derandomizing the isolation lemma and lower bounds for circuit size

98
Outline Introduction Formulation of an Isolation Lemma Automata Theory Noncommutative Polynomial Identity Testing Black-box derandomization Summary Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size V. Arvind and Partha Mukhopadhyay The Institute of Mathematical Sciences India 27th August 2008 V. Arvind, Partha Mukhopadhyay Isolation Lemma

Upload: others

Post on 11-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomizing the Isolation Lemma and Lower

Bounds for Circuit Size

V. Arvind and Partha MukhopadhyayThe Institute of Mathematical Sciences

India

27th August 2008

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 2: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

1 Introduction

2 Formulation of an Isolation Lemma

3 Automata Theory

4 Noncommutative Polynomial Identity Testing

5 Black-box derandomization

6 Summary

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 3: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

U be a set (universe) of size n and F ⊆ 2U be any family ofsubsets of U.

Let w : U → Z+ be a weight function.

For T ⊆ U, define its weight w(T ) as w(T ) =∑

u∈T w(u).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 4: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

U be a set (universe) of size n and F ⊆ 2U be any family ofsubsets of U.

Let w : U → Z+ be a weight function.

For T ⊆ U, define its weight w(T ) as w(T ) =∑

u∈T w(u).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 5: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma (Mulmuley-Vazirani-Vazirani 1987)

U be a set (universe) of size n and F ⊆ 2U be any family ofsubsets of U.

Let w : U → Z+ be a weight function.

For T ⊆ U, define its weight w(T ) as w(T ) =∑

u∈T w(u).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 6: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma

Let w be any random weight assignment w : U → [2n].

Isolation Lemma guarantees that with high probability (atleast 1/2) there will be a unique minimum weight set in F .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 7: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma

Let w be any random weight assignment w : U → [2n].

Isolation Lemma guarantees that with high probability (atleast 1/2) there will be a unique minimum weight set in F .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 8: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important applications of Isolation Lemma

Randomized NC algorithm for computing maximumcardinality matchings for general graphs.(Mulmuley-Vazirani-Vazirani 1987)

NL ⊂ UL/poly (Klaus Reinhardt and Eric Allender 2000).

SAT is many-one reducible via randomized reductions toUSAT.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 9: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important applications of Isolation Lemma

Randomized NC algorithm for computing maximumcardinality matchings for general graphs.(Mulmuley-Vazirani-Vazirani 1987)

NL ⊂ UL/poly (Klaus Reinhardt and Eric Allender 2000).

SAT is many-one reducible via randomized reductions toUSAT.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 10: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important applications of Isolation Lemma

Randomized NC algorithm for computing maximumcardinality matchings for general graphs.(Mulmuley-Vazirani-Vazirani 1987)

NL ⊂ UL/poly (Klaus Reinhardt and Eric Allender 2000).

SAT is many-one reducible via randomized reductions toUSAT.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 11: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Two outstanding open problems in complexity theory

Is the matching problem in in deterministic NC ?

Is NL ⊆ UL ?

Both the problems will be solved if Isolation Lemma can bederandomized.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 12: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Two outstanding open problems in complexity theory

Is the matching problem in in deterministic NC ?

Is NL ⊆ UL ?

Both the problems will be solved if Isolation Lemma can bederandomized.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 13: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomizing Isolation Lemma

In all well known applications of Isolation Lemma number ofset system is 2nO(1)

.

So derandomization is plausible (Agrawal 2007, Barbadosworkshop on CC).

Main Question Can we derandomize some special cases of theIsolation Lemma.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 14: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomizing Isolation Lemma

In all well known applications of Isolation Lemma number ofset system is 2nO(1)

.

So derandomization is plausible (Agrawal 2007, Barbadosworkshop on CC).

Main Question Can we derandomize some special cases of theIsolation Lemma.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 15: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomizing Isolation Lemma

In all well known applications of Isolation Lemma number ofset system is 2nO(1)

.

So derandomization is plausible (Agrawal 2007, Barbadosworkshop on CC).

Main Question Can we derandomize some special cases of theIsolation Lemma.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 16: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binarystring χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 17: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binarystring χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 18: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binarystring χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 19: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binarystring χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 20: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Isolation Lemma - Our setting

The universe U = [n].

An n-input boolean circuit C and size(C ) = m.

Each subset S ⊆ U corresponds to its characteristic binarystring χS ∈ {0, 1}n.

n-input boolean circuit C implicitly defines the set system

FC = {S ⊆ [n] | C (χS ) = 1}.

Also, there is only exponential number of set systems.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 21: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Our Setting

w : U → [2n] : random weight assignment.

Isolation Lemma:

Probw [ There exists a unique minimum weight set in FC ] ≥1

2.

Can we derandomize?

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 22: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Our Setting

w : U → [2n] : random weight assignment.

Isolation Lemma:

Probw [ There exists a unique minimum weight set in FC ] ≥1

2.

Can we derandomize?

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 23: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Our Setting

w : U → [2n] : random weight assignment.

Isolation Lemma:

Probw [ There exists a unique minimum weight set in FC ] ≥1

2.

Can we derandomize?

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 24: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

A non black-box derandomization Hypothesis

C is an n-input boolean circuit.

A deterministic algorithm A1 takes as input (C , n).

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]) :∃i , s.t wi assigns a unique minimum weight set in FC .

A1 runs in time subexponential in size(C ).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 25: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

A non black-box derandomization Hypothesis

C is an n-input boolean circuit.

A deterministic algorithm A1 takes as input (C , n).

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]) :∃i , s.t wi assigns a unique minimum weight set in FC .

A1 runs in time subexponential in size(C ).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 26: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

A non black-box derandomization Hypothesis

C is an n-input boolean circuit.

A deterministic algorithm A1 takes as input (C , n).

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]) :∃i , s.t wi assigns a unique minimum weight set in FC .

A1 runs in time subexponential in size(C ).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 27: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

A non black-box derandomization Hypothesis

C is an n-input boolean circuit.

A deterministic algorithm A1 takes as input (C , n).

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]) :∃i , s.t wi assigns a unique minimum weight set in FC .

A1 runs in time subexponential in size(C ).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 28: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Black-box derandomization Hypothesis

A2 takes (m, n) in unary.

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]).

For each size m boolean circuit C with n inputs: ∃i , s.t wi

assigns a unique minimum weight set in FC .

A2 runs in time polynomial in m.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 29: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Black-box derandomization Hypothesis

A2 takes (m, n) in unary.

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]).

For each size m boolean circuit C with n inputs: ∃i , s.t wi

assigns a unique minimum weight set in FC .

A2 runs in time polynomial in m.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 30: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Black-box derandomization Hypothesis

A2 takes (m, n) in unary.

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]).

For each size m boolean circuit C with n inputs: ∃i , s.t wi

assigns a unique minimum weight set in FC .

A2 runs in time polynomial in m.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 31: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Black-box derandomization Hypothesis

A2 takes (m, n) in unary.

A outputs weight functions w1,w2, · · · ,wt (wi : [n] → [2n]).

For each size m boolean circuit C with n inputs: ∃i , s.t wi

assigns a unique minimum weight set in FC .

A2 runs in time polynomial in m.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 32: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomization Consequences (results)

Non black-box derandomization ⇒ either NEXP 6⊂ P/poly orPerm does not have polynomial size noncommutative

arithmetic circuits.

Black-box derandomization ⇒ an explicit multilinearpolynomial fn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] (incommuting variables) does not have commutative arithmeticcircuits of size 2o(n).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 33: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Derandomization Consequences (results)

Non black-box derandomization ⇒ either NEXP 6⊂ P/poly orPerm does not have polynomial size noncommutative

arithmetic circuits.

Black-box derandomization ⇒ an explicit multilinearpolynomial fn(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] (incommuting variables) does not have commutative arithmeticcircuits of size 2o(n).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 34: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization : proof idea

Using Isolation Lemma, design a randomized polynomial-timeidentity testing algorithm (PIT) for small degreenoncommutative circuits.

Derandomize the algorithm (subexponential time) usingHypothesis 1.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 35: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization : proof idea

Using Isolation Lemma, design a randomized polynomial-timeidentity testing algorithm (PIT) for small degreenoncommutative circuits.

Derandomize the algorithm (subexponential time) usingHypothesis 1.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 36: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Idea behind the proof cont’d.

Noncommutative version of Impagliazzo-Kabanets 2003:Derandomizing the PIT for small degree noncommutativecircuit ⇒ either NEXP 6⊂ P/poly or permanent has nopoly-size noncommutative circuit (Arvind, Mukhopadhyay andSrinivasan 2008).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 37: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Noncommutative PIT

A noncommutative arithmetic circuit C computes apolynomial in F{x1, x2, · · · , xn} (xixj 6= xjxi ) using + and ×gate.

(Bogdanov and Wee’05) Randomized poly-time PIT fornoncommutative circuits of small degree (based on classictheorem of Amitsur and Levitzki 1950).

New algorithm is based on Isolation Lemma and AutomataTheory.

Recently, using automata theory a deterministic PIT algorithmfor noncommutative circuit computing sparse polynomial isgiven (Arvind, Mukhopadhyay and Srinivasan 2008).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 38: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Noncommutative PIT

A noncommutative arithmetic circuit C computes apolynomial in F{x1, x2, · · · , xn} (xixj 6= xjxi ) using + and ×gate.

(Bogdanov and Wee’05) Randomized poly-time PIT fornoncommutative circuits of small degree (based on classictheorem of Amitsur and Levitzki 1950).

New algorithm is based on Isolation Lemma and AutomataTheory.

Recently, using automata theory a deterministic PIT algorithmfor noncommutative circuit computing sparse polynomial isgiven (Arvind, Mukhopadhyay and Srinivasan 2008).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 39: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Noncommutative PIT

A noncommutative arithmetic circuit C computes apolynomial in F{x1, x2, · · · , xn} (xixj 6= xjxi ) using + and ×gate.

(Bogdanov and Wee’05) Randomized poly-time PIT fornoncommutative circuits of small degree (based on classictheorem of Amitsur and Levitzki 1950).

New algorithm is based on Isolation Lemma and AutomataTheory.

Recently, using automata theory a deterministic PIT algorithmfor noncommutative circuit computing sparse polynomial isgiven (Arvind, Mukhopadhyay and Srinivasan 2008).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 40: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Noncommutative PIT

A noncommutative arithmetic circuit C computes apolynomial in F{x1, x2, · · · , xn} (xixj 6= xjxi ) using + and ×gate.

(Bogdanov and Wee’05) Randomized poly-time PIT fornoncommutative circuits of small degree (based on classictheorem of Amitsur and Levitzki 1950).

New algorithm is based on Isolation Lemma and AutomataTheory.

Recently, using automata theory a deterministic PIT algorithmfor noncommutative circuit computing sparse polynomial isgiven (Arvind, Mukhopadhyay and Srinivasan 2008).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 41: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Some Automata Theory Background

A finite automaton A = (Q,Σ = {x1, · · · , xn}, δ, {q0}, {qf }).

(Q,Σ, δ, q0, qf )→ (alphabet, states set, transition function,initial state, final state).

For b ∈ Σ, the 0-1 matrix Mb ∈ F|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,0 otherwise.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 42: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Some Automata Theory Background

A finite automaton A = (Q,Σ = {x1, · · · , xn}, δ, {q0}, {qf }).

(Q,Σ, δ, q0, qf )→ (alphabet, states set, transition function,initial state, final state).

For b ∈ Σ, the 0-1 matrix Mb ∈ F|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,0 otherwise.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 43: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Some Automata Theory Background

A finite automaton A = (Q,Σ = {x1, · · · , xn}, δ, {q0}, {qf }).

(Q,Σ, δ, q0, qf )→ (alphabet, states set, transition function,initial state, final state).

For b ∈ Σ, the 0-1 matrix Mb ∈ F|Q|×|Q|:

Mb(q, q′) =

{

1 if δb(q) = q′,0 otherwise.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 44: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Some Automata Theory Background

For any w = w1w2 · · ·wk ∈ Σ∗, the matrixMw = Mw1Mw2 · · ·Mwk

.

Easy fact: Mw (q0, qf ) = 1 if and only if w is accepted by theautomaton A.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 45: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Some Automata Theory Background

For any w = w1w2 · · ·wk ∈ Σ∗, the matrixMw = Mw1Mw2 · · ·Mwk

.

Easy fact: Mw (q0, qf ) = 1 if and only if w is accepted by theautomaton A.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 46: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Run of an automaton over a noncommutative circuit

C be any given noncommutative arithmetic circuit computingf .

Output matrix MAout = C (Mx1 ,Mx2 · · · ,Mxn).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 47: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Run of an automaton over a noncommutative circuit

C be any given noncommutative arithmetic circuit computingf .

Output matrix MAout = C (Mx1 ,Mx2 · · · ,Mxn).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 48: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

The output is always 0 when f ≡ 0.

If A accepts precisely one monomial (m) of f thenMA

out(q0, qf ) = c (coefficient of m in f is c).

That’s an identity test !!

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 49: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

The output is always 0 when f ≡ 0.

If A accepts precisely one monomial (m) of f thenMA

out(q0, qf ) = c (coefficient of m in f is c).

That’s an identity test !!

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 50: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

The output is always 0 when f ≡ 0.

If A accepts precisely one monomial (m) of f thenMA

out(q0, qf ) = c (coefficient of m in f is c).

That’s an identity test !!

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 51: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm based on Isolation Lemma

Input f ∈ F{x1, x2, · · · , xn} given by an arithmetic circuit C

of.

d be an upper bound on the degree of f .

[d ] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}.

The universe (for Isolation Lemma) U = [d ] × [n].

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 52: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm based on Isolation Lemma

Input f ∈ F{x1, x2, · · · , xn} given by an arithmetic circuit C

of.

d be an upper bound on the degree of f .

[d ] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}.

The universe (for Isolation Lemma) U = [d ] × [n].

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 53: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm based on Isolation Lemma

Input f ∈ F{x1, x2, · · · , xn} given by an arithmetic circuit C

of.

d be an upper bound on the degree of f .

[d ] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}.

The universe (for Isolation Lemma) U = [d ] × [n].

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 54: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm based on Isolation Lemma

Input f ∈ F{x1, x2, · · · , xn} given by an arithmetic circuit C

of.

d be an upper bound on the degree of f .

[d ] = {1, 2, · · · , d} and [n] = {1, 2, · · · , n}.

The universe (for Isolation Lemma) U = [d ] × [n].

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 55: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm

Let v = xi1xi2 · · · xit be a nonzero monomial of f .

Identify v with Sv ⊂ U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Set system:

F = {Sv | v is a nonzero monomial in f }

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 56: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm

Let v = xi1xi2 · · · xit be a nonzero monomial of f .

Identify v with Sv ⊂ U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Set system:

F = {Sv | v is a nonzero monomial in f }

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 57: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Identity Testing Algorithm

Let v = xi1xi2 · · · xit be a nonzero monomial of f .

Identify v with Sv ⊂ U :

Sv = {(1, i1), (2, i2), · · · , (t, it)}

Set system:

F = {Sv | v is a nonzero monomial in f }

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 58: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition behind the Identity Testing Algorithm

Assign random weights from [2dn] to the elements of U,

(Isolation Lemma) With probability at least 1/2, there is aunique minimum weight set in F .

Goal Construct a family of small size automatons{Aw ,t}w∈[2nd2 ],t∈[d]:

Aw ,t precisely accepts all the strings (corresponding to themonomials) v of length t, such that the weight of Sv is w .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 59: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition behind the Identity Testing Algorithm

Assign random weights from [2dn] to the elements of U,

(Isolation Lemma) With probability at least 1/2, there is aunique minimum weight set in F .

Goal Construct a family of small size automatons{Aw ,t}w∈[2nd2 ],t∈[d]:

Aw ,t precisely accepts all the strings (corresponding to themonomials) v of length t, such that the weight of Sv is w .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 60: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition behind the Identity Testing Algorithm

Assign random weights from [2dn] to the elements of U,

(Isolation Lemma) With probability at least 1/2, there is aunique minimum weight set in F .

Goal Construct a family of small size automatons{Aw ,t}w∈[2nd2 ],t∈[d]:

Aw ,t precisely accepts all the strings (corresponding to themonomials) v of length t, such that the weight of Sv is w .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 61: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition behind the Identity Testing Algorithm

Assign random weights from [2dn] to the elements of U,

(Isolation Lemma) With probability at least 1/2, there is aunique minimum weight set in F .

Goal Construct a family of small size automatons{Aw ,t}w∈[2nd2 ],t∈[d]:

Aw ,t precisely accepts all the strings (corresponding to themonomials) v of length t, such that the weight of Sv is w .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 62: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition of the Identity Testing algorithm

For each A ∈ {Aw ,t} compute the run of A on C .

(Using the isolation lemma) The automata corresponding tothe minimum weight will precisely accept (isolate) only onestring (monomial).

The automata family is easy to construct.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 63: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition of the Identity Testing algorithm

For each A ∈ {Aw ,t} compute the run of A on C .

(Using the isolation lemma) The automata corresponding tothe minimum weight will precisely accept (isolate) only onestring (monomial).

The automata family is easy to construct.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 64: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Intuition of the Identity Testing algorithm

For each A ∈ {Aw ,t} compute the run of A on C .

(Using the isolation lemma) The automata corresponding tothe minimum weight will precisely accept (isolate) only onestring (monomial).

The automata family is easy to construct.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 65: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

C be a noncommutative arithmetic circuit of small degree andm is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and computerun on C .

Thus, a boolean circuit C (of size poly(size(C ))), FC

definesthe monomials of C .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 66: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

C be a noncommutative arithmetic circuit of small degree andm is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and computerun on C .

Thus, a boolean circuit C (of size poly(size(C ))), FC

definesthe monomials of C .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 67: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

C be a noncommutative arithmetic circuit of small degree andm is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and computerun on C .

Thus, a boolean circuit C (of size poly(size(C ))), FC

definesthe monomials of C .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 68: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Crucial Observation

C be a noncommutative arithmetic circuit of small degree andm is a given monomial.

Easy algorithm to check if m is a nonzero monomial in C .

Construct an automaton A that accepts only m and computerun on C .

Thus, a boolean circuit C (of size poly(size(C ))), FC

definesthe monomials of C .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 69: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit C .

A1(C , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(C , n)) .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 70: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit C .

A1(C , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(C , n)) .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 71: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit C .

A1(C , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(C , n)) .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 72: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit C .

A1(C , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(C , n)) .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 73: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Non black-box derandomization

Given noncommutative arithmetic circuit C .

Compute boolean circuit C .

A1(C , n) = {w1,w2, · · · ,wn}.

Identity testing using {wi}’s.

Run time: subexp(size(C , n)) .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 74: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Goal To construct an explicit multilinear polynomial f inF[x1, x2, · · · , xn] that does not have 2o(n) size arithmeticcircuit.

Define a multilinear polynomial:

f (x1, x2, · · · , xn) =∑

S⊆[n]

cS

i∈S

xi ,

we need to fix cS ’s suitably.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 75: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Goal To construct an explicit multilinear polynomial f inF[x1, x2, · · · , xn] that does not have 2o(n) size arithmeticcircuit.

Define a multilinear polynomial:

f (x1, x2, · · · , xn) =∑

S⊆[n]

cS

i∈S

xi ,

we need to fix cS ’s suitably.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 76: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Goal To construct an explicit multilinear polynomial f inF[x1, x2, · · · , xn] that does not have 2o(n) size arithmeticcircuit.

Define a multilinear polynomial:

f (x1, x2, · · · , xn) =∑

S⊆[n]

cS

i∈S

xi ,

we need to fix cS ’s suitably.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 77: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important Observation

Let f be a multilinear polynomial given by a circuit C andm =

i∈S xi is a monomial.

A small size boolean circuit C can decide whether m is anonzero monomial in f .

Just substitute y for each xi such that i ∈ S and 0 otherwise.

C evaluates C to check whether the coefficient of themaximum degree of y is nonzero.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 78: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important Observation

Let f be a multilinear polynomial given by a circuit C andm =

i∈S xi is a monomial.

A small size boolean circuit C can decide whether m is anonzero monomial in f .

Just substitute y for each xi such that i ∈ S and 0 otherwise.

C evaluates C to check whether the coefficient of themaximum degree of y is nonzero.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 79: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important Observation

Let f be a multilinear polynomial given by a circuit C andm =

i∈S xi is a monomial.

A small size boolean circuit C can decide whether m is anonzero monomial in f .

Just substitute y for each xi such that i ∈ S and 0 otherwise.

C evaluates C to check whether the coefficient of themaximum degree of y is nonzero.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 80: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Important Observation

Let f be a multilinear polynomial given by a circuit C andm =

i∈S xi is a monomial.

A small size boolean circuit C can decide whether m is anonzero monomial in f .

Just substitute y for each xi such that i ∈ S and 0 otherwise.

C evaluates C to check whether the coefficient of themaximum degree of y is nonzero.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 81: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Let w1,w2, · · · ,wt are the weight functions output by A2,t ≤ mc where m is the size of the boolean circuit that definesthe monomial of f .

Let wi = (wi ,1,wi ,2, · · · ,wi ,n).

Goal is to fool every weight function wi .

For all i , write down the equation

gi (y) = f (ywi,1 , ywi,2, · · · , ywi,n) = 0.

.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 82: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Let w1,w2, · · · ,wt are the weight functions output by A2,t ≤ mc where m is the size of the boolean circuit that definesthe monomial of f .

Let wi = (wi ,1,wi ,2, · · · ,wi ,n).

Goal is to fool every weight function wi .

For all i , write down the equation

gi (y) = f (ywi,1 , ywi,2, · · · , ywi,n) = 0.

.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 83: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Let w1,w2, · · · ,wt are the weight functions output by A2,t ≤ mc where m is the size of the boolean circuit that definesthe monomial of f .

Let wi = (wi ,1,wi ,2, · · · ,wi ,n).

Goal is to fool every weight function wi .

For all i , write down the equation

gi (y) = f (ywi,1 , ywi,2, · · · , ywi,n) = 0.

.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 84: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

Let w1,w2, · · · ,wt are the weight functions output by A2,t ≤ mc where m is the size of the boolean circuit that definesthe monomial of f .

Let wi = (wi ,1,wi ,2, · · · ,wi ,n).

Goal is to fool every weight function wi .

For all i , write down the equation

gi (y) = f (ywi,1 , ywi,2, · · · , ywi,n) = 0.

.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 85: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

The degree of gi (y) is ≤ 2n2.

Total number of linear constraints for cS ’s is at most2n2mc < 2n for m = 2o(n).

There always exists a nontrivial solution for f .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 86: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

The degree of gi (y) is ≤ 2n2.

Total number of linear constraints for cS ’s is at most2n2mc < 2n for m = 2o(n).

There always exists a nontrivial solution for f .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 87: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Consequence of Hypothesis 2

The degree of gi (y) is ≤ 2n2.

Total number of linear constraints for cS ’s is at most2n2mc < 2n for m = 2o(n).

There always exists a nontrivial solution for f .

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 88: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Finishing the proof

Let f has a arithmetic circuit of size 2o(n),

Then a boolean circuit C of size 2o(n) defines the monomialsof f .

Then for some weight function wi there is a unique monomial∏

j∈S xj such that∑

j∈S wi ,j takes the minimum value (by theproperty of A2).

So the polynomial gi (y) 6= 0, a contradiction.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 89: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Finishing the proof

Let f has a arithmetic circuit of size 2o(n),

Then a boolean circuit C of size 2o(n) defines the monomialsof f .

Then for some weight function wi there is a unique monomial∏

j∈S xj such that∑

j∈S wi ,j takes the minimum value (by theproperty of A2).

So the polynomial gi (y) 6= 0, a contradiction.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 90: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Finishing the proof

Let f has a arithmetic circuit of size 2o(n),

Then a boolean circuit C of size 2o(n) defines the monomialsof f .

Then for some weight function wi there is a unique monomial∏

j∈S xj such that∑

j∈S wi ,j takes the minimum value (by theproperty of A2).

So the polynomial gi (y) 6= 0, a contradiction.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 91: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Finishing the proof

Let f has a arithmetic circuit of size 2o(n),

Then a boolean circuit C of size 2o(n) defines the monomialsof f .

Then for some weight function wi there is a unique monomial∏

j∈S xj such that∑

j∈S wi ,j takes the minimum value (by theproperty of A2).

So the polynomial gi (y) 6= 0, a contradiction.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 92: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Other Result

(Spielman and Klivans 2001) Randomized PIT for smalldegree (commutative) polynomial based on a more generalformulation of isolation lemma.

Observation Derandomization of the corresponding isolationlemma imply the result of Impagliazzo and Kabanets 2003.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 93: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Other Result

(Spielman and Klivans 2001) Randomized PIT for smalldegree (commutative) polynomial based on a more generalformulation of isolation lemma.

Observation Derandomization of the corresponding isolationlemma imply the result of Impagliazzo and Kabanets 2003.

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 94: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Summary

We study the connections between derandomization ofIsolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on setsystem defined by boolean circuits.

A (non black-box) derandomization of above implies circuitlower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound inusual commutative model.

The derandomization of the Isolation Lemma used bySpielman-Klivans (2001) implies the result of Impagliazzo andKabanets (2003).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 95: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Summary

We study the connections between derandomization ofIsolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on setsystem defined by boolean circuits.

A (non black-box) derandomization of above implies circuitlower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound inusual commutative model.

The derandomization of the Isolation Lemma used bySpielman-Klivans (2001) implies the result of Impagliazzo andKabanets (2003).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 96: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Summary

We study the connections between derandomization ofIsolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on setsystem defined by boolean circuits.

A (non black-box) derandomization of above implies circuitlower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound inusual commutative model.

The derandomization of the Isolation Lemma used bySpielman-Klivans (2001) implies the result of Impagliazzo andKabanets (2003).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 97: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Summary

We study the connections between derandomization ofIsolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on setsystem defined by boolean circuits.

A (non black-box) derandomization of above implies circuitlower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound inusual commutative model.

The derandomization of the Isolation Lemma used bySpielman-Klivans (2001) implies the result of Impagliazzo andKabanets (2003).

V. Arvind, Partha Mukhopadhyay Isolation Lemma

Page 98: Derandomizing the Isolation Lemma and Lower Bounds for Circuit Size

OutlineIntroduction

Formulation of an Isolation LemmaAutomata Theory

Noncommutative Polynomial Identity TestingBlack-box derandomization

Summary

Summary

We study the connections between derandomization ofIsolation Lemma and circuit lower bounds.

We formulate versions of Isolation Lemma based on setsystem defined by boolean circuits.

A (non black-box) derandomization of above implies circuitlower bound in the noncommutative model.

A black-box derandomization yields a circuit lower bound inusual commutative model.

The derandomization of the Isolation Lemma used bySpielman-Klivans (2001) implies the result of Impagliazzo andKabanets (2003).

V. Arvind, Partha Mukhopadhyay Isolation Lemma