decision making on nanomedicines: preclinical in vivo studies · i.m. prompt from aqueous slow and...

20
6/1/2019 1 Decision Making on Nanomedicines: Preclinical in vivo Studies http://lifesci.boun.edu.tr http://sanyalgroup.boun.edu.tr Prof. Rana Sanyal http://rsresearch.net www.boun.edu.tr www.lifesci.boun.edu.tr www.rsresearch.net Why are we here?

Upload: others

Post on 06-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

1

Decision Making on Nanomedicines: Preclinical in vivo Studies

http://lifesci.boun.edu.tr

http://sanyalgroup.boun.edu.tr

Prof. Rana Sanyal Prof. Rana Sanyal 

http://rsresearch.net

www.boun.edu.tr

www.lifesci.boun.edu.tr

www.rsresearch.net

Why are we here?

Page 2: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

2

Boğaziçi UniversityCenter for Life Sciences & Technologies

BIOMEDICAL

PHARMACEUTICAL

BIOTECHNOLOGY

TEST‐ANALYSIS

VIVARIUM

CLEAN ROOM

Sustainability:

Research Labs 43

Personnel 22

Drug Loaded Surface Applications

Soluble Drug Delivery Systems

Metal (Magnetic) Nanoparticles

Hedeflendirilmiş Polimer ‐ İlaç

Functional Surfaces

Polymer Brushes 

Targeted Polymer‐drug conjugates

Cardiovascular stent

Oncology & Neurology Applications

Hydrogels

Nanofibers

Micelles / nanoparticles

Orthopedic İmplants

Bioconjugate Chemistry (2017), 28(9), 2420‐2428.ACS Macro Letters (2016), 5(6), 676‐681.

ACS Applıed Materıals & Interfaces (2018) 10(17), 14399‐14409.ACS Omega, 2017, 2(10), 6658–6667.Journal of Colloid and Interface Science (2017), 507, 360‐369.Chemical Communications (2017), 53(63), 8894‐8897.Bioconjugate Chemistry (2017), 28, 1443–1451.Journal of Controlled Release (2017) 246, 164‐173.RSC Advances (2016), 6(78), 74757‐74764.J P l S i P l Ch (2016) 54(7) 926 934

Biomacromolecules(2017), 18, 490‐497.ACS Applied Materials & Interfaces (2016), 8(30), 19813‐19826.

Bioconj Chem (2018), 29(6), 1885‐1896.Bioconj Chem (2017) 28(12), 2962‐2975.Biomacromolecules (2017) 18(12), 3963‐3970. ACS Appl Mater & Interfaces (2017) 9(39), 34194‐34203.Biomacromolecules (2017), 18(8), 2463‐2477.Mol Pharm (2017), 14, 1373‐1383.Mol Pharm (2016) 13, 1482‐1490.J Pharm Pharmacol (2016), 68, 1010–1020.

Polymer‐drug conjugates

Page 3: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

3

RS RESEARCH: Development of New Generation Nanomedicines

RS nanomedicines are highly tunable: 

fast‐forward development of targeted nanomedicines 

with superior performance

Novel Drug Delivery Platform

Products in pipeline

2010

2015

2017

Therapies target only

cancer cells

Biopharmaceutical company 

Headquarters in Istanbul, Turkey

RS Researchestablished

Research started

First VC Investment

Pipeline

Candidate Research PreclinicalIND

ApprovalClinical Platform Indication

RS-0139 I

NSCLC

Breast CA

Prostate CA

RS-0337 II Breast CA

RS-0461 II Ovarian CA

RS-0625 I Ovarian CA

RS-0583 I Pancreas CA

We target multiple cancer indications with plug&play approach

We optimize drug-linker-targeting moiety combination

Page 4: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

4

2010Research startedBogazici University

2015Company FoundedTeknopark Istanbul

Seed fund received2.0 M Euro – ACT

(Netherlands based VC)2017

Phase-I Trial RS-01392018

2018-2019Non-dilutiveor Series-AQ2 2018

Switzerland Office More clinical trials -

Global presence -

Pipeline depth -

RS Research can Collaborate on

EXPERIMENTS

DRUG SYNTHESIS CARRIER

ANALYSIS

IN VITRO TESTS

IN VIVO EXPERIMENTS

PURIFICATION

RS RESEARCH Analysis (Characterizations): Impurity identificationBiosimilar / Bionovel physical Nanoparticle / micelle Polymer / hydrogel

In Vivo Experiments:PharmacokineticsAnimal disease models (Xenograft etc) Toxicity (Acute, chronic)

Page 5: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

5

How Does an Molecule Become a “Drug”?

Organic synthesis Enzyme analysis Cell analysis

Structure determination

In vivodisease models

PharmacokineticRat (IV, PO)

Metabolism (RLM, HLM) Drug – drug interactions (3A4/2D6)

Caco‐2, protein binding

NovascreenHERGAmes

14/28‐d toxicology Preclinical Candidate

How Does an Organic Molecule Become a “Drug”?

Phase IPreclinical Candidate

Phase III

Phase II

Page 6: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

6

Polymer – drug conjugate

Targeted PDC 

Cytotoxic drug

Log [drug] concentration (M)

Establishing Activity

Enzymatic Release

Plasma Release

Drug Release (%)

Enzyme Cleavable 

Drug Release

Page 7: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

7

What is Pharmacokinetics?

• Study of the time course of the drug absorption, distribution, metabolism and excretion in body (ADME)

• Follow time course by measuring drug concntration in some reference tissue: usually blood or plasma and urine 

Aministration Sites

• Intravascular – placement of drug directly into blood

No absorption step is required

• Extravascular‐ placement of drug in a tissue outside the blood

To enter blood, an absorption step must take place.

Page 8: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

8

Common Administration Routes

IntravenousI.V.

Absorbtion AvoidedRapid Onset

Emergency UseDosage Titration

For high MW drugsBest for large

volumes

Increased RiskSlow injection

Must be soluble

Sub-cutaneous

S.C.

Prompt from aqueous

Slow and sustained from other preps

Insoluble suspensions

Implants

Small volumePain (necrosis)

Irritation

Intramuscular

I.M.

Prompt from aqueous

Slow and sustained from other preps

Moderate volumesOily substances

Interfere with diagnosticsNot with

anticoagulantsP.O. Variable Most convenient

Most cost-effectiveSafest

Patient cooperation

Availability???Liver/Gut

RouteAbsorption

PatternSpecial Utility Limitation &

Precautions

Absorption & Distribution

• Absorption is defined as process by which a drug proceeds from site of administration to site of measurement.

• Once absorbed a drug is distributed to various tissues in the body by the blood.

• Any drug leaving the site of measurement which does not return has undergone elimination. 

Page 9: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

9

Elimination

• Two principle organs of Elimination:

• Kidney: Primary site for excretion of chemically unaltered or unchanged drug.

• Liver: Usual organ for matebolism

Interpretation of Concentration‐ Time Profile

Concentration

time

Cmax

tmax

Page 10: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

10

Pharmacokinetic ModelMathematically describes the change in the amount of drug(“pharmaco”) in the body with time (“kinetic”)One‐Compartment Model

Drug input...by I.V. Infusion,absorption, etc.

THE BODY

Drug Removal...by metabolism,renal excretion, etc.

distribution

Change in Plasma Concentration as a Function of Time

Plas

ma

Conc

entra

tion

(Cp)

time

0.1

1

10

Plas

ma

Conc

entra

tion

time

0

0.5

1

1.5

2

2.5

Page 11: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

11

Change in Plasma Concentration as a Function of Time

Plas

ma

Conc

entra

tion

(Cp)

time

Cp = Cpoe-kt

0.1

1

10

Slope = -k/2.303

k= elimination rate constant

Cpo

The elimination half life t1/2 is the time required to reduce the plasma concentration fromCp to 1/2Cp

t1/2 = 0.693/k

Volume of Distribution (Vd or Vss)

Plas

ma

Conc

entra

tion

(Cp)

time

Cp = Cpoe-kt

0.1

1

10

Cpo

Vss = Dose i.v./ Cpo

Ak

Vss = A / Cp

Volume of distribution is a proportionality constant that relates the amount of drug in the body (A) to the plasma concentration (Cp).

Page 12: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

12

Benchmarks

• Assuming a body mass of 70kg• Total body water = 42 L (0.60 L/kg)

• Blood volume = 5 L (0.07 L/kg)

• Plasma volume = 3 L (0.04 L/kg)

• Extracellular fluıd volume = 16 L (0.23 L/kg)

Clearance

Clearance (CL) is a propotionality constant relating the rate of elimination (metabolism, excretion), to the plasmaconcentration.

dXe/dt

Cp= CL

Xe

Page 13: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

13

Clearance Graphical Analysis

Plas

ma

Conc

entra

tion

(Cp)

time

Cp = Cpoe-kt

0.1

1

10

Slope = -k/2.303

k= elimination rate constant

Cpo

Vss = Dose i.v./ Cpo

CL / Vss = k

Types of Clearance

• Major:• Renal Clearance: Excretion of unmetabolized parent drug in the urine

• Hepatic Clearance: Removal of Parent derug by conversion to metabolites

• Minor: Excretion in sweat, exhalation

Page 14: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

14

Hepatic Clearance: Well Stirred Model

• Q = blood flow (mL/min)

• C = drug concentration (g/mL)

• CLint = intrinsic clearance (mL/min)

• E = Extraction ratio

Q

Cin

Q

Cout

CLint

LIVERE =

Cin – Cout

Cin

Extremes of Hepatic Clearance

• High Clearance • Rapid metabolism

• Poor oral bioavailability

• Low Clearance• Slow metabolism

• Potantially good bioavailability

Page 15: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

15

High Extraction Ratio (Clearance)

• Metabolism is rapid compared to blood flow CLint >> Q

• Total clearance is limited to blood flow rate, so CL= Q

Q

slow

Q

CLint

LIVER slow

fast

Low Extraction Ratio

• Metabolism is slow compared to blood flow CLint << Q

• Total clearance is limited by matabolic capacity, 

so CL= CLint x fu (protein binding)

Q

fast

Q

CLint

LIVER fast

slow

Page 16: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

16

Clearance and Volume

• Clearance and Volume of distribution are the most important pharmacokinetic parameters

• CL and Vss are considered primary PK parameters because they are directly related to physiological processes.

• Half‐life and elimination rate constant are secondary PK parameters because they cannot be directly related to physiological processes.

Example: Increase in CL

Plas

ma

Conc

entra

tion

(Cp)

time

0.1

1

10

Cpo t1/2 = 0.693 x V

CL

No change in Cpo, because V was not changed

Page 17: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

17

Example: Increase in VPl

asm

aCo

ncen

tratio

n(C

p)

time

0.1

1

10

Cpo t1/2 = 0.693 x V

CL

Change in Cpo, and a change in half-life

V = Dose i.v. / Cpo

But everyone asks for long half‐life...

• What will the chemical modification do to clearance?

• What will the chemical modification do to the volume of distribution?

Then you can decide whether the modification will change the half‐life in desired manner.

Page 18: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

18

Oral Absorption

Concentration

time

Cmax

tmax

Elimination“terminal”phaseAbsorption

phase

Oral Bioavailability

• Physiologically: F = fa x fg x fh

• Pharmacokinetically: Is the fraction of the dose reaching systemic circulation

• Mathematically: The “area under the plasma concentration vs. Time curve” (AUC) is used to measure the extent of absorption.

Page 19: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

19

Oral Absorption

Concentration

time

AUCoinf

0

inf

= Cp dt

Calculating Bioavailability

• For absolute bioavailability the reference is the i.v. Dose

F absolute = AUCinf

o,PO

AUCinf o,IV

Dose IV

Dose POx

Page 20: Decision Making on Nanomedicines: Preclinical in vivo Studies · I.M. Prompt from aqueous Slow and sustained from other preps Moderate volumes Oily substances Interfere with diagnostics

6/1/2019

20

Extent of Absorption: Influence of Bioavailability

Concentration

time

(MEC)MinimumEffective

Concentration

Thank you     

[email protected]

[email protected]