174. [6] F. Peyvandi, M. Scully, J. A. Kremer Hovinga, S. Cataland, P. Knobl, H. Wu, A.

    Artoni, J. P. Westwood, M. Mansouri Taleghani, B. Jilma, F. Callewaert, H. Ulrichts, C. Duby, D. Tersago, T. Investigators, N Engl J Med 2016, 374, 511-522.

    [7] D. Yu, H. Lee, J. Hong, H. Jung, Y. Jo, B. H. Oh, B. O. Park, W. D. Heo, Nat Methods 2019, 16, 1095-1100.

    [8] A. A. Gil, C. Carrasco-Lopez, L. Zhu, E. M. Zhao, P. T. Ravindran, M. Z. Wilson, A. G. Goglia, J. L. Avalos, J. E. Toettcher, Nat Commun 2020, 11, 4044.

  • 24

    [9] C. Carrasco-Lopez, E. M. Zhao, A. A. Gil, N. Alam, J. E. Toettcher, J. L. Avalos, Nat Commun 2020, 11, 4045.

    [10] H. Farrants, M. Tarnawski, T. G. Muller, S. Otsuka, J. Hiblot, B. Koch, M. Kueblbeck, H. G. Krausslich, J. Ellenberg, K. Johnsson, Nat Methods 2020, 17, 279-282.

    [11] F. Grebien, O. Hantschel, J. Wojcik, I. Kaupe, B. Kovacic, A. M. Wyrzucki, G. D. Gish, S. Cerny-Reiterer, A. Koide, H. Beug, T. Pawson, P. Valent, S. Koide, G. Superti-Furga, Cell 2011, 147, 306-319.

    [12] J. Wojcik, O. Hantschel, F. Grebien, I. Kaupe, K. L. Bennett, J. Barkinge, R. B. Jones, A. Koide, G. Superti-Furga, S. Koide, Nat Struct Mol Biol 2010, 17, 519-527.

    [13] R. N. Gilbreth, K. Truong, I. Madu, A. Koide, J. B. Wojcik, N. S. Li, J. A. Piccirilli, Y. Chen, S. Koide, Proc Natl Acad Sci U S A 2011, 108, 7751-7756.

    [14] R. N. Gilbreth, K. Esaki, A. Koide, S. S. Sidhu, S. Koide, J Mol Biol 2008, 381, 407-418.

    [15] S. Li, X. Prasanna, V. T. Salo, I. Vattulainen, E. Ikonen, Nat Methods 2019, 16, 866-869.

    [16] P. C. Fridy, Y. Li, S. Keegan, M. K. Thompson, I. Nudelman, J. F. Scheid, M. Oeffinger, M. C. Nussenzweig, D. Fenyo, B. T. Chait, M. P. Rout, Nat Methods 2014, 11, 1253-1260.

    [17] W. Wang, C. P. Wildes, T. Pattarabanjird, M. I. Sanchez, G. F. Glober, G. A. Matthews, K. M. Tye, A. Y. Ting, Nat Biotechnol 2017, 35, 864-871.

    [18] L. Sun, H. Wang, Z. Wang, S. He, S. Chen, D. Liao, L. Wang, J. Yan, W. Liu, X. Lei, X. Wang, Cell 2012, 148, 213-227.

    [19] J. M. Levy, W. H. Yeh, N. Pendse, J. R. Davis, E. Hennessey, R. Butcher, L. W. Koblan, J. Comander, Q. Liu, D. R. Liu, Nat Biomed Eng 2020, 4, 97-110.

    [20] A. C. Komor, Y. B. Kim, M. S. Packer, J. A. Zuris, D. R. Liu, Nature 2016, 533, 420-424.

    [21] A. Katti, M. Foronda, J. Zimmerman, B. Diaz, M. P. Zafra, S. Goswami, L. E. Dow, Nucleic Acids Res 2020.