critical care and emergency neuroscience: the essentials · pdf filecritical care and...

61
Critical Care and Emergency Neuroscience: The Essentials May 19, 2016 Links to video presentations available on next page Yale School of Medicine Departments of Neurology and Neurosurgery YaleCME CONTINUING MEDICAL EDUCATION

Upload: lyanh

Post on 02-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Critical Care and Emergency Neuroscience: The Essentials

May 19, 2016

Links to video presentations available on next page

Yale School of MedicineDepartments of Neurology and Neurosurgery

YaleCMECONTINUING MEDICAL EDUCATION

VIDEO PRESENTATIONS

Pre-hospital Neuroscience Diagnosis and Management Evie G. Marcolini MD, FACEP, FAAEM https://vimeo.com/179369053

Remote Neurological Consultations Joseph L. Schindler MD https://vimeo.com/180081525

Y-Access Neuroscience Triage and Transfer: Collaborating with Regional Hospitals Victor A. Morris MD and Andrew Ulrich MD https://vimeo.com/179369536

Interventions for Neurovascular Emergencies Charles C. Matouk MD https://vimeo.com/179369055

ICU Management for Ischemic and Hemorrhagic Stroke Nils H. Petersen MD, PhD, MSc https://vimeo.com/179369054

Surgical Management of Neuroscience Emergencies Patrick R. Tomak MD https://vimeo.com/179369545

Management of Status Epilepticus Emily J. Gilmore MD https://vimeo.com/179369797

Hypoxic Ischemic Injury Carolina B. Maciel MD https://vimeo.com/179369812

Brain Death and Organ Donation David M. Greer MD, MA, FCCM, FAHA https://vimeo.com/180051694

Partnering with New England Organ Bank Alexandra K. Glazier Esq. https://vimeo.com/180051690

Navigating Prognosis in the Neuro ICU David Y. Hwang MD https://vimeo.com/180051692

Giving Patients a Chance: Case Presentation with Former Neuro ICU Patient Emily J. Gilmore MD and Andy Morrison https://vimeo.com/180051693

Critical Care & Emergency Neuroscience: The Essentials

May 19, 2016

LEARNING OBJECTIVES This course will enable participants to:

• Review the pre-hospital management of acute neurologic disease• Describe patterns of communication and transfer between facilities for the acutely ill neuroscience

patient• Outline the diagnostic workup and management of cerebrovascular disease• Demonstrate approach to management of seizures and status epilepticus in the critically ill patient• Describe nuances and definitions of brain death determination• Discuss dynamics of communication and patient experience in the setting of acute neurologic

illness

ACCREDITATION STATEMENT The Yale School of Medicine is accredited by the Accreditation Council for Continuing Medical Education to provide continuing medical education for physicians.

DESIGNATION STATEMENTThe Yale School of Medicine designates this live activity for a maximum of 6.5 AMA PRA Category 1 Credits™. Physicians should claim only the credit commensurate with the extent of their participation in the activity.

EMS-I Six (6.0) Continuing Education Credits have been approved by the Connecticut Department of Public Health, Office of EMS, for EMS-I's who complete this program.

Critical Care & Emergency Neuroscience: The Essentials

May 19, 2016

Schedule

AM 7:00am Registration and Continental

Breakfast

8:00am Welcome and Introductions

8:15am Pre-hospital Neuroscience Diagnosis and Management Evie G. Marcolini MD, FACEP, FAAEM

8:45am Remote Neurological Consultations Joseph L. Schindler MD

9:15am Y-Access Neuroscience Triage and Transfer: Collaborating with Regional Hospitals Victor A. Morris MD and Andrew Ulrich MD

9:45am Panel Discussion

10:00am Interventions for Neurovascular Emergencies Charles C. Matouk MD

10:30am ICU Management for Ischemic and Hemorrhagic Stroke Nils H. Petersen MD, PhD, MSc

11:00am Refreshment Break

11:15am Surgical Management of Neuroscience Emergencies Patrick R. Tomak MD

11:45am Management of Status Epilepticus Emily J. Gilmore MD

PM 12:15pm Lunch

1:10pm Hypoxic Ischemic Injury Carolina Maciel MD

1:40pm Brain Death and Organ Donation David M. Greer MD, MA, FCCM, FAHA

2:10pm Partnering with New England Organ Bank Alexandra K. Glazier Esq.

2:40pm Navigating Prognosis in the Neuro ICU David Y. Hwang MD

3:00pm Giving Patients a Chance: Case Presentation with Former Neuro ICU Patient Emily J. Gilmore MD and Andy Morrison

3:25pm Closing Remarks Kevin N. Sheth MD

3:30pm Adjourn

Faculty

COURSE DIRECTORS: Kevin N. Sheth MD Associate Professor, Departments of Neurology and Neurosurgery Division Chief, Neurocritical Care and Emergency Neurology Yale School of Medicine

Charles C. Matouk MD Assistant Professor Departments of Neurosurgery and Radiology and Biomedical Imaging Yale School of Medicine

Jessica White PA-C Lead Physician Assistant, Neuroscience Intensive Care Unit Yale School of Medicine

GUEST SPEAKERS: Alexandra K. Glazier Esq. President and CEO of the New England Organ Bank U.S. Department of Health and Human Services Advisory Committee on Organ Transplantation

Andy Morrison Former Neuro ICU Patient

YALE SCHOOL OF MEDICINE FACULTY: Emily J. Gilmore MD Assistant Professor of Neurology Staff Neurointensivist, Neuroscience Intensive Care Unit

David M. Greer MD, MA, FCCM, FAHA Harry M. Zimmerman & Nicholas and Viola Spinelli Professor of Neurology Professor of Neurosurgery Vice Chairman, Department of Neurology

David Y. Hwang MD Assistant Professor of Neurology Staff Neurointensivist, Neuroscience Intensive Care Unit

Carolina B. Maciel MD Clinical Fellow in Neurology Neurocritical Care and Emergency Neurology

Evie G. Marcolini MD, FACEP, FAAEM Assistant Professor of Emergency Medicine Staff Neurointensivist, Neuroscience Intensive Care Unit

Victor A. Morris MD Assistant Professor of Medicine (General Medicine) Director, Hospitalist Service Associate Chief Medical Officer Vice President, Physician and Patient Access Services Yale-New Haven Hospital

Nils H. Petersen MD, PhD, MSc Assistant Professor of Neurology Staff Neurointensivist, Neuroscience Intensive Care Unit

Joseph L. Schindler MD Associate Professor, Departments of Neurology and Neurosurgery Clinical Director, Yale-New Haven Stroke Center

Patrick R. Tomak MD Assistant Professor of Neurosurgery

Andrew Ulrich MD Vice Chair, Clinical Operations Department of Emergency Medicine Clinical Director of Electrophysiology

Faculty and Planning Committee Disclosures

Critical Care and Emergency Neuroscience: The Essentials May 19, 2016

DISCLOSURE SUMMARY It is the policy of Yale University School of Medicine, through its Center for Continuing Medical Education, to ensure balance, independence, objectivity, and scientific rigor in all its educational programs. All faculty participating in this symposium are required to disclose to the program audience (orally or with slide): any relevant financial relationship(s) they (or spouse/partner) have with a commercial interest that benefits the individual in any financial amount that has occurred within the past 12 months; and the opportunity to affect the content of CME about the products or services of the commercial interest. The Center for Continuing Medical Education will ensure that any conflicts of interest are resolved before the educational activity occurs.

The following indicates participants’ responses to disclosure policy: Name Role Nothing to Disclose Speaker (and/or spouse/partner) has

significant corporate relationship(s) with:

Role of service/financial relationship

Emily J. Gilmore MD F X Alexandra K. Glazier Esq.

F X

David M. Greer MD, MA, FCCM, FAHA

F X

David Y. Hwang, MD F X

Carolina Maciel MD F X

Evie G. Marcolini MD, FACEP, FAAEM

F X

Charles C. Matouk MD PC/F Not available at time of printing

Victor A. Morris MD F X

Andy Morrison F X

Nils H. Petersen MD, PhD, MSc

F X

Allison Rentfro PhD PC X

Kevin N. Sheth MD PC X

Joseph L. Schindler MD

F X

Patrick Tomak MD F X

Andrew Ulrich MD F X

Jessica White PA-C PC X

After review by the Course Director, it has been determined there are no conflicts of interest. Legend: F=Faculty PC=Planning Committee

Critical Care and Emergency Neuroscience: The Essentials May 19, 2016

This conference is supported by educational grants from

Chiesi USA, Inc.

Elekta, Inc.

Penumbra, Inc.

HOW TO OBTAIN YOUR CME CERTIFICATE

In order to obtain your certificate you must complete an online post-test and evaluation.

You will receive an email from Yale CME within 5 business days post-conference, with the instructions below:

1. A link to login to your profile will be provided in the email

2. Login using your email address and password

3. Click on “My live conferences”

4. A list of your registered conferences will appear. Enter the eligible credits for the conference you wish to print

your certificate

5. Click “Save”

6. Click “Start” to complete the post-test; click “Submit”

7. Upon completion of the post test, click “Start” to complete the evaluation; click “Submit evaluation”

8. Click “Print” to print your certificate

Questions – please contact Yale CME at 203.785.4578 or [email protected]

The views of the speakers do not necessarily reflect the views of the Yale School of Medicine

~~~~~~~~~~~~~~~~~~~~~

Recording of this session by attendees is strictly prohibited

Remote Neurological Consultations

Joseph Schindler, MD

Director, Acute Stroke and TeleStroke Services

Yale‐New Haven Hospital

No Disclosures

Agenda

• Defining telemedicine

• The origins of telemedicine

• Models for teleneurology

• TeleStroke

• Tele‐ICU

• Obstacles

• The Future

Definitions

American Telemedicine Association defines:

Telemedicine: The exchange of medical information from one site to another via electronic communications to improve the health status of patients. (curative aspect)

Telehealth: A broader term encompassing aspects of remote health care and not restricted to clinical services. (preventive, promotive, curative)

Origins of Telemedicine

• 1905: Cardiology application: Dutch physician Willem Einthoven long distance transfer of electrocardiograms

History of Telemedicine: Evolution, Context, Transformation. Bashshur,R and Shannon,G. 2010.

Illustration from the cover of Radio News,  a popular science magazine from the mid‐20s, visualizing the potential future impact of advances in telecommunication technology on the practice of medicine.

Origins of Telemedicine

• 20’s,30’s,40’s: Norway, Italy, France utilizing radioconsultations for patients aboard boats

• 50’s: Transmission of radiographic images

• 1967: Audiovisual circuit between MGH and LoganAirport for medical consultations

• Late 60’s:NASA initiates active telemedicine program during missions monitoring physiological parameters

Telemedicine Applications in Neurology

Application Telemedicine Technology NeurologyAreas

Practitioners Status

Acute Care RTV Carts,Robots Stroke,ICU Physician,RN Many ActiveNetworks

Inpatient RTV/SF Carts,Robots GeneralNeurology

Physician,RN Activeproviders

Outpatient RTV/SF Desktop PC,carts

PD,MS,Epilepsy,dementia

APP,RN Rural Areas

Home Care Remote,text,email

Home devices

Chronic Disease

None Pilot Studies

Conclusions – Computer-based technology can now be used to integrate electronic medical information, clinical assessment tools, neuroradiology, laboratory data, and clinical pathways to bring state-of the-art expert stroke care to underserved areas. (Stroke. 1999;30:464-469.)

The “Perfect Storm” for Acute Stroke

• IV t‐PA has a narrow therapeutic window

• About 30‐50% of stroke codes are mimics

• IV t‐PA administration carries risk

• Most ER physicians are not comfortable administering IV t‐PA without neurological expertise

• Fewer neurologists are interested in providing acutestroke coverage and fewer can get to the bedside

Telestroke Networks

Muller-Barna,P. Schwamm,L. Haberl,R. Telestroke Increases the use of Acute Stroke Therapy. Curr Opinion Neurology 2012, 25: 5-10.

Telestroke vs. Telephone

• STRokE Doc trial: 1st randomized control trial of telemedicine vs. telephone (2008)

• Accuracy (98% telemedicine vs. 82% telephone)

• Specificity (98% telemedicine vs. 92% telephone)

• Sensitivity (100% telemedicine vs. 58% telephone)

Conclusions: 

• Telemedicine is superior over telephone

• When an ER physician and neurologist agree that a patient is eligible for lysis, they are generally correct

• When collaboratively determined that a patient is not eligible, they are too frequently wrong

The Telephone and the Neurological Examination

• Encephalopathy vs. Aphasia

• Severity of the deficit

• Brainstem evaluation

• Conversion disorder

A picture is worth a thousand wordsA video is worth…

Stroke mimic patients classified according to initial NIHSS. NIHSS indicates National Institutes of Health Stroke Scale.

Ali S F et al. J Am Heart Assoc 2014;3:e000838

© 2014 Ali S F et al.

Johnson Memorial Hospital

St. Francis Hospital

Hartford Hospital

Sharon Hospital

Day Kimball Hospital

Westerly Hospital

William Backus Hospital

Middlesex Hospital

New Britain General Hospital

Yale-New Haven Hospital

Waterbury Hospital

St. Mary’s Hospital

Danbury Hospital

Griffin Hospital

Milford Hospital

Bridgeport Hospital

Norwalk Hospital

Stamford Hospital

Greenwich Hospital

Lawrence & Memorial Hospital

Windham Hospital

MidState Medical Center

Hospital of St. Raphael

Bradley Memorial Hospital

New Milford Hospital

St. Vincent Hospital

Bristol Hospital

Dempsey HospitalCCMC

Rockville Hospital

Manchester Hospital

Comprehensive Stroke Centers

Charlotte Hungerford

Telestroke Model

Switzer J, et al. A Web‐based Telestroke System Facilitates Rapid Treatment of Acute Ischemic Stroke in Rural Emergency Departments. The Journal of Emergency Medicine Volume 36, Issue 1 2009 12 ‐ 18

Disruptive Innovation

Low Cost Video Technology

“Off the shelf” video technology: Polycom Platform

Lawrence and Memorial HospitalPre/Post Telestroke

2007 2009

# ischemic strokes 114 159 39% # stroke codes 136 68 50% # IV t-PA cases 10 (8.7%)1 (7%)2 26 (16.3%)1 (38%)2 90%# cases contraindications 18 5 78%# cases documented as being “too mild’ 13 1 92%

1 Total lysis/Total Ischemic Strokes2 Total lysis/Stroke Codes

Thrombolysis Amongst TelestrokeNetworks

TeleStroke Units Serving as a Model of Care in Rural Areas

by Peter Müller-Barna, Gordian J. Hubert, Sandra Boy, Ulrich Bogdahn, Silke Wiedmann, Peter U. Heuschmann, and Heinrich J. Audebert

StrokeVolume 45(9):2739-2744

August 25, 2014

Copyright © American Heart Association, Inc. All rights reserved.

Map of Southeast Bavaria with TeleMedical Project for integrative Stroke Care (TEMPiS) TeleStroke Units.

Müller-Barna P et al. Stroke. 2014;45:2739-2744

Copyright © American Heart Association, Inc. All rights reserved.

Patients with stroke and transient ischemic attack (TIA) admitted to TeleMedical Project for integrative Stroke Care (TEMPiS) hospitals and number of teleconsultations.

Müller-Barna P et al. Stroke. 2014;45:2739-2744

Copyright © American Heart Association, Inc. All rights reserved.

Numbers, rates, and door-to-needle times (including interquartile range [IQR]) of intravenous thrombolysis (IVT) performed in all patients with ischemic stroke.

Müller-Barna P et al. Stroke. 2014;45:2739-2744

Copyright © American Heart Association, Inc. All rights reserved.

Tele‐ICU

Tele-ICU

• 1977: Trial of “television” consultation with university based intensivists compared to telephone consultation

• 1997: Trial of 24 hour remote monitoring, computer based data transmission to communicate with bedside staff

Lilly Clinics Chest Medicine 2015; Grundy et al Crit Care Med 1982; Grundy et al JACEP 1977; Rosenfeld et al Crit Care Med 2000; Breslow Crit Care Med v32 2004

The Need for ICU Expertise

• Recommendation for 24 hour staffing of ICUs by Leapfrog group and others in early 2000’s

• Staffing ICU 24/7 with intensivists is expensive• National shortage of intensivists persists (in 2012, under 600

board certified neurointensivists nationally)• Telemedicine is one method of addressing these issues

Use of audiovisual technology combined with electronic media and data systems to evaluate and treat patients

Young et al JAMA 2000; American Telemedicine Association 2014

Telemedicine in the ICU (Tele-ICU)

InSIGHT Control CenterNew Haven, Connecticut

Intensive Care Unit

Other ICUs ReceivingInSIGHT Coverage

American Telemedicine Association Guidelines, May 2014

Yale-New Haven Tele-ICU

Courtesy of Dr. Peter Marshall

The daily practice of neurointensivists focuses on the recognition of subtle changes in the neurological examination, interactions between the brain and systemic derangements, and brain physiology.

Wijman CA, et al. Research and technology in neurocritical care. Neurocrit Care. 2012;16(1):42-54

Select Robotic Telepresence

Vespa,, et al. "Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care." Surgical neurology 67.4 (2007): 331-337.

Robotic Tele‐presence (RTP) Reduces Response Times

Vespa,, et al. "Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care." Surgical neurology 67.4 (2007): 331-337.

Remote NICU Monitoring

Vespa, Paul M. "Multimodality monitoring and telemonitoring in neurocritical care: from microdialysis to robotic telepresence." Current opinion in critical care 11.2 (2005): 133-138.

Jefferson NICU Protocol for RTP

Rincon et al. "Implementation of a model of robotic tele-presence (RTP) in the neuro-ICU: effect on critical care nursing team satisfaction."Neurocritical care 17.1 (2012): 97-101.

The daily practice of neurointensivists focuses on the recognition of subtle changes in the neurological examination, interactions between the brain and systemic derangements, and brain physiology.

Wijman CA, et al. Research and technology in neurocritical care. Neurocrit Care. 2012;16(1):42-54

Teleneuro‐ICU Examination

Cranial Nerve Robotics/AV examination Limitation/Adaptation

II Light reflex,VF, papilledema Fundic Exam impaired without technology

II,IV,VI CN palsy, calorics Nurse instruction, field of view

V Corneal Corneal reflex via nurses

VII Facial strength Patient may be intubated

IX,X Elevate palate Visualization difficult

XI Shoulder shrug Nurse training

XII Tongue Intubation, view

The Future of Teleneuro‐ICU Care

• Growing body of literature

• Platforms developing to integrate data components essential to expedite NICU evaluations

• Limitations to the bedside evaluation unless supported locally by advanced practitioners

Perceived Challenges in Implementing Telemedicine in US Neurology Departments

George, Benjamin P., et al. "Telemedicine in leading US neurology departments." The Neurohospitalist 2.4 (2012): 123-128.

Obstacles

• Physician/Administrative “Buy In”

• Transfers

• Credentialing

• Liability

• Reimbursement

• Financial Sustainability

Liability

• Little precedent

• Assume the same responsibilities as an in‐person “patient‐doctor” relationship 1

• Most litigation involves a perceived loss of opportunity related to a patient not receiving tissue plasminogen activator 2

1 Rousch v. Southern Arizona, Nose & Throat (Ariz. App. Div. 2)2 Zivin, J. Empirical Characteristics of Litigation involving Tissue Plasminogen Activator and Ischemic    Stroke. Ann Emerg. Med. 2008;52:160‐164.

http://www.lpklaw.com/medical‐malpractice‐lawyer.php

Reimbursement

• CMS:  Originating site (beneficiary) must be in a rural health professional shortage area or a non‐metropolitan statistical area

a. two‐way, real‐time communication

b. Medicare reimbursements at the same level of service as if in person (modifier)

• Bill appropriate CPT code

a. In 2008, AMA  approved two new category III codes (remote critical care billing)

b. Payers may not recognize these codes

YaleMedicalGroup/Yale‐NewHavenTeleHealthWorkingGroup

ConnecticutandTelemedicineAnalysisofSubstituteforSenateBillNo.467

PROVIDER INSURANCEPLANS

Definitions/Applicability

• Telehealth provider– licensed physician,psychiatrist,APRN,PA,psychologist,socialworker,certifieddietitian‐nutritionist

• Application– diagnosis,consultation,treatment,education,caremanagement,andself‐managementofpatient’sphysicalandmentalhealth

• Technology– realtime,storeandforward,remotepatientmonitoring

Individualandgroup healthinsurancepoliciesdelivered,issued,renewed,amended,orcontinuedinConnecticutthatcover• Basichospitalexpenses• Basicmedical‐surgicalexpenses• Majormedicalexpenses;or• Hospitalofmedicalservices,includingcoverageprovidedtosubscribersofahealthcarecenter

Requirements • Accessto,orknowledgeofpatient’smedicalhistory• Compliance withstandardofcareforhisorherprofessionexpectedforin‐personcare,butallowstoperformtestingthroughappropriateperipheraldevices

• Patient’sconsentdocumentedinthepatient’smedicalrecordsandHIPAAcompliance

• Coverageofmedicaladvice,diagnosis,care,ortreatmentprovidedthroughtelehealth totheextentthatthoseservicesarecoveredthroughin‐personvisits

• Thesametermsandconditionsthatapplytootherbenefitsunderthepolicy

Prohibitions • PrescribingscheduleI,II,orIIIcontrolledsubstances

• Chargingfacilityortechnicalfees

• Excludingcoverage, providedtelehealth isappropriateforetheservice

• Requiringpreauthorizationfor“emergingtelehealth services”

Demaerschalk B. Smartphone Teleradiology Application is Successfully Incorporated into a Telestroke Network Environment. Stroke. 2012;43:3271‐3277.

The Future: Improved Technology Efficiency

Google Glass

Further Regionalization of Stroke Networks

• Comprehensive Stroke Centers

• “Big Med” 1

• NIH/NINDS

1 Gawande A. Annals of Healthcare: Big Med. The New Yorker. 13 Aug 2013

The Future

• Optimization of technology

• Regionalization of stroke networks

• Development of surrogate outcome measures

• Expansion of platforms conductingteleneurology, tele‐ICU evaluations

• Formalized reimbursement schemes

YAccess Neuroscience Triage and Transfer:Collaborating with Regional Hospitals

Victor Morris, MDAndrew Ulrich, MD

Disclosures•None

Yale New Haven Hospital

• 1541 beds• >80,000 discharges• 142 Adult ICU beds• Advanced Technologies

Yale New Haven Hospital

Yale New Haven Hospital

Yale New Haven Hospital

14 Bed Neuro ICUDedicated RN’sNeuroIntensivists

Yale New Haven Hospital

26 Bed Neurosciences floor/step‐down Dedicated RN’s

Yale New Haven HospitalYAccess

888‐YNHHBED888‐964‐4233

1 minute

Yale New Haven Hospital

Yale-New Haven Hospital est. 1826

Teaching hospital 

Medicine / Nursing / EPH

Centers of Excellence

Magnet Designation – 2011

1,541 bed Tertiary referral

3 Adult Emergency Depts.York Street ~100k/yr.

SRC ~35k/yr.

Shoreline ~30k/yr. 

Who is Yale New-Haven ED

Our Doors Are Always Open

24/7 365

Who is Yale-New Haven ED

• Level 1 Trauma Center

• > 100,000 ED visits/year(YORK ST.)

• ~40% admission rate

• ~20% ICU admission rate

• 130 STEMI activations/yr.

• 1150+ Stroke codes/yr.

• 3300 Trauma/yr.

Who is Yale New-Haven EDProviders:

• Staffed with 70+ board eligible/certified faculty• Yale University Department of Emergency Medicine• Leading academic and research dept.

• Fellows in ED specialized training programs• US/EMS/Global Health/Admin./RWJ

• 60+ Residents; 4 year program

• APP’s with specialized EM training

Team Leads

Gail D’Onofrio – Chair, Department of Emergency Medicine

Andrew Ulrich - Vice Chair Clinical Operations

Vivek Parwani - York St Medical Director

Evie Marcolini – Director Sky Health; Chair ACEP Critical Care; NICU intensivistCharles Wira – Chair NECC; Chair CT Stroke Task Force; Stroke Call Liaison

Dave Cone – Region 2 Medical director; Former Editor Acad Emerg Med

Who is Yale New-Haven ED

Nursing:

100 RN’s with specialized ED training;

ACLS/TNCC certification

Trained in abbrev NIHSS

Team Leads

Mark Sevilla – Nursing Director Thomas Saxa – Patient Service Manager Clinical Managers Clinical Educators

WHO IS YALE-NEW HAVEN ED

Multiple, simultaneous patient care services

Interpreter Services

Social Work

Chaplain Services

Security-Police

Volunteers

Pharmacists

Care Coordinators

Project Assert

What is Yale-New Haven ED

Facilities 4 resuscitation bays; enable high level critical care

monitoring 68 Beds Critical Care area with 19 major med beds; higher level

hemodynamic monitoring (art lines; CVP monitoring; etCO2) ; tele-critical care monitoring

Equipment Arctic Sun (cooling) Rapid transfuser for trauma 4 State-of-the-Art Ultrasound machines

- CT 64 slice (CTA/CTP)MRI (hyperacute)

What Happens?Pre-Arrival: Communication

YAccess informationResource mobilizationPrepare DI/IR/OR/Pharmacy SupportCare Teams await arrival

Arrival:Rapid Assessment and Treatment:Stabilization/ResuscitationPharmacologic interventionDiagnostic testing

Immediate disposition to Definitive care; IR/OR/NICU

Goal: Rapid identification and initiation of definitive treatment

Key is communication/hand offs

Yale Center for Healthcare Innovation, Redesign and Learning (CHIRAL)

The Yale Center for Healthcare Innovation, Redesign, and Learning(CHIRAL) is a

joint venture of Yale School of Medicine (YSM) and Yale-New Haven Hospital (YNHH) creating a dynamic learning environment to improve patient

safety.

Yale Center for Healthcare Innovation, Redesign and Learning (CHIRAL)

This project aims to develop innovations to improve the safety of inter-facility transfers.

To study and ameliorate failures in shared decision making during ED-ED transfers.

To study and ameliorate systems failures during ED-to-ED transfers.

To evaluate the impact of our system redesign on improving the safety of ED-to-ED transfers.

Project 1:Improve the Safety and Quality of Transitions into Yale-New Haven Hospital for patients with atraumatic intracranial hemorrhage.

Yale Center for Healthcare Innovation, Redesign and Learning (CHIRAL)

Project Aims

1) Define the current process of care transitions for patients with atraumatic intracranial hemorrhage (aICH) and identify latent safety threats that exist within this process

2) Develop and implement a multi-modal, comprehensive set of interventions to reduce these latent safety threats and improve care processes and clinical outcomes for patients with aICH

Brain DeathDetermination

David M. Greer MD, MA, FNCSDepartment of Neurology

Yale University School of Medicine

Disclosures•I serve as editor-in-chieffor Seminars in Neurology

Why did brain death not exist until the1950’s?

Advances in mechanical ventilation haveenabled prolongation of systemic organfunctioning after devastating neurologicalinjury.

Now decisions must be made which arebeyond medical, now involving cultural,ethical and legal issues.

Background

• Mollaret and Goulon initially introducedthe term in 1959, when they described 23patients with irreversible coma, with– Unresponsiveness

– Loss of brainstem reflexes

– Loss of spontaneous respirations

– Flat EEGs

Mollaret P, Goulon M. Le coma depassé. Rev Neurol. 1959;101:3-15.

The correct determination of brain deathis essential in medical care:

To ensure inappropriate measures are notundertakenTo provide finality for families unclear

about prognosisTo preserve vital critical care resourcesFor possible organ donation

Pathology of Brain Death

• The most common causes of braindeath in adults:

– traumatic brain injury

– hypoxic/anoxic brain injury

– subarachnoid hemorrhage

• In children:

– abuse

– motor vehicle accidents

– asphyxia

Brain Death History

President’s Commission Report (1981)

NIH Collaborative Study(1977)

Determination of Death Act

Harvard(1968)

“Irreversible Coma”No brainstem reflexes“Flat” EEGProposed brain death

Defined the futility of brain death

Affirmed the validity of brain death

Proposed guidelines on how to approach brain death diagnosis

Practice Parameters published in 1995, based on the Uniform Determination of Death Act (UDDA): An individual who has sustained either 1) irreversible cessation of circulatory and respiratory functions, or 2) irreversible cessation of all functions of the entire brain, including the brain stem, is dead. A determination of death is made with acceptable medical standards.

Uniform Determination of Death Act, 12 uniform laws annotated 589 (West 1993 and West suppl 1997)

Fundamental Questions

1. Are there patients who fulfill the clinical criteria ofbrain death who recover neurologic function?

2. What is an adequate observation period to ensurethat cessation of neurologic function is permanent?

3. Are complex motor movements that falsely suggestretained brain function sometimes observed in braindeath?

4. What is the comparative safety of techniques fordetermining apnea?

5. Are there new ancillary tests that accurately identifypatients with brain death?

Question #1: recovery of function

• In adults, recovery of neurologicfunction has not been reported after theclinical diagnosis of brain death has beenestablished using the criteria given in the1995 AAN practice parameter. (Level U)

Question #2: Adequate ObservationPeriod

• There is insufficient evidence todetermine the minimally acceptableobservation period to ensure thatneurologic functions have ceasedirreversibly. (Level U)

Question #3: complex motormovements

• For some patients diagnosed as brain dead, complex,non brain mediated spontaneous movements can falselysuggest retained brain function. Additionally, ventilatorautocycling may suggest patient initiated breathing.(Level C)

• Spinally mediated reflexes include DTR s, triple flexion,Babinski’s sign. Also the Lazarus sign with slightspontaneous abduction or adduction of an extremity,raising of the torso to a 40 60 angle, head turning toone side, arm raising, and back arching. In some patientsthis may be seen in synchrony with ventilator deliveredbreaths.

Question #4: safety of apneatechniques

• Apneic oxygenation diffusion todetermine apnea is safe, but there isinsufficient evidence to determine thecomparative safety of techniques forapnea testing. (Level U)

Question #5: New ancillary tests

• Because of a high risk of bias andinadequate statistical precision, there isinsufficient evidence to determine if anynew ancillary tests accurately identifybrain death. (Level U)

Practical (non evidence based)guidance

• Many of the details of the clinicalneurological examination to determine braindeath cannot be established by evidencebased methods. The detailed brain deathevaluation protocol that follows is intended asa useful tool for clinicians. It must beemphasized that this guidance is opinionbased.

Brain Death Determination:4 Steps

1. Clinical evaluation (prerequisites)

2. Clinical evaluation (neurologic assessment)

3. Ancillary tests

4. Documentation

Clinical Evaluation –Prerequisites

• CARDINAL RULES:–Establish cause of coma–Establish irreversibility

Establish Cause + Avoid Pitfalls

– Cause can usually be determined by history,examination, neuroimaging or lab tests

– Exclude the presence of CNS depressant drugeffect by history, drug screen, calculation ofclearance using 5 times the drug’s half life(assuming normal hepatic and renal function),or drug plasma levels in the therapeutic range.

– Prior use of hypothermia may delay drugmetabolism

– BAL of < 0.08% is a practical threshold

Clinical Evaluation –Prerequisites

• No recent administration of continued presence ofneuromuscular blocking agents (assessed withtrain of 4 twitches with maximal ulnar nervestimulation)

• No severe electrolyte, acid base, or endocrinedisturbance (defined by severe acidosis orlaboratory values markedly deviated from thenorm)

• Achieve core temperature: >36 C• Achieve systolic blood pressure: 100 mm Hg

Clinical Evaluation –Prerequisites

• 1 neurologic examination: If a certain period oftime has passed since the onset of the braininsult to exclude the possibility of recovery (inpractice, usually several hours), 1 neurologicexamination should be sufficient to pronouncebrain death. However, some US state statutesrequire 2 examinations.

• All physicians are allowed to determine braindeath in most US states. Some US state orhospital guidelines require the examiner to havecertain expertise.

Clinical Evaluation –Neurologic Assessment

• 3 cardinal features:

1. Coma

2. Absence of brainstem reflexes

3. Apnea

Clinical Evaluation –Neurologic Assessment

• Coma: patients must lack all evidence ofresponsiveness

• No eye opening or eye movement to noxiousstimulation

• Noxious stimulation produces no motorresponse, other than spinally mediated

• Distinguishing between cerebrally or spinallymediated responses requires expertise (andsometimes ancillary testing may be necessary)

Clinical Evaluation –Neurologic Assessment

1. No pupillary response to bright light in eithereye. Pupils usually fixed and 4 9 mm.Constricted pupils should suggest possibledrug intoxication. A magnifying glass shouldbe used for uncertain response.

What are Doll s Eyes ???

What are Doll s Eyes ???

Clinical Evaluation –Neurologic Assessment

2. No eye movements to OCR or OVR testing.Once integrity of C spine ensured, head isbriskly rotated horizontally and vertically.OVRs tested by:

1. Ensure integrity of auditory canal and TM

2. Elevate head to 30 degrees

3. Irrigate one ear at a time with ice water, 50 mL

4. Observe for eye movements for 1 minute

5. Wait 5 minutes before testing opposite ear

Clinical Evaluation –Neurologic Assessment

Confounding factors for the OVR test include

Prior exposure to certain ototoxic drugsaminoglycosides, vancomycin, certain antiepilepticdrugs, tricyclic antidepressants, chemotherapeuticagents, and anticholinergics

Trauma to the globes, orbits, or petrous bone.

Severe globe or facial edema

Clinical Evaluation –Neurologic Assessment

3. Absent corneal reflex by touching cornea withpiece of tissue paper, cotton swab or squirts ofwater. (I press on the cornea)

4. Absent facial movement to noxious stimulation(nasal tickle, pressure on TMJ and supraorbitalridge). Facial myokymias permissible.

5. Absent pharyngeal and tracheal reflexes, testedby stimulation of posterior pharynx with atongue blade or suction device. Assess for coughreflex with tracheal suctioning to level of carina.

Brain Death Examination

APNEA TESTING

• Prerequisites:– Normotension ( 100 mm Hg, with/without pressors)

– Normothermia (>36 C)

– Euvolemia

– Eucapnia (PaCO2 35 45)

– No hypoxia

– No prior CO2 retention (e.g. COPD, OSA, severeobesity)

APNEA TESTING

• Preoxygenate for at least 10 minutes with 100%oxygen to a PaO2 of >200 mm Hg

• Reduce ventilation frequency and/or tidal volumeto establish eucapnia

• Reduce PEEP to 5 cm H20 (O2 desaturation withdecreasing PEEP may suggest difficulty withapnea testing)

• If pulse oximetry O2 sat remains >95%, obtainbaseline ABG

• Disconnect the patient from the ventilator

APNEA TESTING

• Preserve oxygenation by providing oxygen tothe level of the carina with 100% O2 at 4 6liters/min via a catheter in the ET tube

• Observe closely for respiratory movements for8 10 minutes.

• Abort if SBP <90mm Hg

• Abort of O2 sat <85% for >30 seconds.• Retry procedure with T piece, CPAP 10 cm H2O,and 100% O2 12 l/min

APNEA TESTING

• If no respiratory drive is observed, repeat ABG after ~ 8minutes

• If respiratory movements are absent and arterial PCO2 is60 mm Hg (or 20 mm Hg increase in arterial PCO2 overa baseline normal arterial PCO2), the apnea test ispositive.

• If the test is inconclusive, but the patient was stableduring testing, repeat for longer (10 15 minutes), afteragain adequately preoxygenating and reestablishingnormocapnea

Trick of the Trade

• If the patient becomes hypotensive duringapnea testing, reconnect the ventilator ASAPand hyperventilate

Apnea Testing – potentialcomplications

The most common complication ishypotension, which typically occurs whenthere is inadequate pre oxygenation.

Tension pneumothorax has been reported, butit is unclear whether it was related to theapnea testing.

Cardiac arrest during apnea testing is felt to bequite rare, but has been reported.

Goudreau JL, Wijdicks EFM, Emery SF. Neurology. 2000;55:1045-1048.

Ancillary Testing

Brain death is a clinical diagnosis.

Ancillary testing is not required, unless theclinical exam is drawn into question.

Even ancillary testing is potentiallyconfounded in certain circumstances.

Clinical judgment remains paramount.

Preferred tests: SPECT, cerebral angiography,TCD, EEG

Ancillary Tests – cerebralangiography

Cerebral angiography should show an absenceof flow in all intracranial arteries

Contrast will typically fill the external carotidcirculation, also supplying the meningealarterial system.

ICA and vertebral artery flow should arrest atthe point of entry at the dura.

Cantu RC. Lancet. 1973;1:1391-1392.

4 Vessel ConventionalCerebral Angiogram (4VsA)

M. Sawicki, et al. Angiography in the evaluation of brain death. Polish Journal of Radiology. 2009

Ancillary Testing SPECT

• SPECT uses 99mTc HMPAO, injected 15 30 minutesbefore scanning.

• There should be an absence of intracranial perfusion,seen as a lack of uptake of tracer.

• Given the persistent extracranial circulation, there isflow to the meningeal and skull vessels, giving rise tosuch signs as the hollow skull, empty light bulband hot nose signs

Facco E, et al. Intensive Care Med. 1998;24:911-917.

37-year-old woman, S/P cardiac arrest.

EEG Brain DeathNot first line ancillary test for BD; specific methodology must be employed if used

EEG for BD determination:

16- or 18-channel x 30 minMinimum: 8 channel

Impedance:100-10,000 ohms

Inter-electrode distance >10 cm

Sensitivity: at least 2 μV

Filter: High>30 Hz; Low freq < 1 Hz

No response to auditory, visual, or tactile stimuliAmerican Electroencephalographic Society.

J Clin Neurophysiol. 1994;11:10-13.

NORMAL

Electrocerebral Inactivity of BD

Ancillary Tests – TranscranialDoppler

Confirmation of cerebral circulatory arrestwith extra and intracranial Dopplersonography

Bilateral, anterior and posterior, twoexaminations 30 minutes apart.

Systolic spikes or oscillating flow in anycerebral artery (anterior or posterior).

J Neurol Sci. 1998; 159:145-150.

TCD Criteria, continued

Disappearance of intracranial flow signals isdebatably reliable

Studies have excluded patients withventricular drains or large craniotomy.

The sensitivity for confirming circulatoryarrest ranges from 91 99%, but specificity100%.

TCD Brain Death

Other Ancillary Tests

• Multiple reports on MRA, CTA – noprospective studies, NOT VALIDATED.

• Evoked potentials have been studiedextensively in brain death, but have arelatively poor predictive value. This may beimproved with nasopharyngeal electrodeplacement.

Machado C, et al. Electroencephalogr Clin Neurophysiol.1991;80:392-398.

Documentation

• Time of death is:

– The time the arterial PCO2 reached the target value

– The time when the ancillary test has been officiallyreported

Federal and state law requires the physician to contactan organ procurement organization followingdetermination of brain death. (Hopefully, this hasalready been done prior to this point.)

Common Pitfalls in Brain DeathTesting

• Severe facial trauma

• Pre existing pupillary abnormalities

• Medications influencing the examination

• Acid base disorders, electrolyte disorders

• Sleep apnea or severe pulmonary diseaseresulting in chronic CO2 retention

What are we doing to improve the field?

• Educational/training endeavors

– Web based training

– Simulation training

– “Champions”

• Creation of a national/international standard

– Reevaluate policies since the 2010 AAN PracticeParameters – under review

– Reevaluate international policies done

– Lobby at a national level for ONE STANDARD

• Brain Death Ethics Subcommittee of NCS

What is the potential???

Potential Live-Years Saved by a Deceased Organ Donor

Schnitzler MA et al. Am J Transplant. 2005;5:2289-96.

Brain Death vs. DCD• Much greater chance for organ retrieval, greater number of

viable organs.

• A 21 yo MVA victim was able to provide to patients on thetransplant waiting list:

– Kidney & pancreas to a 43 yo woman with end stageIDDM – law professor

– Kidney to a 33 yo man in Tennessee

– Liver (split) to 61 yo man with hepatocellular CA

– Liver to a 10 month old with biliary atresia

– Heart to a 54 yo man with Adriamycin inducedcardiomyopathy

– Lung to a 62 yo local man with end stage COPD

– Also donated bone, ligaments, tendon, skin, cornea,saphenous and femoral veins

Navigating Prognosis inNeuroscience Intensive Care Units

David Y. Hwang, MD

Assistant Professor of NeurologyDivision of Neurocritical Careand Emergency Neurology

Yale School of Medicine

Critical Care and Emergency Neuroscience: the EssentialsMay 19, 2016

2

Disclosures

American Brain Foundation – Practice Research Training Fellowship

Apple Pickers Foundation (Westerly, RI)

National Institute on Aging – Loan Repayment Program

Neurocritical Care Society – Research Training Fellowship

3

ICU comfort care practices

Clinical scales

Family discussions

This presentation highlights the importance of prognosis in the Neuro ICU and reviews pitfalls in outcome prediction

4

Six separate Canadian level‐one trauma centers

Adjusted ORs for death following care withdrawal for traumatic brain injury patients

Significant variation exists in comfort care practices among centers caring for neurocritically ill patients

Turgeon et al. CMAJ 2011;182:1581.

5

Moving a stroke patient to a hospital with a higher propensity for feeding tube placement increased odds of placement 1.45‐fold

Variation in feeding tube insertion rates across US hospitals is large for ischemic stroke patients

George et al. Neurology 2014;83:874.

6

Accurate prognosis is critical for situations in which clinicians are discussing comfort care with patients’ families

Reasons for variation in local practices to trach/PEG versus pursue comfort care at various centers is unclear

7

Early impressions of prognosis strongly influence aggressiveness of care for neurocritically ill patients 

Zurasky et al. Neurology 2005;64:725

Timing of life support withdrawal decisions for ICH patients

Within first 24 hoursAfter first 24 hours

30%

8

Multiple “scientific” tools for estimating early prognosis for neurocritically ill patients have been developed

Utilize admission clinical and radiologic variables

Relatively easy to learn and apply

Rapidly stratify patients early on

“Objectify” prognosis

Crandall et al. Rev Neurol Dis. 2011;8:23

9

Saposnik et al. Circulation. 2011;123:739

10

Hemphill et al. Neurology. 2009;73:1008

Models for “predicting” outcome are limited by self‐fulfilling prophecies

Morgenstern et al. Neurology 2015;84:1739.

Green = 30‐day mortality predicted by ICH Score

Grey = actual 30‐day mortality when DNR order is avoided for 5 days

11

12

Applying prognosis predictions from population models to individual patients must be done with caution

Hwang et al. Neurology. 2016;86:1.

0.81

0.72

0.55

‐0.46

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Attendings Nurses ICH Score FUNC Score

Spearman’s rankCorrelation (r)

p values < 0.02 for all comparisons betweenproviders and scores

Correlation with 3‐month mRS of subjective predictions and clinical scales for ICH

13

The prognosis that we give a surrogate decision maker is only a small part of his or her own prognostic assessment

Boyd et al. Crit Care Med. 2010;38:1270.

Sources contributing to surrogate’s prognostic impression % Surrogates reporting

Physician’s prognostic estimate ALONE 2%

Physician’s prognostic estimate as PARTIAL role 47%

Patient’s intrinsic qualities and will to live 27%

Patient’s physical appearance 64%

Patient’s survival of prior illnesses 28%

Power of surrogate’s bedside presence 13%

Optimism, intuition, faith 36%

14

Surrogates often interpret physician prognostic estimates with an optimistic bias

Zier et al. Ann Intern Med 2012;156:360.

15

Quantitative estimates of prognosis can even be influenced by how numbers are framed to surrogates

Chapman et al. J Crit Care 2015;30:231.

“Your relative has a _____ chance of dying in the next few days.”

Please rate the risk to your relative with a cross on this scale(0=no risk, 10=highest):

Probability Median number marked on scale (IQR) p

“2%” 2.0 (1‐5) < 0.01

“1 in 50” 5.0 (3‐8)

Recognize that common biases may arise when attempting to predict future “quality of life” (affective forecasting)

Creutzfeldt et al. Stroke 2012;43:3405.

Recall bias (remembering a patient as healthier than he/she really was)

Focusing illusion

Disability paradox

16

People with disabilities often report greater quality of life compared to healthy people asked to imagine disabilities

Carr et al. BMJ 2011;322:1240.Creutzfeldt et al. Stroke 2012;43:3405.

Stroke deficitsresolve completely

Stroke deficits stay and expectations do not change

Response shift

17

When imagining a disability, people tend to focus only on negative impact and overlook positive aspects of life

Attitudes towards decompressive craniectomy in healthy population

Klein at al. Neurocrit Care 2012;16:456.

Actual emotion scores on the Stroke Impact Scale for decompressed patients are no worse than normative data for all stroke patients

Vahedi et al. JNNP 2005;76:1181.

18

Be careful of rushing to judgment with regards to prognosis and future quality of life for patients with brain injury

19

Clinical scales must be applied with caution, and awareness of common biases when meeting with patients’ families is important