dan cook 2013 masccc

29
Next Genera*on Ver*cal Axis “Drag” Style Wind Turbines Getting it Right! Proper Siting of Wind Turbines & Selection of the Right Wind Turbine Technology Presenta(on by: Daniel Cook, Vice President Urban Power USA 3 rd MA Sustainability Communities Conference 2 nd MA Sustainability Campuses Conference

Upload: jen-boudrie

Post on 05-Dec-2014

417 views

Category:

Business


0 download

DESCRIPTION

Urban Power USA

TRANSCRIPT

Page 1: Dan Cook 2013 masccc

Next  Genera*on  Ver*cal  Axis  “Drag”  Style  Wind  Turbines  

Getting  it  Right!  Proper  Siting  of  Wind  Turbines  &    

Selection  of  the  Right  Wind  Turbine  Technology  Presenta(on  by:  Daniel  Cook,  Vice  President  Urban  Power  USA  

3rd MA Sustainability Communities Conference 2nd MA Sustainability Campuses Conference

Page 2: Dan Cook 2013 masccc

Massachuse>s  Renewable  Energy  Goals  198 48

Page 3: Dan Cook 2013 masccc

Massachuse>s  Wind  Energy  Profile  

Next Generation Vertical Axis Drag Style Wind Energy Opportunities

Page 4: Dan Cook 2013 masccc

Small  Wind  Systems   Small-­‐scale  wind  power  systems  have  the  capacity  to  produce  up  to  100  kW  of  electrical  power  

Darrieus VAWT Next Generation Drag Style VAWT

Page 5: Dan Cook 2013 masccc

Tradi(onal  “LiI”  Style    Horizontal  Axis  Wind  Turbines  

 High  Efficiency   Require  Laminar  Flow  (smooth)  Wind   Work  well  in  wind  speeds  between  18-­‐35  mph   Generates  torque  from  high  rotor  speeds   Generator  located  on  turbine   Lots  of  moving  parts   Require  taller  tower  to                                                                                        eliminate  turbulent  air  

 Feather  or  shut  down  when                                                                                                  winds  above  35  mph  

Page 6: Dan Cook 2013 masccc

Tradi(onal  “LiI”  Style    Ver(cal  Axis  Wind  Turbines  

 High  Efficiency   Require  Laminar  Flow  (smooth)  Wind   Work  well  in  wind  speeds  between  18–35  mph   Generator  repairs  require  turbine  disassembly   Generates  torque  from  high  rotor  speed   Shut  down  when  wind  speed  greater  than  35  mph   Require  taller  tower  to  eliminate  turbulent  air   Generally  Don’t  operate  at  low  wind  speeds  

Page 7: Dan Cook 2013 masccc

“LiI”  Style    Wind  Turbine  

 Wind turbine blade requires smooth laminar flow wind to create lift for the turbine to spin effectively and fast.

  Lift type wind turbines don’t become efficient until the wind is approximately 18 mph

Page 8: Dan Cook 2013 masccc

Savonius  Ver(cal  Axis  Drag  Style  Wind  Turbine  

  Because of the curvature, the scoops experience less drag when moving against the wind than when moving with the wind. The differential drag causes the Savonius turbine to spin.

  There is resistance on the back side of the scoop resulting in lower efficiencies than traditional wind turbines.

Resistance

Impulse Force

Page 9: Dan Cook 2013 masccc

Next  Genera*on    Ver(cal  Axis  “Drag”  Style    

Wind  Turbines  

  Significant increase in electrical production  Massachusetts Manufacturer  Work in turbulent wind and laminar flow wind

 Work on Flat roof tops

 Requires ≥30% larger sweep area

Page 10: Dan Cook 2013 masccc

Next  Genera*on    Ver(cal  Axis  “Drag”  Style    

Wind  Turbines   Use  wind  loading  like  a  sail  to  create  force   Produces  torque  by  spinning  a  large  mass  slowly   Produce  more  electricity  at  lower  wind  speeds  6-­‐18  mph,  less  at  18-­‐35  mph  and  more  at  high  wind  speeds  >  35  mph  

 Work  in  turbulent  wind   Don’t  require  tall  towers   Can  be  Roof  Mounted   Few  moving  parts   Bird  &  bat  friendly  

Page 11: Dan Cook 2013 masccc

Urban  Power  Unique  Patented  

Wind  Turbine  Design  

Page 12: Dan Cook 2013 masccc

 5.0  KW    Wind  Turbine  

Tower  Installa(on  

Page 13: Dan Cook 2013 masccc

Urban  Power  5.0  KW  Wind  Turbines  

Page 14: Dan Cook 2013 masccc

Urban  Power  5.0  KW  Wind  Turbines  

Page 15: Dan Cook 2013 masccc

 5.0  KW    Wind  Turbine  

Page 16: Dan Cook 2013 masccc

Capacity  Factor  The  ra*o  of  an  energy  produc*on  system’s  actual  

output  over  *me  to  it  poten*al  output  

Solar PV: 13% - 15% Wind: 20% - 40%

Note: Wind produces approximately 2X more electricity than Solar PV per KW when properly sited and equipment properly selected

Page 17: Dan Cook 2013 masccc

Small  Wind  Turbines:    Site  Tes(ng    

Wind  Speed  &  Air  Flow  

 Anemometer Testing  Laminar Flow (smooth) Wind  Turbulent Wind (caused by buildings, trees and

other nearby obstructions)

Page 18: Dan Cook 2013 masccc

Small  Wind  Turbines:    Site  Selec(on  

  “lift” style wind turbines should be 2X the height of obstructions & 20X the distance from obstructions

Page 19: Dan Cook 2013 masccc

Examples  of  Turbulent  Wind  

Page 20: Dan Cook 2013 masccc

Small  Wind  Turbines:    Product  Selec(on  

 Does the wind turbine work in turbulent wind? (are their buildings trees or other obstructions nearby?)

 Does wind turbine require smooth laminar flow wind away from any obstructions?

 Are predominant winds between 18 - 35 mph?  Are predominant winds below 18 mph and/or

above 35 mph?

Page 21: Dan Cook 2013 masccc

Small  Wind  Turbines:    Performance  

  Important that wind manufacturers and wind developers apply their wind turbines to the optimal wind location (wind speed & wind type – laminar and/or turbulent wind) to ensure optimal capacity factor/performance so customer expectations are met.

 Lift type wind turbines should NOT be placed in turbulent wind locations such as on or near buildings, near trees and other obstructions that can cause turbulence.

Page 22: Dan Cook 2013 masccc

Wind  Energy  Assessments   Consulting  a  wind  map,  obtaining  previously  measured  data     Taking  your  own  measurements  with  anemometer   Hire  consultant  to  test  wind  speed  1  year  of  data,  or   Use  1-­‐  2  months  anemometer  data  to  do  correlation  study  

Page 23: Dan Cook 2013 masccc

Small  Wind  Turbines:  Monitoring  

 Wind turbines should be monitored in real time, and record daily, weekly, monthly, annual and historic wind energy production relative to actual wind speeds.

Page 24: Dan Cook 2013 masccc

Small  Wind  Turbines:    Tradi(onal  Horizontal  Axis  Wind  Turbine    

are  properly  applied  in  Laminar  Flow  Winds  only!!!  Op*mum  performance  between  18  mph  –  42  mph  

Page 25: Dan Cook 2013 masccc

Small  Wind  Turbines:    Poor  Applica(ons  

“Lift” Style Horizontal &

Vertical Axis Wind Turbines in the

Turbulent Urban Environment of

Boston (5 wind turbines with combined 15.6 KW

capacity = 15,583 kWhs in 3 years 7 months)

15.6KW - 15,583 kWhs in 43 mos – ave. 362 kWhs /mo

Page 26: Dan Cook 2013 masccc

Small  Wind  Turbines:    Turbulent  Wind  Properly  Applied  Next Generation

“Drag” Style Wind Turbines in a

Turbulent Environment (1.8 KW capacity = 3,433

kWhs in 8 month – Easthampton, MA wind speed less than Boston)

18,452 kWh in 3 years 7 months

Page 27: Dan Cook 2013 masccc

Small  Wind  Turbines:    Summary    Get it Right!

Site the Right Wind Energy Technology in the Right Wind Location

  Lift Style Horizontal & Vertical Axis Wind Turbines in Laminar Flow Wind only with speeds between 18 mph – ±42 mph

  Traditional Vertical Axis Drag Style Wind Turbines in Turbulent and/or Laminar Flow Wind ±8 mph – 42 mph

  Next Generation Vertical Axis Drag Style Wind Turbines in Turbulent and/or Laminar Flow Wind ±8 mph – ±70 mph ���

Page 28: Dan Cook 2013 masccc

Ques(ons  

Page 29: Dan Cook 2013 masccc

Thank  You  Dan  Cook,  Vice  President  

www.urbanpowerusa.com  978-­‐266-­‐1900