controls lab 6508 cdr

47
 Multidisciplinary Engineering Senior Design Project 6508 Controls Lab Interface Improvement Critical Design Review 2/24/05 Project Sponsor: EE Department Team Members: Michael Abbott, Neil Burkell Team Mentor: Dr. Mathew, Dr. Sahin Coordinator: Dr. Phillip s Kate Gleason College of Engineering Rochester Institute of Technology

Upload: nathansiva8833

Post on 07-Apr-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 1/47

 

Multidisciplinary Engineering Senior Design

Project 6508 Controls Lab Interface

ImprovementCritical Design Review

2/24/05Project Sponsor: EE Department

Team Members: Michael Abbott, Neil Burkell

Team Mentor: Dr. Mathew, Dr. Sahin

Coordinator: Dr. Phillips

Kate Gleason College of EngineeringRochester Institute of Technology

Page 2: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 2/47

 

Project Overview

• Current Controls Lab:

 – Current System used was purchased from Feedback

for use in the Controls Lab which included Analog and

Digital Control Boards to be used with a DC Motor.• System was designed for technicians not students

• The Digital Board is outdated

• Past work from a student Ruben Mathew has shown

the digital board does not work

Page 3: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 3/47

 

Project Overview• Current Controls Lab:

 – Digital control is taught through Simulink from varying

sampling time and using different methods for convertingcontinuous to discrete transfer functions

 – There are no hardware experiments using digital controllers• A new Digital Board is needed for the lab

Page 4: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 4/47

 

Project Overview

• Needs for the Controls Lab: – Need to use Simulink on Lab PC

 – Need to use current Feedback 33-100 DC Servo Motor and

Power Supply

• The new digital interface must link Simulink to theexisting DC motor 

• Exploration into feasible interface concepts was

needed (SD I deliverable)

Page 5: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 5/47

 

Needs Assessment

• System must interface Simulink to the motor 

• Capture experimental results accurately

• User friendly for the students

• Change sampling time easily for student learning

• Use existing equipment

• Be expandable for future labs or projects

• Have a finished product by the end of Winter quarter 

• Protected from students but also be accessible to be

fixed

Page 6: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 6/47

 

Requirements Developed

• The Requirements of the Project are as follows:

 –Interface MATLAB/Simulink with the servo DC motor 

 –Simulink block diagram will control the servo DC motor 

 –Sampling time easily changeable from 1 ms to300 ms

 –Interface will return real time data and output real time signals

 –Interface will have 4 additional digital inputs/outputs, 1 additional analog output, and 7 differential analog inputs

Page 7: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 7/47

 

Requirements Developed

• The Requirements of the Project (continued)

 – Interface will acquire motor speed and positiondata

 –  Analog inputs: resolution of 16 bits, range of 

+10V to -10V.

 –  Analog outputs: resolution of 16 bits, range of 

+10V to -10V.

 – Interface will be covered 

 – Use the existing Feedback Power Supply  

Page 8: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 8/47

 

Overall System Diagram

Lab PC

with Matlab

and Simulink

System

Interface

Feedback

33-100DC Servo Motor 

Feedback

Power 

Supply

Gnd, +-15V, 5V

Analog to Motor +-8V to PA(+ve,-ve)

Digital from Motor 6 Grey Code + Index

for Position

Analog from Motor Tachogenerator +-8V

Communication

Page 9: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 9/47

 

PA +ve, PA –ve,

Tachogenerator 

+-, Grey code

Position idicator 

Mechanical Unit 33-100

Input Shaft Output Shaft

Tachogenerator 

Page 10: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 10/47

  MATLAB Software Layout

Page 11: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 11/47

 

Analysis & Synthesis of Design

• Multiple Concepts were developed

1) Using a DSP Development Kit

2) Using a USB Data Acquisition Board

Importing Simulink diagram into NI LabVIEW

1) Data Acquisition PCI Card in Windows

2) Separate PC with I/O Capability controlled by

MATLAB

Page 12: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 12/47

 

Analysis & Synthesis of Design

• Concept 1: Using a DSP Development Kit

Simulink DSP Kit Interface Board Motor  

• Concept 2: Using a USB DAQ Board

Simulink DAQ Board Interface Board Motor  USB

USB

RS232

• Both concepts found not to be feasible

Page 13: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 13/47

 

Analysis & Synthesis of Design

• Concept 3: PCI DAQ Card

Simulink PCI DAQ Interface Board Motor  

 – PCI Card meets all requirements for I/O’s – PCI Card is supported by Simulink and Real Time

Workshop

 – Runs Inside the Windows Environment

 – No additional software would need to be purchased – Additional breakout hardware would be necessary

 – System Interface would not be portable

 – Measurement Computing PCI Card has best value

Page 14: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 14/47

 

Ethernet

RS232

 –PCI Card meets all requirements for I/O’s – PCI Card is supported by Simulink, Real Time

Workshop, and xPC Target

 – Runs external from the Windows Environment

 – Additional breakout hardware would be necessary – System Interface would be portable

 – Measurement Computing PCI Card has best value

Analysis & Synthesis of Design• Concept 4: Separate PC with PCI DAQ Controlled by MATLAB

Simulink Computer Interface Board Motor  PCI DAQ

Page 15: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 15/47

 

System Diagram

• Both concepts use the Real Time Workshop in MATLAB

System Block Diagram

Real Time

WorkshopSimulink

Generated C

Code

Real Time

Workshop

DC MotorPCI CardGenerated C

Code

xPC Kernel PCI Card

Computer

Real Time Windows Target Toolbox

xPC Target Toolbox

Interface

Board

Second Computer

Simulink DC MotorInterface

Board

Computer

Page 16: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 16/47

 

PCI DAQ Card

 – Measurement Computing PCI Card

• 16 Analog Inputs

• 2 Analog Outputs

• 24 Digital Inputs or Outputs

Page 17: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 17/47

 

Gantt Chart Followed

Events Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week 10 Week 11

Receive Software

Receive Parts

Learn xPC Target Toolbox

Learn RTW Target Toolbox

Interface Hardware and Simulink

using xPC and RTWDebug

Design PCB Interface Board

Impliment Test Plan

Demonstration

Documentaion of xPC and RTW

Order Additional Lab Setups

Winter Quarter 05-06

Page 18: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 18/47

 

Desired Outcomes

• A complete working digital control system:

 – Interfaces with Simulink

 – Not dependant upon software versions

 – Simple to use

 – Can be used in other applications

Page 19: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 19/47

 

Desired Outcomes

• Compare the differences between using PCI

DAQ Card and external computer with PCI DAQ

Card

 – From transient testing for the Control System Design

Class

 – Using a more computationally intensive controller 

(Fuzzy Logic Controller) to see where each system

fails

Page 20: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 20/47

 

Desired Outcomes

• Document the process for developing digital

controllers to be able to implement them in a

laboratory setting

Page 21: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 21/47

 

Key Requirements

1) Show that data can be acquired and output at the minimumsampling time of 0.001 seconds at the maximum range of  ±10V  

2) Use interface board, Feedback Mechanical Unit 33-100,Feedback power supply, and Simulink Control Algorithm tocontrol the speed of the motor.

3) Use interface board, Feedback Mechanical Unit 33-100,Feedback power supply, and Simulink Control Algorithm tocontrol the position of the motor.

4) Documentation, including a user guide, working Simulinkmodels, and a service manual.

Page 22: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 22/47

 

Critical Parameters

1. Acquire 20 V peak to peak, 100 Hz sine wave using digital 

interface and output. Verify with oscilloscope.

Input Wave

Output Wave

Page 23: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 23/47

 

Critical Parameters

2. Velocity control of motor to a reference of 1.5 V (600 RPM) recorded on both an Oscilloscope and by MATLAB

Transient Results include Rise Time, Overshoot, Peak Time

 step

 yM OS  ss pt 

=

Page 24: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 24/47

 

Critical Parameters

 – Use a Simulink Integrator Controller 

• Verify: -Tachogenerator voltage 1.5 V ± 5%

Step1

s

Integrator

5

Gain

0. 5

Constant

Ana log

Output

Ana log Output

Measurement Computing

PCI-DAS1602-16 [auto]

Analog

Input

Ana log Input

Measurement Computing

PCI-DAS1602-16 [auto]

Add1Ad d

10 11 12 13 14 15 16 17 18 19 20

0

0.5

1

1.5

time [sec]

TachometerVo

ltage[V]

Results for Integrator Controller

SIMULATION

RESULTTachogenerator 

Voltage from

Motor 

Power Amplifier 

on Motor 

Page 25: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 25/47

 

Critical Parameters

 – Use a Simulink PI Controller 

• Verify: -Tachogenerator voltage 1.5 V ± 5%

-Transient Results within ± 5%

s+6.5

s

Transfer Fcn

Step 2. 5

Ga in

0. 5

Constant

Ana log

Output

Analog Output

Measurement Comput ing

PCI-DAS1602-16 [auto]

Ana log

Input

Analog Input

Measurement Comput ing

PCI-DAS1602-16 [auto]

Add1Ad d

10 11 12 13 14 15 16 17 18 19 200

0.5

1

1.5

time [sec]

TachometerVoltage[V]

Results for Integrator Controller

SIMULATION

RESULT

Tachogeneartor 

Voltage from

Motor 

Power Amplifier 

on Motor 

Page 26: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 26/47

 

Critical Parameters

 – Use a Simulink One Pole Controller 

• Verify: -Tachogenerator Voltage within ± 5%

Theoretical Steady State Error 

-Transient Results within ± 5%

1

s+5

Transfer Fcn

Step 20

Gain

0. 5

Constant

Analog

Output

Analog Output

Measurement Comput ing

PCI-DAS1602-16 [auto]

Analog

Input

Analog Input

Measurement Comput ing

PCI-DAS1602-16 [auto]

Add1Ad d

10 11 12 13 14 15 16 17 18 19 20-0.2

0

0.2

0.4

0.6

0.8

1

1.2ResultsforOnePoleController

SIMULATION

RESULT

Tachogenerator 

Voltage Output

from Motor 

Power Amplifier 

on Motor 

Page 27: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 27/47

 

Critical Parameters

3. Position control of motor output shaft from a initial value of 

270 degrees to 90 degrees

 –Use a Simulink Feedback Controller 

• Verify: -Transient results within ± 5% of analog control 

1

Gain

Analog

Output

Analog Output

Measurement Computing

PCI-DAS1602-16 [auto]

Analog

Input

Analog Input1

Measurement Computing

PCI-DAS1602-16 [auto]

Ana log

Input

Analog Input

Measurement Computing

PCI-DAS1602-16 [auto]

Ad d

0 1 2 3 4 5 6 7 8 9 10-10

-5

0

5

time[sec]

   P

  o  s   i  t   i  o  n   V  o   l  t  a  g  e  s   [   V   ]

FeedbackPositionResults(Motor Initiallyat 270degreesandmovedto90degrees)

Output Shaft Voltage

Input Shaft Voltage

Input Shaft

Voltage from

Motor 

Output Shaft

Voltage from

Motor 

Page 28: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 28/47

 

Critical Parameters

4. Documentation:

 – Include all Simulink diagrams used in testing 

 –Step by step user guide on how to setup both xPC and RTW Target 

toolboxes and systems

 –Full system design including part numbers, PCB layout files, and 

schematics of Feedback system

s+6.5

s

Transfer Fcn

Step 2. 5

Ga in

0. 5

Constant

Ana log

Output

Analog Output

Measurement Comput ing

PCI-DAS1602-16 [auto]

Ana log

Input

Ana log I npu t

Measurement Comput ing

PCI-DAS1602-16 [auto]

Add1Ad d

PCB LAYOUT

Simulink Diagram TestPoints

PCI

Connectors

Motor 

Connector 

Page 29: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 29/47

 

Major Design Challenges

• Documentation on Feedback System was

lacking  –Traced servo DC motor board and analog board to

develop schematics to understand the different 

signals

 –Establishing control of the servo DC motor with

results similar to the analog controller 

• Preliminary testing using breakout box and wires with

sockets verified the correct signals needed 

Page 30: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 30/47

 

Major Design Challenges

• Understanding and using Real Time Workshopusing xPC Target Toolbox and Real Time

Windows Target Toolbox 

 –Read manuals on both toolboxes and performed tutorials

• Noise when reading sensor data from theservo DC motor board 

 –Traced to Feedback switching power supply 

 –Noise eliminated when using HP power supply currently in lab

Interface Design

Page 31: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 31/47

 

Interface Design

-Interface connections needed 

Motor Board

5 Analog Sensors

1 Analog Input

6 Digital Outputs

PCI DAQ Card

6 Analog Inputs

1 Analog Output

6 Digital Inputs

Interface Board

Page 32: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 32/47

 

Analysis of Design

• Failure Analysis was done for the

system –Measurement Computing contacted to find 

absolute max ratings for PCI card 

 –Maximum input/output voltages of 

Feedback system investigated 

 –Motor board and PCI card were determined 

to be safe from damage

Page 33: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 33/47

 

Analysis of Design

• Safety codes were investigated 

 –OSHA code that applies:

Guarding of live parts.

1910.303(g)(2)(i)

Except as required or permitted elsewhere in this subpart, live parts

of electric equipment operating at 50 volts or more shall be guarded against accidental contact by approved cabinets or other forms of 

approved enclosures, or by any of the following means:

 –Highest rated voltage on interface board is 30 V 

 –Design safe for laboratory setting 

Page 34: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 34/47

 

Final Design

-Interface board is redesigned with the previousconnections but with different test point locations and additional pads in case extracircuitry is desired 

-Larger holes will be designed into the interfaceboard to be able to put a Plexiglas cover 

Page 35: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 35/47

 

Final Design-For Control Design Lab Real Time Windows Target Toolbox meets the criteria for all controllers that would be implemented 

-For other higher level classes the xPC Target Toolbox should be utilized (Fuzzy Logic, Modern Control,Signal Processing, etc)

Computer Computer  RS-232

PCI CardPCI Card

Interface

Board

Interface

Board

Motor 

Board

Motor 

Board

Computer 

PCI Card

Interface

Board

Motor 

Board

Two Computer SolutionOne Computer Solution

Page 36: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 36/47

 

Testing Results•

Integrator Results

Control Algorithm OS (%) % Error OS Tr  (sec) % Error Tr  Tp (sec) % Error Tp

Integrator Cont roller (Analog) 38.10 6.46 0.68 7.94 1.09 4.78

Integrator Controller (RTW ) 39.60 2.77 0.65 3.17 1.06 1.89

Integrator Controller (xPC) 39.48 3.07 0.64 1.59 1.06 1.89

Integrator Controller (S imulat ion) 40.20 1.30 0.66 4.76 1.09 4.59

Integrator Cont roller (Theoret ical) 40.73 --- 0.63 --- 1.04 ---

10 11 12 13 14 15 16 17 18 19 20-1.5

-1

-0.5

0

0.5

1

1.5

2

time[sec]

   T  a  c   h  o  m  e  t  e  r   V  o   l  t  a  g  e   [   V   ]

Resultsfor Integrator Controller (ResultsShiftedfor ViewingPurposes)

AnalogControl BoardResult

SimulationControl Result

Digital Control MATLABReal TimeWindowsResult

Digital Control MATLABxPCTarget Result

 step

 yM OS 

ss pt  −

=

Page 37: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 37/47

 

Testing Results•

PI Controller Results

Control Algorithm OS (%) % Error OS Tr  (sec) % Error Tr  Tp (sec) % Error Tp

PI Controller (Analog) 24.30 3.57 0.27 3.85 0.46 2.68

PI Controller (RTW) 25.80 2.38 0.27 3.85 0.47 3.79

PI Controller (xPC) 25.35 0.60 0.26 0.00 0.46 2.68

PI Controller (Simulation) 25.20 --- 0.26 --- 0.45 ---

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15-1.5

-1

-0.5

0

0.5

1

1.5

2

time[sec]

   T  a  c   h  o  m  e

  t  e  r   V  o   l  t  a  g  e   [   V   ]

Resultsfor PI Controller (ResultsShiftedfor ViewingPurposes)

AnalogControl BoardResult

SimulationControl Result

Digital Control MATLABReal TimeWindowsResult

Digital Control MATLABxPCTarget Result

 step

 yM OS 

ss pt  −

=

Testing Results

Page 38: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 38/47

 

Testing Results

One Pole Controller Results

C o n tro l A lg o ri th m O S (%)% Erro r O STr  (sec) % Error  r 

O ne P o le C ont ro lle r (A n a log ) 27 .0 3 8 .68 0.3 5 4.48

O ne P o le C ont ro lle r (R TW ) 28.0 1 5 .37 0.3 5 4.48

O ne P o le C ont ro lle r (x P C ) 28.1 0 5 .07 0.3 5 4.48

One P o le Cont ro lle r (S im u la t ion)27 .0 3 8 .68 0.3 5 4.48

One P o le Cont ro l le r (Theore t ica l )29 .6 0 --- 0 .3 4 ---

Tp (se c)% Error Tp Vss (V ) % Er ro r Vss

O ne P o le Cont ro lle r (A n a log ) 0 .55 5 .83 1.21 50 3.61

O ne P o le C ont ro lle r (R TW ) 0.54 4 .85 1.21 86 3.92

O ne P o le C ont ro lle r (x P C ) 0 .54 4 .85 1.21 58 3.68

One P o le Cont ro lle r (S im u la t ion)0 .54 4 .85 1.17 28 0.01

One P o le Cont ro l le r (Theore t ica l )0 .52 --- 1 .17 27 ---

10 11 12 13 14 15 16 17 18 19 20-1.5

-1

-0.5

0

0.5

1

1.5

Time[sec]

   T  a  c   h  o  m  e  t  e  r   V  o   l  t  a  g  e   [   V   ]

Resultsfor OnePoleController (ResultsShiftedfor ViewingPurposes)

AnalogControl BoardResult

SimulationControl Result

Digital Control MATLABReal TimeWindowsResult

Digital Control MATLABxPCTarget Result

 step

 yM OS 

ss pt  −

=

Testing Results

Page 39: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 39/47

 

Testing Results

•Two Pole, One Zero Controller Results

Sampling Time [sec] 0.0250 0.0375 0.0500 0.1000 0.2000

Simulation OS [%] 15.000 19.900 24.600 39.800 --

Single Computer [% Error] 3.000 2.010 2.439 3.015

Two Computer [%Error] 0.667 1.508 1.626 3.769

Simulation Tr [sec] 0.429 0.430 0.413 0.410 --

Single Computer [% Error] 0.233 3.488 3.030 6.098

Two Computer [% Error] 3.263 1.163 0.606 7.317

Simulation Tp [sec] 0.600 0.610 0.625 0.650 --

Single Computer [% Error] 0.000 0.000 0.000 0.000

Two Computer [% Error] 0.000 0.000 0.000 0.000

0 2 4 6 8 10 12 14 16 18 20-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time[s]

   T  a  c   h  o  g  e  n  e  r  a  t  o  r   V  o   l  t  a  g  e   [   V   ]

RTWTarget StepResponsefor Different SamplingTimeswithZOHEquivalent DiscreteController

0.0375SamplingTime

0 2 4 6 8 10 12 14 16 18 20-3

-2

-1

0

1

2

3

4

Time[s]

   T  a  c   h  o  g  e  n  e  r  a

  t  o  r   V  o   l  t  a  g  e   [   V   ]

RTWTarget StepResponsefor Different SamplingTimeswithZOHEquivalent DiscreteController

0.2SamplingTime

Page 40: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 40/47

 

Testing Results

•Position Control

Results

0 1 2 3 4 5 6 7 8 9 10-10

-5

0

5

time[sec]

   P  o  s   i  t   i  o  n   V  o   l  t  a  g  e  s   [   V   ]

FeedbackPositionResults(Motor Initiallyat 270degreesandmovedto90degrees)

Output Shaft Voltage

Input Shaft Voltage

0 1 2 3 4 5 6 7 8 9 10-10

-5

0

5

AnalogBoardFeedbackPositionResults(Motor Initiallyat 270degreesandmovedto90degrees)

time[sec]

   P  o  s   i  t   i  o  n   V  o   l  t  a  g  e  s   [   V   ] Output Shaft Voltage

Input Shaft Voltage

Output Shaft

Input Shaft

Page 41: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 41/47

 

Testing Results

• Power Supply Noise Results

10 11 12 13 14 15 16 17 18 19 20-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time[sec]

   T  a  c   h  o  m  e  t  e  r   V  o   l  t  a  g  e   [   V   ]

Plot of Tachometer Voltagevs. Timefor Different Power Supplies(Shiftedfor ViewingPurposes)

HPE3631APower Supply

Feedback01-100Power Supply

Page 42: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 42/47

 

Testing Results

• Fuzzy PI Controller Implementation PerformanceComparison

Sampling

Frequency

Single Computer 

Experiment: Processor 

Percentage

Two Computer 

Experiment: Task

Execution Time

1 kHz 4% 49 μs

2 kHz 7% 50 μs

4 kHz 14% 53 μs

8 kHz 29%--Stopped Running 51 μs

10 kHzStopped Running

Immediately54 μs

Page 43: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 43/47

 

Conclusions

-Both designs successful 

-Both can be used in Current Control Systems Design Lab

-Two Computer Setup can be used in multiple applications

Computer Computer  RS-232

PCI CardPCI Card

InterfaceBoard

InterfaceBoard

Motor 

Board

Motor 

Board

Computer 

PCI Card

InterfaceBoard

Motor 

Board

Two Computer SolutionOne Computer Solution

Page 44: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 44/47

 

Thank You

Dr. Phillips

Dr. Mathew

Ken Snyder Jim Stefano

Jacob Slezak

Page 45: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 45/47

 

Questions

?

Page 46: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 46/47

 

Item Itemized Cost Qty. Total

Interface PCB (3 min. order) $17.00 1 $17.0050 Pin Connector $1.47 2 $2.94

34 Pin Connector $1.14 1 $1.14

PCI-DAS1602/16 $715.50 1 $715.50

C100FF-2 (50 Pin Ribbon Cable) $44.10 1 $44.10

Total Cost Per Station $780.68

Complete Lab Station $780.68 8 $6,245.44

Single Computer Setup BOM

Two Computer Setup BOM

Item Itemized Cost Qty. Total

Interface PCB (3 min. order) $17.00 2 $34.00

50 Pin Connector $1.47 4 $5.88

34 Pin Connector $1.14 2 $2.28

PCI-DAS1602/16 $715.50 2 $1,431.00

C100FF-2 (50 Pin Ribbon Cable) $44.10 2 $88.20

RS-232 Cable $8.00 1 $8.00

xPC Target License (One Year for 

Entire Lab) $600.00

Total Cost Per Pair  $1,569.36

Total Cost for Lab (Hardware) $1,569.36 4 $6,277.44

Total Cost for Lab with Software $6,877.44

Page 47: Controls Lab 6508 CDR

8/6/2019 Controls Lab 6508 CDR

http://slidepdf.com/reader/full/controls-lab-6508-cdr 47/47

Production Plan

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Order PCI Card fromMeasurement Computing

Receive PCI Cards

Install PCI Cards into PC's

Order PCB Boards

Receive PCB Boards

Populate PCB Boards

Test Setups