cp2 circuit theory

38
CP2 Circuit Theory Prof. Todd Huffman [email protected] http://www-pnp.physics.ox.ac.uk/~huffman/ Aims of this course: Understand basic circuit components (resistors, capacitors, inductors, voltage and current sources, op-amps) Analyse and design simple linear circuits + + +

Upload: others

Post on 07-Jan-2022

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CP2 Circuit Theory

CP2 Circuit Theory Prof. Todd Huffman [email protected] http://www-pnp.physics.ox.ac.uk/~huffman/ Aims of this course:

Understand basic circuit components (resistors, capacitors, inductors, voltage and current sources, op-amps)

Analyse and design simple linear circuits

+

– +

+

Page 2: CP2 Circuit Theory

Circuit Theory: Synopsis

Basics: voltage, current, Ohm’s law…

Kirchoff’s laws: mesh currents, node voltages…

Thevenin and Norton’s theorem: ideal voltage and current sources…

Capacitors:

Inductors:

AC theory: complex notation, phasor diagrams, RC, RL, LCR circuits, resonance, bridges…

Op amps: ideal operational amplifier circuits…

Op-amps are on the exam syllabus

Stored energy, RC and RL transient circuits

Page 3: CP2 Circuit Theory

Reading List • Electronics: Circuits, Amplifiers and Gates, D V Bugg, Taylor

and Francis Chapters 1-7

• Basic Electronics for Scientists and Engineers, D L Eggleston, CUP Chapters 1,2,6

• Electromagnetism Principles and Applications, Lorrain and Corson, Freeman Chapters 5,16,17,18

• Practical Course Electronics Manual http://www-teaching.physics.ox.ac.uk/practical_course/ElManToc.html Chapters 1-3

• Elementary Linear Circuit Analysis, L S Bobrow, HRW Chapters 1-6

• The Art of Electronics, Horowitz and Hill, CUP

Page 4: CP2 Circuit Theory

Why study circuit theory?

• Foundations of electronics: analogue circuits, digital circuits, computing, communications…

• Scientific instruments: readout, measurement, data acquisition…

• Physics of electrical circuits, electromagnetism, transmission lines, particle accelerators, thunderstorms…

• Not just electrical systems, also thermal, pneumatic, hydraulic circuits, control theory

Page 5: CP2 Circuit Theory

Mathematics required

• Differential equations

• Complex numbers

• Linear equations

0ILC

1

dt

dI

L

R

dt

Id2

2

V(t)=V0ejωt

jXRZ Z

VI

V0–I1R1–(I1–I2)R3 = 0

(I1–I2)R3–I2R2+2 = 0

Covered by Complex Nos & ODEs / Vectors & Matrices lectures (but with fewer dimensions)

Page 6: CP2 Circuit Theory

Charge, voltage, current

Potential difference: V=VA–VB

Energy to move unit charge from A to B in electric field

B

AV dsE VE

B

AQW dsE

Charge: determines strength of electromagnetic force quantised: e=1.62×10-19C [coulombs]

[volts]

Page 7: CP2 Circuit Theory

Power: rate of change of work

IV

dt

dQV

dt

dVQQV

dt

d

dt

dWP

nAvedt

dQI

No. electrons/unit vol

Cross-section area of conductor

Drift velocity

Charge Q=e

Current: rate of flow of charge

[amps]

[watts]

Page 8: CP2 Circuit Theory

Ohm’s law Voltage difference current

I

L

A V

A

LR

IRV

R=Resistance Ω[ohms]

ρ=Resistivity Ωm

Resistor symbols:

R

Page 9: CP2 Circuit Theory

Resistivities

Silver 1.6×10-8 Ωm

Copper 1.7×10-8 Ωm

Manganin 42×10-8 Ωm

Distilled water 5.0×103 Ωm

PTFE (Teflon) ~1019 Ωm

R

1g Conductance

[seimens] conductivity [seimens/m]

1

Power dissipation by resistor: R

VRIIVP

22

Page 10: CP2 Circuit Theory

Voltage source

V0

Ideal voltage source: supplies V0 independent of current

V0 Rint Real voltage source:

Vload=V0–IRint

Rload

Rload

+ –

battery cell

Page 11: CP2 Circuit Theory

Constant current source

Ideal current source: supplies I0 amps independent of voltage

Real current source:

Rload

Rload

I0

Rint I0

int

0R

VII load

Symbol: or

Page 12: CP2 Circuit Theory

AC and DC

DC (Direct Current): Constant voltage or current

Time independent

V=V0

AC (Alternating Current): Time dependent

Periodic

I(t)=I0sin(ωt)

T

2f2

50Hz power, audio, radio…

+ –

+

-

Page 13: CP2 Circuit Theory

RMS values

AC Power dissipation R

VVIP

2RMS

RMSRMS

2

VV 0

RMS

Why ? 2

T

0

2RMS dttV

T

1V

Square root of mean of V(t)2

Page 14: CP2 Circuit Theory

Passive Sign Convention Passive devices ONLY - Learn it; Live it; Love it!

IRV

R=Resistance Ω[ohms]

Which way does the current flow, left or right?

Two seemingly Simple questions:

Voltage has a ‘+’ side and a ‘-’ side (you can see it on a battery) on which side should we put the ‘+’? On the left or the right?

Given V=IR, does it matter which sides for V or which direction for I?

Page 15: CP2 Circuit Theory

Kirchoff’s Laws I Kirchoff’s current law: Sum of all currents at a node is zero

I1

I3

I2

I4

I1+I2–I3–I4=0

0In

(conservation of charge)

Here is a cute trick: It does not matter whether you pick “entering” or “leaving” currents as positive. BUT keep the same convention for all currents on one node!

Page 16: CP2 Circuit Theory

II Kirchoff’s voltage law: Around a closed loop the net change of potential is zero (Conservation of Energy)

V0

I

R1

R2

R3

0Vn

5V

3kΩ

4kΩ

Calculate the voltage across R2

1kΩ

Page 17: CP2 Circuit Theory

Kirchoff’s voltage law:

V0

I 1kW

3kW

4kW

-V0+IR1+IR2+IR3=0

0Vn

+

+

+

+

–V0

+IR1

+IR2

+IR3

5V=I(1+3+4)kΩ

mA625.08000

V5I

W

VR2=0.625mA×3kΩ=1.9V

Page 18: CP2 Circuit Theory

Series / parallel circuits

R1 R2 R3

Resistors in series: RTotal=R1+R2+R3…

n

nT RR

R1 R2 R3

Resistors in parallel

321

n nT

R

1

R

1

R

1

R

1

R

1

Two parallel resistors: 21

21T

RR

RRR

Page 19: CP2 Circuit Theory

Potential divider

R1

R2

V0

21

20

RR

RV

USE PASSIVE SIGN CONVENTION!!!

Show on blackboard

Page 20: CP2 Circuit Theory

Mesh currents

9V 2V + +

R1 R2

R3

I1 I2 I3

I1 I2

R1=3kΩ R2=2kΩ R3=6kΩ

Second job: USE PASSIVE SIGN CONVENTION!!!

First job: Label loop currents in all interior loops

+ +

+

Third job: Apply KCL to nodes sharing loop currents

Define: Currents Entering Node are positive

I1–I2–I3 = 0 I3 = I1-I2

Page 21: CP2 Circuit Theory

Mesh currents

9V 2V + +

R1 R2

R3

I1 I2 I3

I1 I2

R1=3kΩ R2=2kΩ R3=6kΩ

Last job: USE Ohm’s law and solve equations.

Fourth job: Apply Kirchoff’s Voltage law around each loop.

+ +

+

Page 22: CP2 Circuit Theory

Mesh currents

9V 2V + +

R1 R2

R3

I1 I2 I3

I1 I2

R1=3kΩ R2=2kΩ R3=6kΩ

-9V+I1R1+I3R3 = 0 I3 =I1–I2

–I3R3+I2R2+2V = 0

9V/kΩ = 9I1–6I2

-2V/kΩ = -6I1+8I2

I2=1 mA VIRV

mAmAI

4

32I

35

333

31

+ +

+ Solve simultaneous equations

Page 23: CP2 Circuit Theory

Node voltages

9V 2V +

+

R1 R2

R3

I1 I2 I3

R1=3kΩ R2=2kΩ R3=6kΩ VX

0V

-

-

+

-

Step 1: Choose a ground node!

Step 2: Label V’s and I’s on all nodes

Step 4: Apply KCL and ohms law using the tricks

Step 3: Apply KVL to find DV across resistors

Page 24: CP2 Circuit Theory

Node voltages

9V 2V +

+

R1 R2

R3

I1 I2 I3

R1=3kΩ R2=2kΩ R3=6kΩ VX

0V

132

132

9)2(0

0

R

VV

R

V

R

VV

III

XXX

USE PASSIVE SIGN CONVENTION!!!

-

-

+

-

Only one equation, Mesh analysis would give two.

All currents leave all labeled nodes And apply DV/R to each current.

Page 25: CP2 Circuit Theory

V2V mA2k1

V

mA2k

1

3

1

6

1

2

1V

mA2mA1mA3R

V2

R

V9

R

1

R

1

R

1V

XX

X

21132

X

W

W

mA 3

1

6

2

2mA 2

22mA

3

7

3

92

3

21

W

W

W

k

VI

k

VVI

k

VVI

2V 9V +

+

R1 R2

R3

I1 I2 I3

VX

0V 132

132

9)2(0

0

R

VV

R

V

R

VV

III

XXX

Page 26: CP2 Circuit Theory

Thevenin’s theorem

Veq Req

Any linear network of voltage/current sources and resistors

Equivalent circuit

Page 27: CP2 Circuit Theory

In Practice, to find Veq, Req…

RL (open circuit) IL0 Veq=VOS

RL0 (short circuit) VL0 SS

OSeq

I

VR

V0 +

R1

RL

I1

Iss

R2

I2 VL

21

20

RR

RVVos

21

21

1

0

21

20

eqRR

RR

R

V

RR

RV

R

R2

I2

Req = resistance between terminals when all voltages sources shorted – Warning! This is not always obvious!

1

0

R

VI ss

Page 28: CP2 Circuit Theory

Norton’s theorem

Req

Any linear network of voltage/current sources and resistors

Equivalent circuit

I0

Page 29: CP2 Circuit Theory

V0 R1

Req eqIRload Rload

VL=V0–ILR1

LLeqeqeq

L

eq

LLReq

VIRIR

IR

VIII

1eq

eq

0eq

RR

R

VI

V0 R

R RV0

IR IL

Page 30: CP2 Circuit Theory

using Thevenin’s theorem: VOC =Veq= 2.0V

2V

+

+

R1=3kΩ R2=2kΩ

R3=6kΩ

A

B

9V

2V +

+

A

B

V9

R2=2kΩ

mak

VI 3

3

91

W

W kR 31

W

W

kI

VR

maIII

mak

VI

SS

OCeq

SS

0.1

2

12

2

21

2

+

A

B

2.0V

1.0kΩ

Iss

I1 I2

Page 31: CP2 Circuit Theory

using Norton’s theorem:

2V

+

+

R1=3kΩ R2=2kΩ

R3=6kΩ

A

B

9V 1kΩ 2mA

A

B

Same procedure: Find ISS and VOC IEQ = ISS and REQ = VOC/ISS

Page 32: CP2 Circuit Theory

Superposition

9V 2V

+

+

R1 R2

R3

I1 I2 I3

9V +

R1 R2

R3

IA IB IC

2V +

R1 R2

R3

IE IF IG

=

+

I1=IA+IE I2=IB+IF I3=IC+IG

Important: label Everything the same directions!

Page 33: CP2 Circuit Theory

9V +

R1 R2

R3

IA IB IC

9V +

R1

R2 R3

IA

IB IC

W

k5.1RR

RR

32

32

R1=3kΩ R2=2kΩ R3=6kΩ

W

k5.4

RR

RRR

32

321

mA2k5.4

V9IA

W

mA5.1I mA5.0I

V35.4

5.1V9RIRI

BC

2B3C

Example: Superposition

Page 34: CP2 Circuit Theory

2V +

R1 R2

R3

IE IF IG

2V +

R2

R3

IF

IE IG

R1

R1=3kΩ R2=2kΩ R3=6kΩ

W

k2RR

RR

31

31

W

k4

RR

RRR

31

312

mA5.0k4

V2IF

W

mA3

1I mA

6

1I

V14

2V2RIRI

EG

1E3G

Page 35: CP2 Circuit Theory

9V 2V

+

+

R1 R2

R3

I1 I2 I3

9V +

R1 R2

R3

IA IB IC

2V +

R1 R2

R3

IE IF IG

=

+

I1=IA+IE I2=IB+IF I3=IC+IG

mA3

7

mA3

12I1

mA2

mA5.05.1I2

mA3

1

mA6

15.0I3

Page 36: CP2 Circuit Theory

Matching: maximum power transfer

V0 Rin

Rload

L2

Lin

2L2

0

L

2L

R

1

RR

RV

R

VP

Find RL to give maximum power in load

0R2RR

0RR

RRR2RRV

dR

dP

LLin

4

Lin

LinL

2

Lin20

L

Lin RR

Maximum power transfer when RL=Rin

Note – power dissipated half in RL and half in Rin

Page 37: CP2 Circuit Theory

Circuits have Consequences

• Problem:

– My old speakers are 60W

speakers.

– Special 2-4-1 deal at El-

Cheap-0 Acoustics on 120W

speakers!!

• (“Offer not seen on TV!”)

– Do I buy them?

• Depends! 4W, 8W, or 16W

speakers?

• Why does this matter?

Page 38: CP2 Circuit Theory

And Now for Something Completely Different