corporate template book - stmicroelectronics · spc563m64xx internal flash during calibration. a...

38
September 2013 Doc ID 024080 Rev 3 1/38 RM0345 Reference manual SPC563M64CAL144 calibration adapter board for SPC563M64xx devices Introduction The SPC563M64CAL144 (rev.B) system is designed to enable the use of new enhanced automotive calibration and debug tools on the SPC563M64xx family of automotive microcontrollers. The SPC563M64CAL144 (rev.B) can be fitted onto the application printed circuit board (PCB) in place of the standard SPC563M64xx family microcontroller in LQFP144 package. SPC563M64CAL144 (rev.B) hardware is designed to support two standardized tool connectors, allowing a variety of calibration and debug hardware to be connected and reused Figure 1. SPC563M64CAL144 (rev.B) Table 1. Board summary Order code On board device Target footprint SPC563M64CAL144 SPC563M64xx QFP144 www.st.com

Upload: others

Post on 08-Sep-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

September 2013 Doc ID 024080 Rev 3 1/38

RM0345Reference manual

SPC563M64CAL144calibration adapter board for SPC563M64xx devices

IntroductionThe SPC563M64CAL144 (rev.B) system is designed to enable the use of new enhanced automotive calibration and debug tools on the SPC563M64xx family of automotive microcontrollers.

The SPC563M64CAL144 (rev.B) can be fitted onto the application printed circuit board (PCB) in place of the standard SPC563M64xx family microcontroller in LQFP144 package. SPC563M64CAL144 (rev.B) hardware is designed to support two standardized tool connectors, allowing a variety of calibration and debug hardware to be connected and reused

Figure 1. SPC563M64CAL144 (rev.B)

Table 1. Board summary

Order code On board device Target footprint

SPC563M64CAL144 SPC563M64xx QFP144

www.st.com

Page 2: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Contents RM0345

2/38 Doc ID 024080 Rev 3

Contents

1 Calibration system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Features overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Reset and configuration signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Calibration bus interface and External Memory . . . . . . . . . . . . . . . . . . 12

4.1 External memory specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 SRAM supply and data retention function . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Calibration bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Development connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Calibration connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Tool IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8 CAN interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

9 Calibration software compatibility and configuration . . . . . . . . . . . . . 22

9.1 Calibration bus sw configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.1.1 Cal Bus PCR Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

9.1.2 Cal Bus ECCR Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

9.1.3 Cal Bus EBI Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

9.2 Example Configuration CODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendix A Calibration base footprints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Appendix B Mechanical constrains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Appendix C Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Appendix D Options placement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Page 3: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Contents

Doc ID 024080 Rev 3 3/38

Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Page 4: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

List of tables RM0345

4/38 Doc ID 024080 Rev 3

List of tables

Table 1. Board summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Table 2. J15, J2 and J14 option cut traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Table 3. Reset and configuration signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Table 4. J11 configuration of SRAM supply for retention mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Table 5. J3, J5 and J10 option cut traces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Table 6. Nexus signals on AMP 38 Mictor connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Table 7. Nexus signals on AMP 38 Mictor connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Table 8. J12, J13 FlexCAN interface selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Table 9. J6, J17 and J7 FlexCAN interface selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Table 10. CAN transceiver operating voltage selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Table 11. Calibration bus signals configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Table 12. EBDF field definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Table 13. EBI_MCR register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Table 14. EBI_CAL_BRx register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Table 15. EBI_CAL_BOx register setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Table 16. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Page 5: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 List of figures

Doc ID 024080 Rev 3 5/38

List of figures

Figure 1. SPC563M64CAL144 (rev.B). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Figure 2. Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Figure 3. Supply signals from the QFP144 footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 4. Test points on J4 connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Figure 5. Supply signals on SPC563M64xx CSP496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Figure 6. SRAM supply circuitry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Figure 7. SRAM schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Figure 8. JP1 development connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Figure 9. AMP 38 Mictor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Figure 10. J9 Calibration connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17Figure 11. Calibration triggers TOOL_IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19Figure 12. CAN schematic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Figure 13. TQPACK144SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29Figure 14. Top and side view drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Figure 15. Side and bottom view drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Figure 16. Complete system side view drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32Figure 17. SPC563M64xx in CSP package schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33Figure 18. Polypod-TQ144 connector schematic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34Figure 19. Memory, CAN and connectors schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Figure 20. Options placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Page 6: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration system overview RM0345

6/38 Doc ID 024080 Rev 3

1 Calibration system overview

The Calibration Adapter board features 2 Mbytes of SRAM in order to substitute to the SPC563M64xx internal Flash during calibration.

A voltage regulator is also integrated upon the board to generate, from selectable 5 V source, the 3.3 V voltage for the RAM and the calibration bus interface.

Development connector (Mictor AMP38) is providing the interface for the debug and trace tools.

A calibration connector (ERNI 154819) is providing an interface optimized for calibration usage.

A high speed CAN transceiver is connected to the FlexCAN of the mcu device.

The components chosen in the design of this board are automotive qualified to allow system evaluation over the full automotive evaluation range (-40 °C to 125 °C).

1.1 Features overview calibration systems include these distinctive features:

● Use 100% production silicon, ensuring full hardware and software compatibility between production and calibration systems;

● Support LQFP144 MCU production package allowing calibration systems to be built without requiring modifications to the standard production system housing;

● 2MByte static RAM organized as 1024K words by 16 bits;

● On-board latch providing a 16-bit de-multiplexed bus interface from the SPC563M64xx 16-bit multiplexed calibration interface;

● Support for Nexus-based debug tools even if application PCB does not include Nexus connector;

● Nexus functionality with 12 Message Data Out (MDO) signals;

● Support for full-feature calibration tools, via availability of comprehensive set of device signals available on the connectors;

● ERNI 154819 connector optimized for calibration;

● High speed CAN transceiver with signals protection;

● Allows system calibration without impacting standard MCU I/O resources;

● Allows system calibration regardless of availability of standard MCU external bus;

● Uses tried and tested technology.

Page 7: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Power supply

Doc ID 024080 Rev 3 7/38

2 Power supply

The Calibration boards requires a +5 V to supply the on board CAN transceiver and a +3.3 V to supply the SPC563M64xx calibration bus interface and for the external RAM.

The 3.3 V supply is generated on the SPC563M64CAL144 (rev.B) via the very low drop voltage regulator by using the +5V. A LED (D1) will light when the board is powered.

Figure 2. Power supply

By default the 5V is taken from the target application through the VDDREG supply level (supply input for the internal voltage regulators of the SPC563M64xx). Gauge J14 enables the powering from the application board. Table 2 shows its option configuration.

In case that no additional power loading could be applied to the application system during calibration, the +5V can be supplied externally via J4 connector (+5V test point, see Figure 4) and the gauge J14 (see Figure 3) must be open.

Page 8: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Power supply RM0345

8/38 Doc ID 024080 Rev 3

Figure 3. Supply signals from the QFP144 footprint

Figure 4. Test points on J4 connector

All power signals and voltage references of the SPC563M64xx QFP144 footprint from the application board are directly connected to the respective calibration device signals.

The VDDE12 supply used to power the dedicated SPC563M64xx calibration bus interface is connected to the upon board +3.3 V voltage regulator.

VSSAVSSSYN

GND

VRCCTL

VDDREG

VSTBY

C46

1uF

GND

VDDEH1.A 24

VDDEH1B 34

VDDEH1C 46

VDDEH4 61

VDDEH6A 78

VDDEH6B 93

VDDEH7 102

VDDEH7 113

VDDPLL 74

VDDREG 10

VRC33 13

VRCCTL 11

VSSPLL 77

VSSA0 7

VSTBY 12

VDDA0 6

VSUP 79 VDDA0

VDDSYNDefault = CL

J15

J14Default = CLOSE

+5V

VDDE H1BVDDE H 6A

VDDEH7

VDDEH6A

VDDEH1AVDDEH1B

VDDEH6B

QF

P14

4 fo

otpr

int

GAPGRI00341

Page 9: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Power supply

Doc ID 024080 Rev 3 9/38

Figure 5. Supply signals on SPC563M64xx CSP496

The VRC33 signal of the CSP496 is connected to its respective signal of the QFP144 target application via the J15 cut trace option.

The VRC33 can be also connected to the on board +3.3V by closing the J2 gauge. In this case the gauge J15 must be open (Table 2).

Page 10: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Power supply RM0345

10/38 Doc ID 024080 Rev 3

Table 2. J15, J2 and J14 option cut traces(1)

1. Refer to Chapter Appendix D: Options placement for layout Jumper placement

Option name

Function Value Note

J15 VRC33

openVRC33 signal is disconnected from the target application board

close(default)

VRC33 signal is connected to the target application board

J2 VRC33

open(default)

VRC33 signal is disconnected from the on board +3.3V signal

closeVRC33 signal is connected to the on board +3.3V signal

J14 +5V supply

open +5V is powered from J4 connector

close(default)

+5V is powered from target application via VDDREG pin of the QFP144 target footprint

Page 11: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Reset and configuration signals

Doc ID 024080 Rev 3 11/38

3 Reset and configuration signals

Calibration and debug tools may use the reset signals included in the connectors to have visibility of when the SPC563M64xx device has been reset. Debug tools may also require the ability to force device reset.

All signals of the SPC563M64xx QFP144 footprint from the application board are directly connected to the respective calibration device signals. This includes the following signals on the Table 3.

Table 3. Reset and configuration signals

Signal name Function Notes

Reset / Configuration (5)

/RESET External reset input

The /RESET pin is an active low input. The RESET pin is asserted by an external device during a power-on or external reset. The internal reset signal asserts only if the RESET pin asserts for 10 clock cycles. Assertion of the RESET pin while the device is in reset causes the reset cycle to start over.

/RSTOUT External reset output

The RSTOUT pin is an active low output that uses a push/pull configuration. The RSTOUT pin is driven to the low state by the MCU for all internal and external reset sources. There is a delay between initiation of the reset and the assertion of the RSTOUT pin.

BOOTCFG[1] Boot configuration input

The BOOTCFG field holds the value of the BOOTCFG[1] pin that was latched on the last negation of the RSTOUT pin. The BOOTCFG field is used by the BAM program to determine the location of the Reset Configuration Word.

PLLREF FMPLL Mode Selection

PLLREF is used to select whether the oscillator operates in xtal mode or external reference mode from reset.

If RSTCFG is 0, External reference clock selected.

If RSTCFG is 1, Xtal oscillator mode is selected

WKPCFG Weak Pull Configuration

The signal on the WKPCFG pin determines whether weak pull up or pull down devices are enabled after reset on the eTPU and eMIOS pins.0: Weak pulldown applied to eTPU and eMIOS pins at reset1: Weak pullup applied to eTPU and eMIOS pins at reset.

Page 12: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration bus interface and External Memory RM0345

12/38 Doc ID 024080 Rev 3

4 Calibration bus interface and External Memory

The SPC563M64xx features a 16-bit de-multiplexed calibration bus interface that is connected to an external 2Mbyte SRAM thanks to an on board latch.

4.1 External memory specificationThe calibration board provides a SRAM with the following characteristics:

– 2Mbyte static RAMs organized as 1024K words by 16 bits;

– 16-bit data width;

– Fully static operation: no clock or refresh required;

– 3.3V input supply;

– /CE power-down;

– High-speed access time (10ns);

– Full automotive temperature range;

– Lead-free.

When /CE is HIGH (deselected), the device assumes a standby mode at which the power dissipation can be reduced down with CMOS input levels.

4.2 SRAM supply and data retention functionThe circuitry in Figure 6 has been implemented on the calibration board to protect the memory and to guarantee that the Working Page is valid after a power fail of the target application by putting the SRAM in standby powered.

The 3.3 V supply of the SRAM (Vmem) is gated by the RESET and RSTOUT signals of the SPC563M64xx.

The memory enable is driven via the SPC563M64xx chip select C_CS0 “and” the RESETs signals combination.

Page 13: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration bus interface and External Memory

Doc ID 024080 Rev 3 13/38

Figure 6. SRAM supply circuitry

The jumper J11 (see Figure 6) allows to select the standby operation of the SRAM.

The standby voltage can be selected between:

● SPC563M64xx Vstby pin: same standby voltage as the internal RAM;

● the 3.3V generated on the calibration board;

● ECU_Stby supplied by the calibration connector J9 (see Figure 10).

Table 4. J11 configuration of SRAM supply for retention mode

J11 SRAM standby supply source

all open ECU_Stby: standby voltage on J9 calibration connector

1-2 closed Upon the board +3.3V generated

2-3 closed VSTBY input pin of the SPC563M64xx from the target application

+5V +3.3VR1

330D1LED

C35

100n

C34

4.7uF

C37

100n

C36

2.2uF

GND

IN1

GN

D2

OUT 3U2 LF33CDT-TRY

VSTBY

+3.3V

C31

1uF

GND

/RESET

Vmem

GND

Vmem

GND

53

1

24

U7

74V1G00CTR

53

1

24

U8

74V1G32CTR

ECU_Vstby

/RSOUT

/CE_RAM/CS0

Vmem

D220CJQ060

Q1

STT5PF20V

13

2J11

GAPGRI00344

Page 14: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration bus interface and External Memory RM0345

14/38 Doc ID 024080 Rev 3

4.3 Calibration bus interfaceThe calibration bus is made up of address bus, data bus, and bus control signals, and is used on the calibration board to access the upon board memory.

The calibration board supports a 16-bit de-mulitplexed calibration bus. This is derived from the multiplexed bus on the SPC563M64xx, where the majority of address lines are derived from the data lines (CAL_DATA on SPC563M64 device), by using an onboard external latch controlled by the C_TS signal. The ALE functionality of this signal indicates to the external latch when to capture the address signals

Figure 7. SRAM schematic diagram

The Section 9: Calibration software compatibility and configuration shows the necessary software configuration of the SPC563M64xx calibration interface.

Page 15: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Development connector

Doc ID 024080 Rev 3 15/38

5 Development connector

The JTAG signals and Nexus functionality with 12 Message Data Out (MDO) signals are available on the JP1 development connector (Nexus connector).

A hardware control bit in the SPC563M64xx Nexus port controller, is used to control whether the added signals for full width trace port are routed to the MDO[4:11] signals, or the CAL_MDO[4:11] signals. This control bit is set by the cut trace J1 (default close) on the NEXUSCFG pin of the SPC563M64xx device, as on the calibration board the CAL_MDO[4:11] signals are routed to the JP1 development connector.

Figure 8. JP1 development connector

The option cut trace J3, J5 and J10 are listed on Figure 5.

Table 5. J3, J5 and J10 option cut traces

option name

Function Value Note

J3 CLKOUT

openCLKOUT signal is disconnected to the Nexus JP1 connector

close(default)

CLKOUT signal is connected to the Nexus JP1 connector

J5 VSTBY

openVSTBY signal is disconnected to the Nexus JP1 connector

close(default)

VSTBY signal is connected to the Nexus JP1 connector

J10 BOOTCFG1

openBOOTCFG1 signal is disconnected to the Nexus JP1 connector

close

(default)BOOTCFG1 signal is connected to the Nexus JP1 connector

Page 16: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Development connector RM0345

16/38 Doc ID 024080 Rev 3

Figure 6 shows the mapping of the development connector that provides Debug, Nexus trace and calibration signals. The port connector is an AMP 38 pin Mictor style.

Figure 9. AMP 38 Mictor

*) signal is connected via cut trace option

Table 6. Nexus signals on AMP 38 Mictor connector

Pin Description Pin Descriptio

1 nc 2 nc

3 nc 4 nc

5 C_MDO9 6 CLKOUT*

7 BOOTCFG1* 8 C_MDO8

9 /RESET 10 C_EVTI

11 TDO 12 +3.3V

13 C_MDO10 14 RDY

15 TCK 16 C_MDO7

17 TMS 18 C_MDO6

19 TDI 20 C_MDO5

21 JCOMP 22 C_MDO4

23 C_MDO11 24 C_MDO3

25 nc 26 C_MDO2

27 10K pull down resistor 28 C_MDO1

29 TOOL_IO1 30 C_MDO0

31 VDDEH1A 32 C_EVTO

33 VDDEH1A 34 C_MCKO

35 TOOL_IO0 36 C_MSEO1

37 VSTBY* 38 C_MSEO0

Page 17: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration connector

Doc ID 024080 Rev 3 17/38

6 Calibration connector

The board is equipped with an ERNI connector to give a more robust solution in terms of physical connectivity for Calibration purpose.

Figure 10. J9 Calibration connector

The Table 7 shows the mapping of the calibration connector that provides Debug and calibration signals. The port connector is an ERNI 154819 style.

Table 7. Nexus signals on AMP 38 Mictor connector

PinSPC563M64xx

routing standard function

PinSPC563M64xx

routingstandard function

B1 nc nc A1 nc nc

B2 nc nc A2 JCOMP JTAG interface

B3 /RSOUT /RSOUT A3 CAL Wakeup12V output for Wakeup

functionality

B4 GND GND A4 C_EVTI JTAG interface

B5 GND GND A5 TDO JTAG interface

B6 GND GND A6 TMS JTAG interface

B7 GND GND A7 TCK JTAG interface

B8 GND GND A8 TDI JTAG interface

B9 GND GND A9 VmemVDDSBRAM (Backup

Voltage of ECU Standby RAM)

B10 /RESET /RESET A10 nc nc

B11GPIO[207] (@3.3V)

GPIO Pins for startup handshake and

triggeringA11 RSVDx

reserved Input, connect pin to a solder

pad

Page 18: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration connector RM0345

18/38 Doc ID 024080 Rev 3

B12GPIO[207] (@3.3V)

GPIO Pins for startup handshake and

triggeringA12 MDO 0

Detect that the PLL is locked

B13 ECU_VsbyVDDSBRAM Supply

(Backup Voltage of ECU Standby RAM)

A13 +5V

VDDP Comparator Input (Supply of microcontroller Interface Pins)

Table 7. Nexus signals on AMP 38 Mictor connector (continued)

PinSPC563M64xx

routing standard function

PinSPC563M64xx

routingstandard function

Page 19: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Tool IO

Doc ID 024080 Rev 3 19/38

7 Tool IO

The SPC563M64xx in CSP496 package provides 2 signals, GPIO[206] & GPIO[207], that are not available in the QFP144 standard production package. They can be used by the calibration tools to implement triggers and handshakes. On the calibration board, these signals are available on the JP1 development connector and J9 calibration connector.

By default GPIO[206] & GPIO[207] are powered by VDDEH at 5V. A level shifter (see Figure 11) does the translation between the 5v and the 3.3V. This is because the calibration tools operates at 3.3V that is the voltage level of the JTAG and Nexus interfaces.

Figure 11. Calibration triggers TOOL_IO

Page 20: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

CAN interface RM0345

20/38 Doc ID 024080 Rev 3

8 CAN interface

The calibration board is equipped with one ST L9616 High-Speed Transceiver. It provides the Controller Area Network (CAN) communication interface through the SPC563M64xx CAN interface for calibration via CAN. This serial communication can reach speeds up to 1Mbps.

Figure 12. CAN schematic diagram

Two jumpers (J12 and J13), allow to select between the two FlexCAN interfaces of the SPC563M64xx mcu.

The CAN channel is terminated with a 120 ohms resistor. Moreover, a protection circuitry has been designed to protect the CAN transceiver in high-speed and fault tolerant networks from ESD and other harmful transient voltage events (see Figure 12).

The L9616 CAN transceiver has an Adjustable Slope Control (ASC) feature that sets the slope speed using its ASC pin. This feature select the modes of operation:

● low speed (CAN baud rate up to 250kBaud)

● high speed (CAN baud rate from 250kBaud to 1000kBaud)

This pin can be put to high or to low by the cut trace options J6, J17 & J7 as described in Table 9.

Table 8. J12, J13 FlexCAN interface selection

FlexCAN interfaceJ12 pin configuration

TX select

J13 pin configuration

RX select

FlexCAN A 2 - 3 2 - 3

FlexCAN C 2 - 1 2 - 1

Page 21: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 CAN interface

Doc ID 024080 Rev 3 21/38

The cut trace options J6, J17, J18 and J19 has been put in the design of this board to select the supply of the CAN transceiver between 5 V and 3.3 V. By this option is possible to replace the ST L9616 High-Speed Transceiver mounted on board by default, with a different transceiver that operates at 3.3 V.

Note: Refer to Section Appendix D: Options placement for layout options placement.

Table 9. J6, J17 and J7 FlexCAN interface selection

J6 (or J17 if 3.3V) J7 FlexCAN interface

closed openlow speed operation (default)

(CAN baud rate up to 250kBaud)

open closedhigh speed operation

(CAN baud rate from 250kBaud to 1000kBaud)

Table 10. CAN transceiver operating voltage selection

CAN Transceiver J6 J17 J18 J19

5V - ST L9616 High-Speed Transceiver

Adjustable Slope Control

open open close

3.3V - CAN transceiver openAdjustable

Slope Controlclose open

Page 22: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration software compatibility and configuration RM0345

22/38 Doc ID 024080 Rev 3

9 Calibration software compatibility and configuration

The calibration board uses standard production silicon packaged in the CSP (Chip Scale Package). Therefore, all production silicon features exist and are identical on the calibration board.

The required initialization code may be as simple as the configuration of the EBI and its related pins in the SIU, and it could be integrated into standard application software.

The calibration bus and the SIU can also be configured by an external tool connected to the debug port, removing the need of specific configuration functions in the application software.

9.1 Calibration bus sw configurationA 16-bit calibration bus is implemented on the board. In multiplexed mode the CAL_DATA signals will output the address signals during the address phase by using an onboard external latch controlled by the CAL_TS signal. The CAL_ALE may be used to drive an external latch when an asynchronous memory is in use.

There are few steps to configure the SPC563M64xx Calibration Bus

– SIU PCR (Pad Configuration Register)

– SIU ECCR (External Clock Control Register)

– External Bus Interface (EBI)

9.1.1 Cal Bus PCR Settings

The SIU PCR registers used to configure the calibration bus are shown in theTable 11 The table also shows the recommended PA field setting.

Table 11. Calibration bus signals configuration

signal name SPC563M64xx

mcu signal nameFunction

P A G(1)

PCR PA

field(2)

PCR(3)

Notes

Address/Data Bus (44)

C_DATA[0:15] CAL_DATA[0:15]Calibration data bus

- - 341

C_ADDR[12:15] CAL_ADDR[12:15]Calibration address bus

- - 340

C_ADDR[16:31] CAL_ADDR[16:31]Calibration address bus

- - 345

C_CS[0] CAL_CS[0]Calibration chip select

- - 336

C_CS[1] Not Connected

C_CS[2] CAL_CS[2]

Calibration chip select

P 1338

CAL_ADDR[10]Calibration address bus

A 0

Page 23: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration software compatibility and configuration

Doc ID 024080 Rev 3 23/38

Note: 1 The P/A/G column indicates the position a signal occupies in the muxing order for a pin: Primary, Alternate 1, Alternate 2, Alternate 3, or GPIO. Signals are selected by setting the PA field value in the appropriate PCR register in the SIU module. The PA field values are as follows: P - 0b0001, A1 - 0b0010, A2 -0b0100, A3 - 0b1000, or G - 0b0000. Depending on the register, the PA field size can vary in length. For PA fields having fewer than four bits, remove the appropriate number of leading zeroes from these values.

2 The Pad Configuration Register (PCR) PA field is used by software to select pin function.

3 Values in the PCR No. column refer to registers in the System Integration Unit (SIU). The actual register name is “SIU_PCR” suffixed by the PCR number.

9.1.2 Cal Bus ECCR Settings

The SIU ECCR registers used to control the timing relationship between the system clock and the external clock CLKOUT.

The external bus clock (CLKOUT) divider can be programmed to divide the system clock by one, two or four based on the settings of the EBDF bit field.

C_CS[3] CAL_CS[3]

Calibration chip select

P 1339

CAL_ADDR[11]Calibration address bus

A 0

C_OE CAL_OE Calibration Output enable

- - 342

C_RD_WR CAL_RD_WR Calibration Read/write

- - 342

C_WE[0:1] CAL_WE[0:1] Calibration write/byte enable

- - 342

C_TS

CAL_TS Calibration transfer start

P 1

343CAL_ALE

Address Latch enable

A 0

Clock Synthesizer (1)

C_CLKOUT CLKOUT System clock output

P 01 229Clock output signal from MCU

Table 11. Calibration bus signals configuration (continued)

signal name SPC563M64xx

mcu signal nameFunction

P A G(1)

PCR PA

field(2)

PCR(3)

Notes

Table 12. EBDF field definition

Register EBDF field External Bus Division Factor

SIU_ECCR

00 1

01 2

10 reserved

11 4

Page 24: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration software compatibility and configuration RM0345

24/38 Doc ID 024080 Rev 3

9.1.3 Cal Bus EBI Settings

For using the calibration bus with an external memory the user must configure the bus for multiplexed operation. These settings are located in two registers:

– EBI Module Configuration Register (EBI_MCR)

– EBI Calibration Base Register (EBI_CAL_BRx)

– EBI Calibration Option Register (EBI_CAL_ORx)

The EBI Module Configuration Register contains bits which configure various attributes associated with EBI operation. In the EBI_MCR register, the D16_31, AD_MUX and DBM fields need to be configured.

In the EBI_CAL_BRx register there are few fields that need to be configured, these are detailed in the Table 14 .

Table 13. EBI_MCR register setting

bit field

Name Description value

29D16_31

Data Bus 16_31 Select

The D16_31 bit controls whether the EBI uses the DATA[0:15] or DATA[16:31] signals, when in 16-bit Data Bus Mode (DBM=1) or for chip-select accesses to a 16-bit port (PS=1). 0b0

1 = DATA[16:31] signals are used for 16-bit port accesses

0 = DATA[0:15] signals are used for 16-bit port accesses

30AD_MUX

Address on Data Bus Multiplexing Mode

The AD_MUX bit controls whether non-chip-select accesses have the address driven on (or sampled from for external master transfers) the data bus in the address phase of a cycle. 0b11 = Address on Data Multiplexing Mode is used for non-CS accesses.0 = Only Data on data pins for non-CS accesses.

31DBM

Data Bus Mode

The DBM bit controls whether the EBI is in 32-bit or 16-bit Data Bus Mode.

0b11 = 16-bit Data Bus Mode is used0 = 32-bit Data Bus Mode is used

Page 25: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration software compatibility and configuration

Doc ID 024080 Rev 3 25/38

Table 14. EBI_CAL_BRx register setting

bit field

Name Description value

0-16BA

Base address

These bits are compared to the corresponding unmasked address signals among ADDR[0:16] of the internal address bus to determine if a memory bank controlled by the memory controller is being accessed by an internal bus masterNote: An MCU may have some of the upper bits of the BA field tied to a fixed value internally in order to restrict the address range of the EBI for that MCU. Refer to the device-specific documentation to see which bits are tied off, if any, for a particular MCU. Tied-off bits can be read but not written. These bits are ignored by the EBI during the chip-select address comparison. However, the internal bridge of the MCU most likely requires that the chipselect banks be located in memory regions corresponding to the fixed values chosen

-

20PS

Port Size

The PS bit determines the data bus width of transactions to this chip-select bank.Note: In the case where the DBM bit in EBI_MCR is set for 16-bit Data Bus Mode, the PS bit value is ignored and is always treated as a ’1’ (16-bit port).

0b1

1 = 16-bit port0 = 32-bit port

24AD_MUX

Address on Data Bus Multiplexing

The AD_MUX bit controls whether accesses for this chip select have the address driven on the data bus in the address phase of a cycle

0b11 = Address on Data Multiplexing Mode is enabled for this chip select.0 = Address on Data Multiplexing Mode is disabled for this chip select.

26WEBS

Write Enable / Byte Select

This bit controls the functionality of the WE[0:3]/BE[0:3] signals.

0b11 = The WE[0:3]/BE[0:3] signals function as BE[0:3]0 = The WE[0:3]/BE[0:3] signals function as WE[0:3]

30BI

Burst Inhibit

This bit determines whether or not burst read accesses are allowed for this chipselect bank. The BI bit is ignored (treated as 1) for chip-select accesses with external TA (SETA=1). 0b11 = Disable burst accesses for this bank. This is the default value out of reset (or when SETA=1).0 = Enable burst accesses for this bank]

Page 26: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration software compatibility and configuration RM0345

26/38 Doc ID 024080 Rev 3

The EBI Option Registers are used to define the address mask and other attributes for the corresponding chip select.The SCY field of the EBI_CAL_BOx register is detailed in the Table 15.

31V

Valid bit

The user writes this bit to indicate that the contents of this Base Register and Option Register pair are valid. The appropriate CS signal does not assert unless the corresponding V-bit is set. 0b1

1: This bank is valid

0: This bank is not valid

Table 15. EBI_CAL_BOx register setting

bit field

Name Description value

0-16AM

Address Mask

This field allows masking of any corresponding bits in the associated Base Register.Masking the address independently allows external devices of different size address ranges to be used. Any clear bit masks the corresponding address bit. Any set bit causes the corresponding address bit to be used in comparison with the address pins.Address mask bits can be set or cleared in any order in the field, allowing a resource to reside in more than one area of the address map. This field can be read or written at any time.

-

24-27SCY

Cycle length in clocks

This field represents the number of wait states (external cycles) inserted after the address phase in the single transfer case, or in the first beat of a burst, when the memory controller handles the external memory access. Values range from 0 to 15 and its depends on the RAM connected on top board.

This is the main parameter for determining the length of the cycle. These bits are ignored when SETA=1.

The total cycle length for the first beat (including the TS cycle) = (2+SCY) external clock cycles.

-

29-30BSCY

Burst beats length in clocks

This field determines the number of wait states (external cycles) inserted in all burst beats except the first, when the memory controller starts handling the external memory access and thus is using SCY[0:3] to determine the length of the first beat.These bits are ignored when SETA=1.The total memory access length for each beat is (1 + BSCY) external clock cycles.The total cycle length (including the TS cycle) = (2+SCY) + (#beats(h)-1) * (BSCY+1).

-

Table 14. EBI_CAL_BRx register setting

bit field

Name Description value

Page 27: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration software compatibility and configuration

Doc ID 024080 Rev 3 27/38

9.2 Example Configuration CODEThe following code is used to configure the calibration bus for 16bit de-multiplexed mode.

//---------------------------------------------------// SIU PCR (Pad Configuration Register) setup// (Cal BUS bommon drive strength = 20pF, DSC = 0b01)//---------------------------------------------------

SIU.PCR[336].R = 0x0040;//CAL_CS[0]DSC=20pF (0b01)

SIU.PCR[338].R = 0x0440;//CAL_CS[2] (PA=0b1),DSC=20pF (0b01)

SIU.PCR[339].R = 0x0040;//CAL_ADDR[11] (PA=0b0), DSC=20pF (0b01)

SIU.PCR[340].R = 0x0040;//CAL_ADDR[12..15], DSC=20pF (0b01)

SIU.PCR[345].R = 0x0040;//CAL_ADDR[16..30], DSC=20pF (0b01)

SIU.PCR[341].R = 0x0040;//CAL_DATA[0..15], DSC=20pF (0b01)

SIU.PCR[342].R = 0x0040;//CAL_RD/WR, CAL_WE[0-1], CAL_OE, DSC=20pF (0b01)

SIU.PCR[343].R = 0x0040;//CAL_ALE, DSC=20pF (0b01)

//--------------------------------------------------// SIU ECCR (External Clock Control Register) setup//--------------------------------------------------

SIU.ECCR.R = 0x1000//External Bus Division Factor = 1 (EBDF=0b00)

//--------------------------------------------------// EBI Registers setup//--------------------------------------------------

//-----------------------------------------------------------------// EBI MCR setup for 16-bit bus configuration:// // EARP = 01 (Equal priority);// D16_31 = 0 (DATA[0:15] signals are used for 16-bit port accesses);// AD_MUX = 1 (Addr on Data Multiplexing Mode is used for non-CS acc.);// DBM = 0 (32-bit Data Bus Mode is used);

EBI.MCR.R = 0x802;

//------------------------------------------------------// EBI Base Register setup for 16-bit bus configuration:// // Base Address = 0x20000000;// PS = 1 (16-bits port size)// AD_MUX = 1 (Address on Data Multiplexing Mode is enabled for this chip select);// WEBS = 1 (Use BE function);// BI = 1 (Disable burst accesses for this bank);// V = 1 (Valid CS Bank)

EBI.CAL_CS[0].BR.R = 0x200008A3;

Page 28: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Calibration software compatibility and configuration RM0345

28/38 Doc ID 024080 Rev 3

//-----------------------------------------// EBI Option Register setup://// Address mask = 0xefe00000;// Wait state = 0 (set 0 wait states);

EBI.CAL_CS[0].OR.R = 0xffe00000;

Page 29: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Calibration base footprints

Doc ID 024080 Rev 3 29/38

Appendix A Calibration base footprints

SPC563M64CAL144 (rev.B) calibration board had footprint compatible with QFP144 production package version of SPC563M64xx devices, ensuring that they can be fitted to an application PCB that has been designed to accept standard QFP144 packaged SPC563M64xx devices.

Bases can be supplied with solder footprints, to allow direct and permanent soldered connection to an application PCB, or with pin adapter connectors fitted, allowing connection and removal from an application PCB that is fitted with a compatible receiver socket.

Figure 13. TQPACK144SD

all dimension are in mm

Page 30: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Mechanical constrains RM0345

30/38 Doc ID 024080 Rev 3

Appendix B Mechanical constrains

Figure 14. Top and side view drawing

Page 31: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Mechanical constrains

Doc ID 024080 Rev 3 31/38

Figure 15. Side and bottom view drawing

Page 32: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Mechanical constrains RM0345

32/38 Doc ID 024080 Rev 3

Figure 16. Complete system side view drawing

Page 33: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Schematic

Doc ID 024080 Rev 3 33/38

Appendix C Schematic

Figure 17. SPC563M64xx in CSP package schematic

11

TP1

PIN

TES

T

AN.2AN.3

AN.0

AN.4AN.5AN.6AN.7

AN.1

AN.9

AN.12AN.11

AN.13AN.14

AN.16AN.17AN.18

AN.15

AN.21

AN.23AN.24AN.25

AN.22

AN.27AN.28AN.30AN.31AN.32AN.33AN.34AN.35

AN.37AN.36

/CS0/CS2/CS3

C_RD_WRC_WE0C_WE1C_OEC_TSC_MCKOC_EVTO

+3.3

V

VD

D

EVTI

EVTO

MC

KO

/MSE

O1

/MSE

O0

MD

O0

MD

O1

MD

O2

MD

O3

RX

D_B

RX

D_A

TXD

_A

TXD

_B

CN

RX

_C

CN

RX

_AC

NTX

_A

CN

TX_C

PCS_

B0

PCS_

B1

PCS_

B2

PCS_

B3

PCS_

B4

PCS_

B5

SOU

T_B

SIN

_BSC

K_B

JCO

MP

TMS

TDO

TDI

TCK

FB1

EXTA

LX

TAL

CLK

OU

T

/RES

ET/R

SOU

TB

OO

TCFG

1W

KPC

FGPL

LREF

C9

10n

C11

10n

C13

10n

C10

100n

C12

100n

C14

100n

+5V

+3.3

V

GN

D

C15

10n

C17

10n

C19

10n

C16

100n

C18

100n

C20

100n

+3.3

V

GN

D

C21

10n

C23

10n

C25

10n

C22

100n

C24

100n

C26

100n

GN

D

C4

100n

C32

10n

C3

2.2u

F

C6

100n

C5

2.2u

F

C8

100n

C7

2.2u

F

C2

100n

C1

2.2u

F

VD

D

GN

D

VST

BY

VR

CC

TL

VD

DR

EG

VSS

AV

SSSY

NG

ND

C33

100n

VR

H

VR

L

REF

BY

PC

VD

DA

0

C27

10n

C28

100n

C29

10n

C30

100n

VD

DSY

NV

DD

A0

FB2

FB3

+3.3

V

J1

DEF

AU

LT=C

LOSE

EMIO

S.2

AN.39AN.38

GPIO207GPIO206GPIO99GPIO98

+3.3

V

J2V

RC

33

R3

10K

GN

D

TEST POINTS

1 2 3 4

J4 CO

N4

+5V

+3.3

VV

DD

R5

10K

R4

10K

)IBE(

eca

fret

nI s

uB l

anre

txE

CDAQe

Reset &

Configuration

Clock / Synthesizer

Jtag

Nexus

FlexCAN

SCI

DSPI

eTPU

EMIOS

ETPU

A0

M5

ETPU

A1

G8

ETPU

A2

M3

ETPU

A3

L3ET

PUA

4L2

ETPU

A5

H9

ETPU

A6

M2

ETPU

A7

K3

ETPU

A8

K2

ETPU

A9

G9

ETPU

A10

L5

ETPU

A11

J3

ETPU

A12

J2

ETPU

A13

G10

ETPU

A14

K5

ETPU

A15

H3

ETPU

A16

K1

ETPU

A17

H10

ETPU

A18

J5

ETPU

A19

G3

ETPU

A20

J1

ETPU

A21

H11

ETPU

A22

F3

ETPU

A23

H2

ETPU

A24

G2

ETPU

A25

H5

ETPU

A26

G5

ETPU

A27

E3

ETPU

A28

F1

ETPU

A29

F2ET

PUA

30E1

ETPU

A31

E2

AN0C9AN1B8

AN2G12

AN3E10

AN4C10

AN5B9

AN6G13

AN7E11

AN9C4AN11B6

AN12-SDSH15

AN13-SDOG15

AN14-SDIE16

AN15-FCKC16

AN16B7

AN17E8

AN18H12AN21E9

AN22C11

AN23B11

AN24H13

AN25E12

AN27B12

AN28A13

AN30C13

AN31B13

AN32B14

AN33E14

AN34G14

AN35A14

AN36C5

AN37B5

C_CS0AB11

C_CS2AA10

C_CS3AB10

C_ADD12AA14

C_ADD13R8

C_ADD14AA15

C_ADD15W7

C_ADD16P7

C_ADD17P8

C_ADD18U7

C_ADD19N7

C_ADD20M8

C_ADD21M7

C_ADD22V7

C_ADD23L8

C_ADD24T8C_ADD25K8

C_ADD26L7

C_ADD27U8

C_ADD28V8

C_ADD29AB13

C_ADD30AB14

C_DAT0W21

C_DAT1Y22C_DAT2V21

C_DAT3W22

C_DAT4U21

C_DAT5U22

C_DAT6T21

C_DAT7T22

C_DAT8AA17

C_DAT9AB16C_DAT10AA18

C_DAT11AB17

C_DAT12AA19

C_DAT13AB19

C_DAT14AA20

C_DAT15AB20

C_RD_WRW8C_WE0Y8

C_WE1AA7

C_OEAD16

VST

BY

B3

VR

CC

TLA

C26

VD

DA

1A

5V

DD

A0

E15

VSS

A0

A15

VSS

A0

B15

VSS

A1

A6

VR

HA

9

VR

LA

10

REF

BY

PCB

10

XTA

LA

D28

EXTA

LA

C28

CLK

OU

TA

F25

VSS A2

VSS AD5

VSS AF26

VSS AF3

VSS AG1

VSS AG2

VSS AG27

VSS AG28

VSS AH1

VSS AH2

VSS AH27

VSS AH28

VSS B1

VSS B2

VSS B27

VSS B28

VSS C26

VSS C3

VSS E24

VSS E5

VSS G22

VSS G7

VSS H21

VSS H8

VSS L11

VSS L12

VSS L13VSS L14

VSS M12

VSS M13

VSS M14

VSS M15

VSS A28

VSS AA8

VSS AB7

VSS P15

VSS N17

VSS N15

VSS M17VSS M16

VSS N14

VSS P14

VSS N16

VSS AB22

VSS AA21

VSS A27

VSS A1

MC

KO

H26

EVTO

G27

EVTI

G26

MD

O3

C23

MD

O2

B21

MD

O1

C24

MD

O0

C25

MSE

O1

H24

MSE

O0

G24

JCO

MP

F26

TMS

E26

TDO

F27

TDI

E28

TCK

E27

RX

DB

Y24

TXD

BY

27

RX

DA

U26

TXD

AV

24

CN

RX

CY

26

CN

TXC

W24

CN

RX

AA

G22

CN

TXA

AF2

2

PCSB

5M

26

PCSB

4N

27

PCSB

3M

27

PCSB

2T2

8

PCSB

1R

28

PCSB

0R

27

SOU

TBN

28

SIN

BP2

8

SCK

BT2

7

EMIO

S0A

D17

EMIO

S2P2

1

EMIO

S10

N22

EMIO

S11

AG

18

EMIO

S12

M21

EMIO

S13

AF1

8

EMIO

S23

AF2

1

EMIO

S8N

21

EMIO

S9A

D23

ETPU

A0

N5

VSS P16

VSS P17

VSS R14VSS R15

VSS R16

VSS T13

VSS T16

VSS T17

VSS U12

VSS U17

VSS U18VSS V11

VSS V18

VD

DE1

2A

A13

VD

DE1

2A

A16

VD

DE1

2A

B18

VD

DE1

2A

B21

VD

DE1

2A

E2

VD

DE1

2A

G12

VD

DE1

2A

G4

VD

DE1

2K

7

VD

DE1

2N

8

VD

DE1

2R

11

VD

DE1

2R

12

VD

DE1

2R

13

VD

DE1

2R

17

VD

DE1

2R

18

VD

DE1

2R

21

VD

DE1

2T1

1

VD

DE1

2T1

2

VD

DE1

2T1

5

VD

DE1

2T1

8V

DD

E12

U11

VD

DE1

2U

15

VD

DE1

2U

16

VD

DE1

2U

2

VD

DE1

2V

15

VD

DE1

2V

16

VD

DE1

2V

17

VD

DE1

2V

22

VD

DEH

1J7

VD

DEH

1G

11

VD

DEH

4A

D20

VD

DEH

6AV

26

VD

DY

21

VD

DA

A22

VD

DA

A9

VD

DA

B8

VD

DA

C24

VD

DA

D6

VD

DA

E26

VD

DA

F27

VD

DA

F4V

DD

AG

3

VD

DB

25

VD

DC

2

VD

DD

27

VD

DD

3

VD

DH

7

VD

DJ8

VD

DF5

VD

DPL

LA

D27

VD

DR

EGW

28

VSS

PLL

AC

27

VSU

PA

D24

VR

C33

W5

EMIO

S4A

D18

VR

C33

AE2

7

VR

C33

B26

VR

C33

D2

VD

DEH

6BK

24

VR

C33

AF9

RES

ETA

A27

RST

OU

TW

26

BO

OTC

FG1

AB

24

WK

PCFG

AA

24

PLLR

EFA

B27

VDDEH7C27

VDDEH7D26

VDDEH7H22

VDDEH7J21

VDDEH7L15

VDDEH7L16

VDDEH7L17

VDDEH7L18

VDDEH7M18

VDDEH7N18

VDDEH7P18

VDDEH7F24

NEX

USC

FGG

18

C_EVTOG19 C_MCKOH18 C_TSAA11

EMIO

S1A

D21

EMIO

S14

AH

19

EMIO

S15

M22

PCK

CFG

0A

F24

PCK

CFG

1A

G25

GPIO206 AH10

GPIO98 N26

GPIO99 N24

GPIO207 AG10

AN38B4

AN39C6

U1 SP

C563

M64

VD

DSY

N

GN

D

NEX

USC

FG

EMIO

S.23

EMIO

S.15

EMIO

S.14

EMIO

S.13

EMIO

S.12

EMIO

S.11

EMIO

S.10

EMIO

S.9

EMIO

S.8

EMIO

S.0

EMIO

S.1

EMIO

S.4

ETPU

A.3

1ET

PUA

.30

ETPU

A.2

9ET

PUA

.28

ETPU

A.2

7ET

PUA

.26

ETPU

A.2

5ET

PUA

.24

ETPU

A.2

3

ETPU

A.0

.N5

ETPU

A.0

.M5

ETPU

A.1

ETPU

A.2

ETPU

A.3

ETPU

A.4

ETPU

A.5

ETPU

A.6

ETPU

A.7

ETPU

A.8

ETPU

A.9

ETPU

A.1

0ET

PUA

.11

ETPU

A.1

2ET

PUA

.13

ETPU

A.1

4ET

PUA

.15

ETPU

A.1

6ET

PUA

.17

ETPU

A.1

8ET

PUA

.19

ETPU

A.2

0ET

PUA

.21

ETPU

A.2

2

ADDR.12ADDR.13ADDR.14ADDR.15ADDR.16ADDR.17ADDR.18ADDR.19ADDR.20ADDR.21ADDR.22ADDR.23ADDR.24ADDR.25ADDR.26ADDR.27ADDR.28ADDR.29ADDR.30DATA.0DATA.1DATA.2DATA.3DATA.4DATA.5DATA.6DATA.7DATA.8DATA.9DATA.10DATA.11DATA.12DATA.13DATA.14DATA.15

VSS

SYN

GN

DV

SSA

PCK

CFG

0PC

KC

FG1

VD

DEH

7

VD

DEH

7

Ope

n x

CUT2

.1Cl

ose

x CU

T2.0

J16

ABA BN

.C.

VD

DEH

6A

VD

DEH

1AV

DD

EH1B

VD

DEH

6BV

DD

EH6B

VD

DEH

6A

GAPGRI00355

Page 34: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Schematic RM0345

34/38 Doc ID 024080 Rev 3

Figure 18. Polypod-TQ144 connector schematic

Default = CLOSE

GND

VDD

/RESET/RSOUT

BOOTCFG1WKPCFG

PLLREF

VSSA VSSSYNGND

EMIOS.4EMIOS.8EMIOS.9

EMIOS.11EMIOS.12EMIOS.14

EMIOS.10

EMIOS.0EMIOS.2

EMIOS.23

/MSEO0MDO0MDO1MDO2MDO3

EVTIEVTO

MCKO

PCS_B0PCS_B1PCS_B2PCS_B3PCS_B4PCS_B5

SOUT_BSIN_B

SCK_B

VRHVRL

REFBYPC

EXTALXTAL

CNRX_C

CNRX_ACNTX_A

CNTX_C

RXD_B

RXD_ATXD_A

TXD_B

JCOMP

TMS

TDOTDITCK

VRCCTL

VDDREG

VSTBY

C46

1uF

GND

AN.0AN.1AN.2 AN1142

AN21144

AN5138

AN3140

AN7136

AN23131

AN12-SDS119

AN13-SDO118

AN4139

AN14-SDO117

AN0143

AN22132

AN95

AN6137

AN2141

AN114

AN181

AN15-FCK116

AN172 AN163

AN30126

AN32124 AN31125

AN24130

AN25129

AN28127 AN27128

AN33123

AN35121 AN34122

AN389

ETPUA052

AN398

ETPUA151

ETPUA250

ETPUA349

ETPUA447

ETPUA545

ETPUA644

ETPUA743

ETPUA842

ETPUA941

ETPUA1040

ETPUA1139

ETPUA1238

ETPUA1337

ETPUA1435

ETPUA1533

ETPUA1632

ETPUA1731

ETPUA1830

ETPUA1929

ETPUA2028

ETPUA2127

ETPUA2225

ETPUA2323

ETPUA2421

ETPUA2520

ETPUA2619

ETPUA2718

ETPUA2817

ETPUA2916

ETPUA3015

ETPUA3114

RSTOUT85

RESET80

WKPCFG71

BOOTCFG170

PLLREF68

Vss

36

Vss

59

Vss

73

Vss

22

Vss

115

Vss

91

Vss

104

Vss

48

VD

D26

VD

D53

VD

D86

VD

D12

0

EMIOS0 54

EMIOS2 55

EMIOS4 56

EMIOS8 57

EMIOS9 58

EMIOS10 60

EMIOS11 62

EMIOS12 63

EMIOS14 64

EMIOS23 65

VRL 133VRH 134

REFBYPC 135

EXTAL 75XTAL 76

CNTXA 66

CNTXC 84CNRXA 67

CNRXC 81

TXDA 83RXDA 82TXDB 72RXDB 69

JCOMP 98TDO 100TDI 107

TCK 105TMS 108

MCKO 99MSEO1 101

MSEO0 109

EVTI 103EVTO 106

MDO0 110MDO1 111MDO2 112MDO3 114

PCSB5 87PCSB4 88PCSB3 97

PCSB0 94

PCSB2 90PCSB1 92

SINB 95SOUTB 96

SCKB 89

VDDEH1A 24VDDEH1B 34

VDDEH1B 46

VDDEH6A 61

VDDEH6A 78

VDDEH6B 93

VDDEH7 102

VDDEH7 113

VDDPLL 74

VDDREG 10

VRC33 13

VRCCTL 11

VSSPLL 77

VSSA0 7

VSTBY 12

VDDA0 6

VSUP 79

U5

Polypod-TQ144

AN.3AN.4AN.5AN.6AN.7AN.9AN.11AN.12AN.13AN.14AN.15AN.16AN.17AN.18AN.21AN.22

ETPUA.5ETPUA.4ETPUA.3ETPUA.2ETPUA.1ETPUA.0.M5

AN.23AN.24AN.25AN.27AN.28

AN.39AN.38AN.35AN.34AN.33

AN.31AN.30

AN.32

ETPUA.6ETPUA.7ETPUA.8ETPUA.9ETPUA.10ETPUA.11ETPUA.12ETPUA.13ETPUA.14ETPUA.15ETPUA.16ETPUA.17ETPUA.18ETPUA.19ETPUA.20ETPUA.21ETPUA.22ETPUA.23ETPUA.24

ETPUA.26ETPUA.25

ETPUA.27ETPUA.28ETPUA.29ETPUA.30ETPUA.31

VDDA0

VDDSYN

/MSEO1

Default = CLOSEJ15

VRC33

J14

+5V

VDDEH7

VDDEH6A

VDDEH1AVDDEH1B

VDDEH6B

GAPGRI00356

Page 35: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Schematic

Doc ID 024080 Rev 3 35/38

Figure 19. Memory, CAN and connectors schematic

Latc

h_Q

00

Latc

h_Q

02

Latc

h_Q

04La

tch_

Q05

Latc

h_Q

06La

tch_

Q07

Latc

h_Q

13La

tch_

Q14

C_T

S

C_T

S

GN

D

AD

DR

.17

AD

DR

.18

AD

DR

.19

AD

DR

.20

AD

DR

.23

AD

DR

.24

AD

DR

.21

AD

DR

.22

AD

DR

.29

AD

DR

.30

AD

DR

.28

AD

DR

.16

CLK

OU

T

+3.3

V

+3.3

V

GN

D

C38

2.2u

F

C41

100n

C42

2.2u

F

GN

D

C39

100n

C40

2.2u

F

GN

D

Vm

em

GN

D

AD

DR

.14

AD

DR

.13

AD

DR

.15

Latc

h_Q

00La

tch_

Q01

Latc

h_Q

03La

tch_

Q02

Latc

h_Q

04La

tch_

Q05

Latc

h_Q

06La

tch_

Q07

Latc

h_Q

08La

tch_

Q09

Latc

h_Q

11La

tch_

Q10

Latc

h_Q

12La

tch_

Q13

Latc

h_Q

14

AD

DR

.12

/CS3

/CE_

RA

M

C_M

CK

OC

_EV

TO

C_R

D_W

RC

_WE0

C_W

E1C

_OE

+5V

+3.3

VR

1

330

D1

LED

C35

100n

C34

4.7u

F

C37

100n

C36

2.2u

F

GN

D

OE

1

LE48

D1

47Q

12

D2

46Q

23

D3

44Q

35

D4

43Q

46

D5

41Q

58

D6

40Q

69

D7

38Q

711

D8

37Q

812

718

VC

C

4101521

GN

D

U4A SN

74LV

C16

373D

GG

R

OE

24

LE25

D1

36Q

113

D2

35Q

214

D3

33Q

316

D4

32Q

417

D5

30Q

519

D6

29Q

620

D7

27Q

722

D8

26Q

823

28343945

3142

VC

C

GN

D

U4B SN

74LV

C16

373 D

GG

R

GN

D

GN

D

NEX

US

IN1

GND 2

OU

T3

U2

LF33

CD

T-TR

Y

J10

J3

J5

RSV

D1

1R

SVD

22

RSV

D3

3R

SVD

44

VEN

_IO

05

CLK

OU

T6

VEN

_IO

27

VEN

_IO

38

RST

IN9

EVTI

10

TDO

11V

TREF

12V

EN_I

O4

13R

DY

14

TCK

15M

DO

0716

TMS

17M

DO

0618

TDI

19M

DO

0520

JCO

MP

21M

DO

0422

VEN

_IO

123

MD

O03

24

RST

OU

T25

MD

O02

26

TOO

L_IO

227

MD

O01

28

TOO

L_IO

129

MD

O00

30

UB

ATT

31EV

TO32

UB

ATT

33M

CK

O34

TOO

L_IO

035

MSE

O1

36

VA

LTR

EF37

MSE

O0

38

GND 0

JP1

DEF

AU

LT=C

LOSE

DEF

AU

LT=C

LOSE

DEF

AU

LT=C

LOSE

AD

DR

.26

AD

DR

.27

JCO

MP

TMS

TDO

TDI

TCK

/RES

ET

GPI

O20

7_3.

3V

GPI

O20

6_3.

3V

R8

22

R9

22

R6

22K

R7

22K

GN

D

GPI

O20

7_3.

3VG

PIO

206_

3.3V

+3.3

V

VST

BY

+3.3

V

C31 1uF

GN

D

GN

D

GN

D

J7+5

V

+5V

C44

100n

C43

2.2u

F

CA

N_H

IGH

CA

N_L

OW

DEF

AU

LT=C

LOSE

DEF

AU

LT=O

PEN

J6

CN

TX

CN

RX

CN

RX

_C

CN

RX

_AC

NTX

_A

CN

TX_C

R2

60 R10

60

C45

100n G

ND

GN

D

/RES

ET

Vm

emV

mem

Vm

em

Vm

em

GN

D

Vm

em

GN

D

/CE_

RA

M

/CE_

RA

M

Vm

em

5 3

124

U7

74V

1G00

CTR

5 3

124

U8

74V

1G32

CTR

11

TP3

PIN

TES

T

11

TP2

PIN

TES

T

BO

OTC

FG1

AD

DR

.25

Latc

h_Q

01

Latc

h_Q

03

DA

TA.0

DA

TA.1

DA

TA.2

DA

TA.3

DA

TA.4

DA

TA.5

DA

TA.6

DA

TA.7

Latc

h_Q

08La

tch_

Q09

Latc

h_Q

10La

tch_

Q11

Latc

h_Q

12

DA

TA.1

4D

ATA

.13

DA

TA.1

2D

ATA

.11

DA

TA.1

0D

ATA

.9D

ATA

.8

DA

TA.1

5D

ATA

.14

DA

TA.1

3D

ATA

.12

DA

TA.1

1D

ATA

.10

DA

TA.9

DA

TA.0

DA

TA.1

DA

TA.2

DA

TA.3

DA

TA.4

DA

TA.5

DA

TA.6

DA

TA.7

DA

TA.8

ECU

_Vstb

y

/RSO

UT

/CE_

RA

M/C

S0

Vm

em

XR

NC

X TN

C

D2

20C

JQ06

0

D3

NU

P210

5

1A2

1B3

2A5

2B6

Vcc8

/OE1

1/O

E27

GND 4

U9

74C

B3T

3306

Q1

STT5

PF20

V

VST

BY

/RSO

UT

GN

DG

ND

GN

DG

ND

GN

DG

ND

/RES

ET

ECU

_Vstb

yG

PIO

206_

3.3V

GPI

O20

7_3.

3VM

DO

0R

SVD

x

Vm

emTD

I

JCO

MP

CA

L W

akeu

p

TDO

TMS

TCK

GPI

O20

7G

PIO

206

B1

1A

12

B2

3A

24

B3

5A

36

B4

7A

48

B5

9A

510

B6

11A

612

B7

13A

714

B8

15A

816

B9

17

B10

19

B11

21

B12

23

B13

25A

1326

A9

18

A10

20

A11

22

A12

24

J9 ERN

I_15

4819

1 3

2J1

1

TX0

1G

ND

2V

s3

RX

04

RX

15

C_L

6C

_H7

ASC

8U

6

L961

6

1 2

J8 CO

N2

1 3

2J1

3JU

MPE

R

1 3

2J1

2JU

MPE

R

A0

A3

A1

A4

A2

A5

A3

B3

A4

B4

A5

C3

A6

C4

A7

D4

A8

H2

A9

H3

A10

H4

A11

H5

A12

G3

A13

G4

A14

F3A

15F4

I/O0

B6

I/O1

C5

I/O2

C6

I/O3

D5

I/O4

E5

I/O5

F5

I/O6

F6

I/O7

G6

I/O8

B1

I/O9

C1

I/O10

C2

I/O11

D2

I/O12

E2

I/O13

F2

I/O14

F1I/O

15G

1GND D1

GND E6VDDD6

VDDE1

CE

B5

WE

G5

LBA

1U

BB

2O

EA

2

A16

E4

A17

D3

NC

A6

NC

H6

NC

E3

A19

G2

A18

H1

U3

IS64

WV

1024

16B

LL

VD

DEH

1AV

DD

EH1A

VD

DEH

7

AD

DR

.30

R11

10K

+3.3

V J18

J19

J17

+3.3

V

GN

D

DEF

AU

LT=O

PEN

DEF

AU

LT=C

LOSE

DEFAULT=OPEN

GAPGRI00357

Page 36: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

Options placement RM0345

36/38 Doc ID 024080 Rev 3

Appendix D Options placement

Figure 20. Options placement

TOP view

Bottom view

GAPGRI00358

Page 37: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345 Revision history

Doc ID 024080 Rev 3 37/38

Revision history

Table 16. Document revision history

Date Revision Changes

18-Jan-2013 1 Initial release.

13-Feb-2013 2 Modified Figure 14.

17-Sep-2013 3 Updated Disclaimer.

Page 38: Corporate Template Book - STMicroelectronics · SPC563M64xx internal Flash during calibration. A voltage regulator is also integrated upon the board to generate, from selectable 5

RM0345

38/38 Doc ID 024080 Rev 3

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve theright to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at anytime, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes noliability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of thisdocument refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party productsor services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of suchthird party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, anyliability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com