cse 185 introduction to computer vision face recognition

25
CSE 185 Introduction to Computer Vision Face Recognition

Upload: angelica-malone

Post on 05-Jan-2016

219 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: CSE 185 Introduction to Computer Vision Face Recognition

CSE 185 Introduction to Computer

VisionFace Recognition

Page 2: CSE 185 Introduction to Computer Vision Face Recognition

The space of all face images

• When viewed as vectors of pixel values, face images are extremely high-dimensional– 100x100 image = 10,000 dimensions

• However, relatively few 10,000-dimensional vectors correspond to valid face images

• We want to effectively model the subspace of face images

Page 3: CSE 185 Introduction to Computer Vision Face Recognition

The space of all face images• We want to construct a low-dimensional linear

subspace that best explains the variation in the set of face images

Page 4: CSE 185 Introduction to Computer Vision Face Recognition

Covariance

• Covariance is a measure of the extent to which corresponding elements from two sets of ordered data move in the same direction

N

i

ii

nn

N

yyxxYX

y

y

Y

x

x

X

1

11

1),(covariance

:,:

Page 5: CSE 185 Introduction to Computer Vision Face Recognition

Covariance (Variance-Covariance) matrix

• Variance-Covariance Matrix: Variance and covariance are displayed together in a variance-covariance matrix. The variances appear along the diagonal and covariances appear in the off-diagonal elements

Page 6: CSE 185 Introduction to Computer Vision Face Recognition

Principal component analysis• The direction that captures the

maximum covariance of the data is the eigenvector corresponding to the largest eigenvalue of the data covariance matrix

• Furthermore, the top k orthogonal directions that capture the most variance of the data are the k eigenvectors corresponding to the k largest eigenvalues

Page 7: CSE 185 Introduction to Computer Vision Face Recognition

Linear subspaces

• Classification can be expensive:– Big search prob (e.g., nearest neighbors) or store large

PDF’s• Suppose the data points are arranged as above

– Idea—fit a line, classifier measures distance to line

convert x into v1, v2 coordinates

What does the v2 coordinate measure?

What does the v1 coordinate measure?

- distance to line- use it for classification—near 0 for orange pts

- position along line- use it to specify which orange point it is

Page 8: CSE 185 Introduction to Computer Vision Face Recognition

Dimensionality reduction

Dimensionality reduction• We can represent the orange points with only their v1 coordinates

(since v2 coordinates are all essentially 0)• This makes it much cheaper to store and compare points• A bigger deal for higher dimensional problems

Page 9: CSE 185 Introduction to Computer Vision Face Recognition

Linear subspaces

Consider the variation along direction v among all of the orange points:

What unit vector v minimizes var?

What unit vector v maximizes var?

Solution: v1 is eigenvector of A with largest eigenvalue v2 is eigenvector of A with smallest eigenvalue

Page 10: CSE 185 Introduction to Computer Vision Face Recognition

Principal component analysis• Suppose each data point is N-dimensional

– Same procedure applies:

– The eigenvectors of A define a new coordinate system• eigenvector with largest eigenvalue captures the most

variation among training vectors x• eigenvector with smallest eigenvalue has least variation

– We can compress the data using the top few eigenvectors• corresponds to choosing a “linear subspace”

– represent points on a line, plane, or “hyper-plane”

• these eigenvectors are known as the principal components

Page 11: CSE 185 Introduction to Computer Vision Face Recognition

The space of faces

• An image is a point in a high dimensional space– An N x M image is a point in RNM

– We can define vectors in this space as we did in the 2D case

+=

Page 12: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces: Key idea

• Assume that most face images lie on a low-dimensional subspace determined by the first k (k<d) directions of maximum variance

• Use PCA to determine the vectors or “eigenfaces” u1,…uk that span that subspace

• Represent all face images in the dataset as linear combinations of eigenfacesM. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

Page 13: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces example

• Training images x1,…,xN

Page 14: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces exampleTop eigenvectors: u1,…uk

Mean: μ

Page 15: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces examplePrincipal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk

Page 16: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces example

• Face x in “face space” coordinates:

=

Page 17: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces example

• Face x in “face space” coordinates:

• Reconstruction:

= +

µ + w1u1+w2u2+w3u3+w4u4+ …

=

x̂ =

Page 18: CSE 185 Introduction to Computer Vision Face Recognition

Recognition with eigenfaces• Process labeled training images:

1. Find mean µ and covariance matrix Σ2. Find k principal components (eigenvectors of Σ) u1,…uk

3. Project each training image xi onto subspace spanned by principal components:(wi1,…,wik) = (u1

T(xi – µ), … , ukT(xi – µ))

1. Given novel image x:1. Project onto subspace:

(w1,…,wk) = (u1T(x – µ), … , uk

T(x – µ))2. Optional: check reconstruction error x – x to determine whether image

is really a face3. Classify as closest training face in k-dimensional subspace

Page 19: CSE 185 Introduction to Computer Vision Face Recognition

Eigenfaces

• PCA extracts the eigenvectors of A– Gives a set of vectors v1, v2, v3, ...

– Each vector is a direction in face space• what do these look like?

Page 20: CSE 185 Introduction to Computer Vision Face Recognition

Projecting onto the eigenfaces• The eigenfaces v1, ..., vK span the space of faces

– A face is converted to eigenface coordinates by

Page 21: CSE 185 Introduction to Computer Vision Face Recognition

Recognition with eigenfaces

• Algorithm1. Process the image database (set of images with labels)

• Run PCA—compute eigenfaces• Calculate the K coefficients for each image

2. Given a new image (to be recognized) x, calculate K coefficients

3. Detect if x is a face

4. If it is a face, who is it?• Find closest labeled face in database

– nearest-neighbor in K-dimensional space

Page 22: CSE 185 Introduction to Computer Vision Face Recognition

Choosing the dimension K

K NMi =

eigenvalues

• How many eigenfaces to use?• Look at the decay of the eigenvalues

– the eigenvalue tells you the amount of variance “in the direction” of that eigenface

– ignore eigenfaces with low variance

Page 23: CSE 185 Introduction to Computer Vision Face Recognition

Limitations

• Global appearance method: not robust to misalignment, background variation

Page 24: CSE 185 Introduction to Computer Vision Face Recognition

Limitations

• PCA assumes that the data has a Gaussian distribution (mean µ, covariance matrix Σ)

The shape of this dataset is not well described by its principal components

Page 25: CSE 185 Introduction to Computer Vision Face Recognition

Limitations

• The direction of maximum variance is not always good for classification