design example for beams with web openings

Upload: mason-hahn

Post on 02-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Design Example for Beams With Web Openings

    1/9

    Design Example forBeam s wi th W eb Openings

    R I C H A R D L . K U S S M A N A N D P E T E R B . C O O P E R

    D U E

    T O the increasing cost of energy an d the d i f f icuhy of

    obtain ing raw mater ials , economy has a h igh pr ior i ty in al l

    aspects of design. In the design of multistory steel buildings,

    sav ings can be real ized by passing ductwork for heat ing ,

    ventilation, and air conditioning systems

    through

    steel floor

    beams, rather than under them. Not on ly does th is p ract ice

    save in the overall height of the structure, along with all the

    related benefits in material savings, but i t also saves in the

    cost of heating and air conditioning by enclosing less volume

    to be heated or cooled . Eccentr ic openings are of special

    in terest because not al l f loor beams and g i rders are of the

    same depth at any g iven level . I t i s desi rab le to keep the

    duct wo rk on a relat ively level p lane to cu t down on the cost

    of fabricating bends. It is doubtful that i t costs any more to

    fabr icate an eccentr ic opening in a s teel beam than i t does

    to fabr icate a concentr ic opening . Thus, even more sav ings

    can be real ized by using the eccentr ic opening . Th e addi t ion

    of reinfo rcem ent i s also som et ime s desi rab le so tha t a

    heavier sect ion i s no t required because of the opening .

    Des ig n fo rm u las h av e b een d ev e lo p ed fo r b eam s wi th

    co n cen t r i c an d eccen t r i c web o p en in g s , b o th u n re in fo rced

    and reinforced;^ the purpose of this paper is to i l lustrate the

    appl icat ion of these formulas in a typ ical design prob

    lem.

    P R O B L E M S T A T E M E N T

    A port ion of the f loor system support ing a concourse in a

    mu l t i s to ry bui ld ing is show n in Fig . 1 . T h e f loor system

    co n s i st s of g i rd er s sp an n in g f ro m co lu m n to co lu m n , wi th

    f loor beams supported by the g i rders . The f loor beams and

    girders supp ort a 4 - in . concrete slab , which in tu rn provides

    cont inuous lateral support to the top f langes of the f loor

    m em b ers . Mo m en t co n n ec t io n s a re p ro v id ed b e tween th e

    columns and g i rders ; therefore, the g i rder ends are assumed

    to be f ixed . I t i s fur ther assumed that the co lumns are W14

    sect ions and that the g i rder span is taken f rom column face

    to co lumn face. The f loor beams are at tached to the g i rders

    wi th sh ear co n n ec t io n s ; s im p le su p p o r t s a r e t h e re fo re as

    su m ed . Fo r a rch i t ec tu ra l r easo n s t h e f l o o r b eam s a re l im

    i ted to a 21- in . dep th .

    Th e h ea t i n g , v en t i l a t i o n , an d a i r co n d i t i o n in g (HVAC)

    ducts run paral lel to the g i rders , wi th serv ice ducts

    Richard L. Kussman is Graduate Research Assistant, Dept. of

    Civil Engineering, Kansas State University, Manhattan, Kans.

    Peter B. Cooper is Professor of Civil Engineering, Dept. of Civil

    Engineering, Kansas State University, Manhattan, Kans.

    b ran ch in g o u t a t r i g h t an g l es . Fo r b o th a rch i t ec tu ra l an d

    aesthet ic reasons i t i s undesi rab le to run the H V A C system

    b elo w th e f lo o r m em b ers , so t h ey m u s t p e n e t r a t e t h em . I t

    i s a lso desi rab le to keep the H V A C system on a level p lane,

    thereby reducing instal lat ion costs by decreasing the

    number of bends in the duct mater ial . I t i s necessary to

    provide a duct area of 144 sq. in. with l-in.-thick insulation

    on al l s ides . Ver t ical posi t ion ing of the ducts used in th is

    ex am p le a re sh o wn in F ig . 2 . Th e co rn er r ad iu s was d e

    termined f rom recommendat ions for members subjected to

    fa t i g u e l o ad in g s .^ Wh i l e s t ru c tu res d es ig n ed b y p l as t i c

    methods are no t subject to fat igue s i tuat ions, these gu ide

    l ines were used to provide a reasonable basis for deter

    mining the corner rad i i o f web openings. I t i s a lso possib le

    that a s l igh t ly smal ler opening could have been used to

    accommodate the duct . The use of a smal ler opening might ,

    however , cause problems in the instal lat ion of the duct

    i n su l a t i o n a n d t h e reb y i n c rease co s ts . A l i b e ra l c l ea ran ce

    was t h e re fo re p ro v id ed i n t h i s ex am p le .

    T h e f loor system is to be designe d to carry a l ive load of

    100 psf^ and a dead load of 80 psf (50 psf for the concrete

    slab and 30 psf for o ther dead loads) . Using A36 s teel and

    the AISC Speci f icat ion"^ for p last ic design , along wi th

    curren t research resu l ts , the locat ions where openings can

    be p laced along the length of the f loor beams and g i rders

    wi l l b e ex p lo red wi th t h e o p en in g r e in fo rcem en t v a ry in g

    as fo l lows: (1) no opening reinforcement i s p rovided , (2)

    GIRDER-

    B E A M S -

    G I R D E R z J

    BEAMS

    k-

    3 5 ' - 0

    ink

    1 ^

    d

    II

    cJ

    rol

    Ui

    Fig.

    7.

    Plan view of loor system

    48

    ENGINEERING JOURNAL / AMERICAN INSTITUTE OF STEEL CONSTRUCTION

  • 8/10/2019 Design Example for Beams With Web Openings

    2/9

    s

    INSULATION

    DUCT

    t

    W 2 I X 8 2

    S

    (a) Floor beam elevation at opening

    i ^ l N S U L A T I O N

    DUCT

    W 2 7 X 8 4

    r?

    Figure 2

    (b) Girder elevation at opening

    enough reinforcement is supplied to resist the maximum

    shear force in the beam, and (3) the minimum reinforce

    ment requ ired to develop the shea r strength of the section

    is furnished.

    FLOOR BEAMS

    Select ion of Beam Sect ion

    Uniformly Distributed Load:

    w = (1.7)(12)(0.10 + 0.08) = 3.67 kips/ft

    Design Moment:

    M = (3.67)(35)V8 = 562 kip-ft

    Required Plastic Section Modulus:

    Z = (562)(12)/36 = 187in.3

    Try W21 X 82 (Z = 192 in.^ > 187

    in.^):

    Design Shear:

    V = (3.67)(35)/2 = 64.2 kips

    Plastic Shear Force:

    Vp = (0.55)(36)(20.86)(0.499)

    = 206 kips > 64.2 kips

    Use W21 X 82

    Proper t ies for Inves t igat ing Local S t rength

    at the Opening

    Opening Parameters:

    h = 6

    in.;

    a

    = 9.5 in.;

    e = 0

    Cross Section Properties:

    Af

    = (8.962)(0.795) = 7.12in.2

    A^ = (20.86 )(0.499 ) = 10.4 in.2

    Reference Values:

    M p= (192 )(36 )/12 = 576 kip-ft

    Vp =

    206 kips (see above)

    Calcula t ion of In ternal Beam ForcesThe in ternal

    beam forces are described by the two expressions below,

    based on Fig. 3. These forces are plotted in Fig. 4 along

    with the interaction diagrams for the floor beams.

    V

    V,

    M

    M .

    64.2 - 3.67A:

    206

    _ 64.2^ - 1.84A:^

    576

    Opening Locat ions for A^ . = 0Calculate the interaction

    diagram coordinates, using formulas presented in the

    Appendix, with

    Ar = e = 0:

    \ 1 6 /

    V 9.5 / V 20. 86/

    10.4 [/ ^ 12 \ 2 1 1i /2

    1 +

    104 n _ / 1 yl

    7 .1 2 [ 4 \ 2 0 . 8 6 / J

    1 +

    10.4

    = 0.911

    (4)(7.12)

    /M_

    -

    1 - 0.288

    1 +

    10.4

    = 0.522

    (4)(7.12)

    \VpJ\ LV2 20.86 / VlO.4/ ^ J

    = 0.158

    49

    SECOND QUARTER / 1976

  • 8/10/2019 Design Example for Beams With Web Openings

    3/9

    Vm,

    3. 67 k/ f t

    \l /

    \L \b \U s i/ \ 1 / \ ] / \ 1 / \ ] /

    35'

    77m,

    64.2 k

    - 6 4 . 2 k

    Fig. 3. Floor beam loading, shear, and moment diagrams

    NO OPENI NGS ALLOWED

    17.5'

    (a) Ar = 0

    nz] nu

    T

    t

    10.5

    10.2'

    10.5

    '-1

    zz\

    ^

    (b)Ar= 1.26 in.^

    16,6;

    i

    1

    y\

    {c)Ar = 2.81 in.^

    Fig. 5. Permissible opening locations for floor beams

    LU

    0 . 9

    0 . 8

    0.7

    0 . 6

    Mp

    0.4

    0.3

    0.2

    0.1

    I NTERNAL BEAM FORCES

    - \ \ \ \

    \ \ \ \

    \ \ \ \

    -

    -

    Ar =

    0 2 ^

    -

    1

    1 i \

    ^ A r = 1 . 2

    1

    ^ A r

    >

    in.^

    1

    2.81 in.2

    1

    0.1 0.2 0.3 0.4 0.5

    V

    Fig. 4. Floor beam interaction diagrams

    0.6

    Th e ab o v e co o rd in a t es a r e p lo t t ed t o fo rm th e ap p ro x i

    m ate i n t e rac t i o n d i ag ram sh o wn in F ig . 4 fo r

    A^ =

    0. As

    sh o w n sch em at i ca l l y i n F ig . 5 an d g rap h ica l l y i n F ig . 4 ,

    t h e re a re n o p o s i t i o n s a lo n g t h e b eam wh ere t h e o p en in g

    can be p laced for A^ .

    =

    0 . This i s because al l the po in ts on

    the internal beam force curve lie outside the failure envelope

    fo r

    Ar

    = 0.

    O p e n i n g L o c a t i o n s f o r

    A^.

    L a r g e E n o u g h t o A c c o m

    m o d a t e M a x i m u m B e a m S h e a r T h e f o l l o w i n g q u a

    d ra t i c eq u a t io n i n

    Ar

    i s o b t a in ed f ro m th e g en era l i zed

    equat ion for

    {V/Vp)\

    p resen t ed i n t h e Ap p en d ix , wi th

    Ar

    \^r Jmin

    AAr^ -{- BAr-^ C=0

    w h e r e

    A =

    16a

    AJ{\ +a)

    ( l + a M ^ LV d) \Vp) J

    \~~d) Vl-Va) ~ \V~

    1 /2

    Ca lcu lat ion of v4 :

    VmaJVp

    = 0 .312

    (1 6 ) (0 .1 6 3 )

    A =

    (1 0 .4 )2 (1 .1 6 3 )

    = 0 . 0 2 0 7

    50

    ENGINEERING JOURNAL / AMERICAN INSTITUTE OF STEEL CONSTRUCTION

  • 8/10/2019 Design Example for Beams With Web Openings

    4/9

    ( 8) (0 .1 63 ) [ -/ 12 \2 , , . _ ] i / 2

    ^ (1.163X10.4) L O ^ -(0.312)2J

    = 0.0311

    V 20.86/ 1.163)

    0721

    Ar =

    -B

    VB^

    - 4AC

    2A

    -0 .0311 \/( 0.031 1)2 - (4)(0.020 7)(-0.072 T)

    (2)(0.0207)

    = 1.26 in.2

    Us e l-Bar 3 X Vigabove and bel ow the opening on

    one side only.

    2 br/tr = 6.9 < 8.5)

    Ar= 1.31 in. 2> 1.26 in.

    Calculation of interaction diagram coordinates using for

    mulas given in the Appendix with A^ = 1.26 in.2,

  • 8/10/2019 Design Example for Beams With Web Openings

    5/9

    Properties for Investigating Local Strength

    at the Opening

    Opening Parameters :

    /z = 6 in.; a = 9.5 in.; ^ = 3 in.

    Cross Section Properties:

    Af = (9.963)(0.636) = 6.34 in.2

    A^, = (0.463)(26.69) = 12.4 in.2

    Reference Values:

    M p = (244)(36)/12 = 732 kip-ft

    Vp

    = 245 kips (see above)

    Calculation of Internal Beam ForcesThe in te rna l

    beam forces form a discontinuous curve described by the

    expres sions below^, based on Fig . 6, w ith the app rop riat e

    limits. This curve is shown in Fig. 7.

    128.4 k 128.4 k

    M

    V

    128

    245

    = 0.522

    - 7 3 0 + 128 x1

    732

    Limits: 0 < x < 11.4 ft

    M

    M .

    = 0

    = 0.997

    ]Limits: 11.4ft < x < 17.4ft

    wrherexis taken to be positive from the column face toward

    midspan.

    Opening Locations for

    A^.=

    0

    Calculation of interac

    tion diagram coordinates using formulas presented in the

    Appendix with

    Ar =

    0^

    e = 3

    in.:

    3 /26 .69 \2 /

    12

    26.69 26.69

    r

    157

    0T =

    13B

    =

    3 /2_6.69\2

    12.4

    (2)(6.34)

    12.4

    12 6

    26.69 26

    6 _ \ 2 _

    .69/

    0.889

    [ / , 12 + 6\ 2 1 11/2

    ( 1 ) = 0 . 2 9 6

    LV 26 .6 9/ 1.157 J

    f / i 1 2 - 6 \ 2 1 11/2

    2) 6.34)LV 26 .6 9/ 1.889 J ~

    t +

    12.41 -1 (6)2 + (2)( 6)( 3)]

    / M\ 6.34L4 (26.69)2 J

    VMJO

    /_M

    r

    1 +

    1 - 0 . 5 5 2

    1 +

    12.4

    12.4

    (4)(6.34)

    = 0.301

    = 0.867

    (4)(6.34)

    11.4

    12'

    11.4'

    128.4 k

    -128.4 k

    - 7 7 0 k f t

    Fig. 6. Girder loading, shear, and mom ent diagrams

    Fig. 7. Girder interaction diagrams

    52

    ENGINEERING JOURNAL / AMERICAN INSTITUTE O F STEEL CONSTRUCTION

  • 8/10/2019 Design Example for Beams With Web Openings

    6/9

  • 8/10/2019 Design Example for Beams With Web Openings

    7/9

  • 8/10/2019 Design Example for Beams With Web Openings

    8/9

    N O M E N C L A T U R E

    R E F E R E N C E S

    Ar

    \-^r)min

    Ayj

    M

    Mp

    \M/Mpl

    {M/Mp)o,

    {M/Mp),

    P

    V

    I

    V/Vpl

    (y/Vph

    (Vs/Vph

    (Vr/Vph

    br

    c

    d

    e

    h

    U

    w

    X

    Area of one f lange

    {b j

    X

    tj)

    Are a of r e in fo rcem en t ab o v e o p en in g ,

    also area of reinforcement below opening

    M i n i m u m a r e a of r e i n fo r c e m e n t r e

    qui red to reach shear capaci ty of sect ion

    Area o f web

    (d X t^)

    Mo m en t a t cen t e r l i n e o f o p en in g

    Plast ic moment of sect ion

    Ab so lu t e v a lu e o f m o m en t t o p l as t i c m o

    m en t r a t i o a lo n g b eam s an d g i rd er s

    Co o rd in a t es o f p o in t s o n ap

    p ro x im ate i n t e rac t i o n d i ag ram

    Co n cen t r a t ed l o ad

    Shear force at cen ter l ine of opening

    Plast ic shear force of sect ion

    Absolu te value of shear force to p last ic

    sh ear fo rce a lo n g b eam s an d g i rd er s

    Co o rd in a t e o f p o in t o n ap p ro x im ate i n

    t e r ac t i o n d i ag ram

    Rat io of shear force in bo t tom tee sect ion

    (VB)

    to plas tic she ar force for poin t 1 on

    a p p r o x i m a t e i n t e r a c t i o n d i a g r a m

    Ratio of shear force in top tee section

    (

    VT)

    to pla stic she ar force for point 1 on

    a p p r o x i m a t e i n t e r a c t i o n d i a g r a m

    Plast ic sect ion modulus

    On e-h a l f o p en in g l en g th

    F l a n g e w i d t h

    Wid th o f r e in fo rcem en t

    W eb th i ck n ess p lu s wid th of r e in fo rce

    m e n t

    (br ~^ t^)

    Beam d ep th

    Eccen t r i c i t y (d i s t an ce b e tween m id -

    depth of sect ion and mid-depth of open

    ing)

    On e-h a l f o p en in g d ep th

    F lan g e t h i ck n ess

    Th ick n ess o f r e in fo rcem en t

    Web th i ck n ess

    Distance f rom edge of opening to face of

    r e in fo rcem en t

    Un i fo rm ly d i s t r i b u t ed l o ad

    Coordinate def in ing posi t ions along

    b eam s an d g i rd er s

    Coeff icien ts used in ap pro xim ate design

    fo rm u las wi th su b scr ip t s

    T

    a n d

    B

    to de

    note top and bot tom tee sect ions, respec

    tively

    1.

    Wang, T. M., R . R. Snell, P. B. Cooper

    S t r ength of Beams

    w i th Eccent r i c Reinforced H oles Journal of the Structural Di

    vision, ASCE, Vol. 101, No. ST9, Proc. Paper 11540, Sept.

    1975.

    2. Subcommittee on Beams w ith W eb Openings of the Structural

    Division

    Sugges ted D es ign G uides for Beams w i th Web H oles

    Journal of the Structural Division, ASC E, Vol. 97, No. ST11,

    Proc. Paper 8536, Nov. 1971.

    3.

    U ni form Bui ld ing Code

    1973 Edition, International Confer

    ence of Building Officials, W hittier,

    Calif.

    1973.

    4. M an ua l of S tee l Cons t ruc t ion

    7th Edition, American Institute

    of Steel Construction, New York, 1970.

    5.

    Redwood, R. G.

    Tables fo r P las t i c D es ign of Beams w i th Rec

    t a n g u l a r H o l e s

    Engineering Journal, AISC , Vol. 9, No. 1, Jan.

    1972.

    A P P E N D I X

    A P P R O X I M A T E I N T E R A C T I O N D I A G R A M

    E Q U A T I O N S

    T h e eq u a t io n s p resen t e d b e lo w a re u sed t o co n s t ru c t an

    ap p ro x im ate i n t e rac t i o n d i ag ram s im i l a r t o F ig . 9 .^

    P o i n t 0 o n t h e d i a g r a m h a s t h e c o o r d i n a t e s [ 0 , ( M / M ^ ) -

    o] ,

    P o in t 1 is d e s c ri b e d b y [ ( F / F ^ ) i , ( M / M p ) i ] , a n d t h e

    poin t on the

    V/Vp-axis

    is

    (V/Vp)\

    f rom the or ig in .

    These equat ions are for the general case of a reinforced

    eccen t r i c web o p en in g . To o b t a in eq u a t io n s fo r o th er ,

    less general cases ,

    Ar, e,

    or bo th

    Ar

    a n d

    e,

    a re t ak en

    eq u a l t o ze ro as ap p ro p r i a t e .

    F o r

    e < w.

    1 + ^

    V M J O

    Ar (Ih

    2h \ ,4w/l__ h^

    +

    2he\

    \d) Af\A d^ )

    1 +

    AAf

    F o r

    u

  • 8/10/2019 Design Example for Beams With Web Openings

    9/9

    Figure 9

    F o r

    Ar < {Ar)min

    4Af

    \VpJ\ \VpJ\ \Vp)\

    F or

    Ar > (Ar)

    ; )

    A.

    1 -

    \Mp/i

    _

    A

    /M_\ ^ Af^

    where the

    A^

    value is {Ar)r)

    1 +

    4Af

    2h

    d

    Vp)\

    ^ 1 + a r V^ / / 2^ /

    r / 2/? + 2g \2 1 16 a r

    / ^ r y ] '

    LV d / 1 + a r (1 + a r ) H ^ J / J

    )

    I "/ 2 A - 2 e \ 2 1 1 6a g (^rVA

    V\ d

    / 1 + B ( H - a B ) 2 U / J

    ^

    1 + aB\Af/

    2Aj

    2h-2eV

    1

    / 2

    3 /a f \2 / 2 / i 2e \

    2A 2\2

    ^

    d)

    56

    ENGINEERING JOURNAL / AMERICAN INSTITUTE OF STEEL CONSTRUCTION