consequences of feasible future agricultural land-use change on soil organic carbon stocks and...

18
Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain P. Smith 1 , A. B hogal 2 , P. E dgington 3 , H. B lack 4 , A. L illy 4 , D. B arraclough 5 , F. W orrall 6 , J. H illier 1 & G. Merrington 7 1 Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Room G45, Aberdeen AB24 3UU, Scotland, UK, 2 ADAS Ltd, Gleadthorpe Research Centre, Meden Vale, Mansfield, Notts NG20 9PF, UK, 3 ADAS Ltd, Wolverhampton Research Centre, Woodthorne, Wergs Road, Wolverhampton WV6 8TQ, UK, 4 Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH, UK, 5 Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol BS32 4UD, UK, 6 Department of Earth Sciences, Durham University, Science Labs, Durham DH1 3LE, and 7 WCA Environment Ltd, Brunel House, Volunteer Way, Faringdon Oxfordshire SN7 7YR, UK Abstract The aim of this study was to assess the consequences of feasible land-use change in Great Britain on GHG emissions mainly through the gain or loss of soil organic carbon. We use estimates of per-area changes in soil organic carbon (SOC) stocks and in greenhouse gas (GHG) emissions, coupled with Great Britain (GB) county-level scenarios of land-use change based on historical land-use patterns or feasible futures to estimate the impact of potential land-use change between agricultural land-uses. We consider transitions between cropland, temporary grassland (<5 yr under grass), permanent grass (>5 yr under grass) and forest. We show that reversion to historical land-use patterns as present in 1930 could result in GHG emission reductions of up to ca. 11 Mt CO 2 -eq. yr (relative to a 2004 baseline), because of an increased permanent grassland area. By contrast, cultivation of 20% of the current (2004) permanent grassland area for crop production could result in GHG emission increases of up to ca. 14 Mt CO 2 -eq. yr. We conclude that whilst change between agricultural land-uses (transitions between permanent and temporary grassland and cropland) in GB is likely to be a limited option for GHG mitigation, external factors such as agricultural product commodity markets could influence future land-use. Such agricultural land-use change in GB could have significant impacts on Land-use, Land-Use Change and Forestry (LULUCF) emissions, with relatively small changes in land- use (e.g. 5% plough out of grassland to cropland, or reversion of cropland to the grassland cover in Nitrate Vulnerable Zones of 1998) having an impact on GHG emissions of a similar order of magnitude as the current United Kingdom LULUCF sink. In terms of total UK GHG emissions, however, even the most extreme feasible land-use change scenarios account for ca. 2% of current national GHG emissions. Keywords: soil organic carbon, land-use change, Great Britain, agriculture, mineral soils Introduction Globally soils contain around 1500 Pg (Pg = 10 15 g= 1000 Mt) carbon (C) in the top metre, roughly twice the amount of carbon in the atmosphere as CO 2 and about three times the amount in global vegetation (Smith, 2004; IPCC WGI, 2007). In Great Britain (GB: England, Wales and Scotland; UK = GB plus Northern Ireland), soils contain 4266 Mt C (Bradley et al., 2005; Dawson & Smith, 2007) to 1 m. Soils under croplands are estimated to contain 701 Mt C, under semi-natural lands 1929 Mt C, under pasture land 1189 Mt C and under forest 380 Mt C (Bradley et al., 2005). Bradley et al. (2005) do not provide estimates for permanent and temporary grasslands separately, but the carbon content of permanent grasslands (>5 yr under grass) Correspondence: P. Smith. E-mail: [email protected] Received May 2010; accepted after revision May 2010 Soil Use and Management, December 2010, 26, 381–398 doi: 10.1111/j.1475-2743.2010.00283.x ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science 381 Soil Use and Management

Upload: p-smith

Post on 15-Jul-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Consequences of feasible future agricultural land-usechange on soil organic carbon stocks and greenhouse gasemissions in Great Britain

P. Smith1 , A. Bhogal

2 , P. Edg ington3 , H. Black

4 , A. L i lly4 , D. Barraclough

5 , F. Worrall6 ,

J . H i ll ier1 & G. Merr ington

7

1Institute of Biological & Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive,

Room G45, Aberdeen AB24 3UU, Scotland, UK, 2ADAS Ltd, Gleadthorpe Research Centre, Meden Vale, Mansfield, Notts NG20

9PF, UK, 3ADAS Ltd, Wolverhampton Research Centre, Woodthorne, Wergs Road, Wolverhampton WV6 8TQ, UK, 4Macaulay

Institute, Craigiebuckler, Aberdeen AB15 8QH, UK, 5Environment Agency, Rio House, Waterside Drive, Aztec West,

Almondsbury, Bristol BS32 4UD, UK, 6Department of Earth Sciences, Durham University, Science Labs, Durham DH1 3LE, and7WCA Environment Ltd, Brunel House, Volunteer Way, Faringdon Oxfordshire SN7 7YR, UK

Abstract

The aim of this study was to assess the consequences of feasible land-use change in Great Britain on

GHG emissions mainly through the gain or loss of soil organic carbon. We use estimates of per-area

changes in soil organic carbon (SOC) stocks and in greenhouse gas (GHG) emissions, coupled with

Great Britain (GB) county-level scenarios of land-use change based on historical land-use patterns or

feasible futures to estimate the impact of potential land-use change between agricultural land-uses. We

consider transitions between cropland, temporary grassland (<5 yr under grass), permanent grass

(>5 yr under grass) and forest. We show that reversion to historical land-use patterns as present in

1930 could result in GHG emission reductions of up to ca. 11 Mt CO2-eq. ⁄ yr (relative to a 2004

baseline), because of an increased permanent grassland area. By contrast, cultivation of 20% of the

current (2004) permanent grassland area for crop production could result in GHG emission increases

of up to ca. 14 Mt CO2-eq. ⁄ yr. We conclude that whilst change between agricultural land-uses

(transitions between permanent and temporary grassland and cropland) in GB is likely to be a limited

option for GHG mitigation, external factors such as agricultural product commodity markets could

influence future land-use. Such agricultural land-use change in GB could have significant impacts on

Land-use, Land-Use Change and Forestry (LULUCF) emissions, with relatively small changes in land-

use (e.g. 5% plough out of grassland to cropland, or reversion of cropland to the grassland cover in

Nitrate Vulnerable Zones of 1998) having an impact on GHG emissions of a similar order of

magnitude as the current United Kingdom LULUCF sink. In terms of total UK GHG emissions,

however, even the most extreme feasible land-use change scenarios account for ca. 2% of current

national GHG emissions.

Keywords: soil organic carbon, land-use change, Great Britain, agriculture, mineral soils

Introduction

Globally soils contain around 1500 Pg (Pg = 1015 g =

1000 Mt) carbon (C) in the top metre, roughly twice the

amount of carbon in the atmosphere as CO2 and about three

times the amount in global vegetation (Smith, 2004; IPCC

WGI, 2007). In Great Britain (GB: England, Wales and

Scotland; UK = GB plus Northern Ireland), soils contain

4266 Mt C (Bradley et al., 2005; Dawson & Smith, 2007) to

1 m. Soils under croplands are estimated to contain

701 Mt C, under semi-natural lands 1929 Mt C, under

pasture land 1189 Mt C and under forest 380 Mt C (Bradley

et al., 2005). Bradley et al. (2005) do not provide estimates

for permanent and temporary grasslands separately, but the

carbon content of permanent grasslands (>5 yr under grass)Correspondence: P. Smith. E-mail: [email protected]

Received May 2010; accepted after revision May 2010

Soil Use and Management, December 2010, 26, 381–398 doi: 10.1111/j.1475-2743.2010.00283.x

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science 381

SoilUseandManagement

Page 2: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

is greater than that of temporary grasslands (<5 yr under

grass), which in turn is greater than that of croplands

(Table 1).

Land-use change is known to lead to changes in soil

carbon content (Smith et al., 1997, 2000a; Guo & Gifford,

2002), with tillage generally reducing the SOC stock

(Johnston, 1973; Guo & Gifford, 2002). Similarly, when

croplands are converted to grasslands or forest, SOC stocks

tend to increase (Johnston, 1973; Jenkinson, 1990; Guo &

Gifford, 2002; Johnston et al., 2009).

Globally, land-use change and land management change in

the agricultural sector have significant greenhouse gas (GHG)

mitigation potential. Smith et al. (2007, 2008) estimate the

yearly global mitigation potential in agriculture to be 4200,

2600 and 1600 Mt CO2-eq. ⁄ yr at 100, 50 and 20 USD ⁄ t CO2-

eq, respectively. The mitigation potential is cost competitive

with the potential estimated for other sectors such as forestry,

energy, transport, industry (Barker et al., 2007), showing that

agriculture has a significant role to play in addressing climate

change. The value of greenhouse gases that could be

mitigated each year in global agriculture is equivalent to

420 000, 130 000 and 32 000 Million USD ⁄ yr for C prices of

100, 50 and 20 USD ⁄ t CO2-eq., respectively (Smith & Olesen,

2010). Almost 90% of the global total agricultural mitigation

potential arises either from soil carbon sequestration in

mineral soils, or through carbon emission reduction in

cultivated carbon-rich soils such as peats.

There have been some previous estimates of the carbon

sequestration potential in UK croplands (Smith et al., 2000b),

with limited attempts to include other greenhouse gases

(Smith et al., 2000c). The aim of this paper is to assess for

UK the consequences of feasible land-use change on GHG

emissions, mainly through the gain or loss of soil organic

carbon. We consider transitions between cropland, temporary

grassland (<5 yr under grass), permanent grass (>5 yr

under grass) and forestry. We use county-level land-use data

and soil types, estimated GHG flux change factors, and

scenarios of land-use change based on historical (1930) and

recent (1998) land-use patterns and a range of feasible ‘worst

case’ scenarios to estimate the likely annual and 20 yr

change in GHG fluxes for each county and country of Great

Britain.

Materials & methods

The approach in this paper is similar to that used by Smith

et al. (1997, 1998, 2000a,b) and Freibauer et al. (2004) to

estimate changes in SOC because of land-management ⁄ land-use change. The approach uses estimates of SOC change on a

per-area basis under land-use and management change

derived from previous long term experiments, and scenarios

of land-use change to estimate total change in SOC for a

whole area, in this case Great Britain. In the following

sections, we (a) outline the per-area SOC change factors and

also the few cases where nitrous oxide flux changes are

estimated and give sources for their derivation, (b) provide

details of the land-use change scenarios and how they were

derived, and (c) describe the calculation method.

Per-area mitigation potentials

Table 2 shows the per-area mitigation potentials for land-use

change used in this analysis. The factors used were derived

from mineral soils, and in the absence of adequate data for

organo-mineral soils, are assumed also to apply to organo-

mineral soils. Organic soils are treated differently as

explained at the end of this section. For mineral soils, there

were insufficient data for estimating changes in baseline

methane emission ⁄oxidation under land-use change, but for

three land-use changes, there was sufficient information to

estimate changes in baseline nitrous oxide after land-use

changes.

The SOC ⁄nitrous oxide flux change was estimated in the

following ways. For permanent grass to cropland, the SOC

figures were derived from the Rothamsted Highfield and

Fosters, and the Woburn ley-arable field trials (Johnston,

1973). At the Highfield and Fosters sites, reseeded grass (i.e.

cropland converted to permanent pasture) was shown to be

2.9–3.5% greater in SOC stock each year (annualised) than

crop fields. We assume that conversion causes loss of 2.9–

3.5% of SOC per year. Using a mean cropland SOC stock of

84 t C ⁄ha to 30 cm depth (Smith et al., 2000b), this is

equivalent to a decrease in SOC of 2.4–2.9 t C ⁄ha ⁄ yr = 8.4–

10.6 t CO2-eq. ⁄ yr. The mean is taken as the middle of this

range. For the reverse transition, cropland to permanent

grassland, the global figures for conversion of temperate-

moist cropland to permanent grassland set-aside from Smith

et al. (2008) were used. This also has a nitrous oxide

component (see Smith et al., 2008 for full details).

For permanent grass to temporary grass (in a ley-arable

rotation), figures were derived from the Rothamsted

Highfield and Fosters, and the Woburn ley-arable field trials

(Johnston, 1973). In the Highfield and Fosters trials, reseeded

Table 1 Topsoil (0–15 cm) carbon stocks for cropland, temporary

and permanent grassland in Britain

Land-use

England and

Walesa Scotlandb

% C t C ⁄ hac % C t C ⁄ hac

Cropland 3.13 61.0 3.54 69.0

Temporary grassland 3.84 74.9 4.95 96.5

Permanent grassland 5.05 98.5 7.24 141.2

aNational Soil Inventory data 1983 (McGrath & Loveland, 1992).bLilly et al. (2010) (Macaulay Institute). cAssumes ‘standard’ bulk

density of 1.3 g ⁄ cm3 and soil depth of 15 cm (i.e. 1950 t ⁄ ha topsoil).

382 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 3: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

grass was shown to be 2.4–2.7% lower in SOC stock each

year (annualised) when converted from permanent grass to

ley-arable rotation, so conversion is assumed to cause a loss

of 2.4–2.7% of SOC per year. A mean cropland SOC stock

of 84 t C ⁄ha to 30 cm depth (Smith et al., 2000b) is

equivalent to a decrease in SOC of 2.0–2.3 t C ⁄ha ⁄ yr = 7.4–

8.3 t CO2-eq. ⁄ yr. A mean of 7.85 t CO2-eq. ⁄ha ⁄ yr is used.

For the reverse transition, temporary grassland to permanent

grassland, in the absence of better data, the same values are

used for the increase in SOC (with different sign).

For permanent grass to forestry (which features only as a

small component of the reversion to 1998 NVZ grassland

areas scenario – see below), the 10–20% SOC loss estimates

from Guo & Gifford (2002) were used, which is scaled to UK

soils at 8.4–16.8 t C ⁄ha over 20 yr. The 20 yr transition

period is assumed (IPCC, 1997, 2006 – see also below in

section ‘methods of calculation’) giving a loss over 20 yr (as

per IPCC, 2006) of 0.42–0.84 t C ⁄ha ⁄ yr = 1.5–3.0 t CO2-

eq. ⁄ha ⁄ yr. A mean of 2.25 t CO2-eq. ⁄ha ⁄ yr is used. For the

reverse transition, forestry to permanent grass, the ca. 10%

increase figure of Guo & Gifford (2002) is used. Using the

same conversion, this gives a gain estimate of 1.54 t CO2-

eq. ⁄ha ⁄ yr, with the same figure used for mean, minimum and

maximum in the absence of better data.

For cropland to temporary grass, reseeded permanent

grassland soils were shown to have a 2.9–3.5% higher SOC

stock each year (annualised) than cropland in the

Rothamsted Highfield and Fosters, and Woburn ley-arable

trials. At the same sites, ley-arable rotations were shown to

have a 0.3–0.8% higher SOC stock each year (annualised)

than croplands, hence ley-arable grass is up to 10 times less

effective than permanent grass in sequestering carbon. For

this reason the temperate-moist ‘cropland to permanent

grass’ figures from Smith et al. (2008) (including a nitrous

oxide component) were divided by 10. For the reverse

transition, temporary grass to cropland, the temporary

grassland increases of 0.2–0.87% SOC per year (annualised)

relative to cropland in Rothamsted Highfield and Fosters,

and Woburn ley-arable trials (Johnston, 1973), were used.

Temporary grassland to cropland conversion was therefore

assumed to cause a loss of 0.2–0.9% of SOC per year. Using

a mean cropland SOC stock of 84 t C ⁄ha to 30 cm depth

(Smith et al., 2000b) gives an equivalent decrease in SOC

of 0.17–0.67 t C ⁄ha ⁄ yr = 0.62–2.46 t CO2-eq. ⁄ yr. We have

used a mean of 1.54 t CO2-eq. ⁄ha ⁄ yr.For cropland to forest conversion, the previous value used

by Smith et al. (2000a), based on Rothamsted cropland to

natural woodland reversion experiments was adopted. The

value of 1.59 t CO2-eq. ⁄ha ⁄ yr was used for mean, minimum

and maximum in the absence of better data. For the reverse

transition, forest to cropland, the Guo & Gifford (2002)

figures of 30–50% loss on converting forest to cropland were

used which scales to 25.2–42 t C ⁄ha over 20 yr for UK soils.

If the change is assumed to occur over 20 yr (as per IPCC,

1997, 2006), this is 1.26–2.1 t C ⁄ha ⁄ yr = 4.62–7.70 t CO2-

eq. ⁄ha ⁄ yr. A mean of 6.16 t CO2-eq. ⁄ha ⁄ yr was used.For temporary grassland to forestry, there are no reliable

data, so the same value was used as for cropland to forestry.

Similarly, for forestry to temporary grassland, the same value

as for forestry to cropland was used (see above).

For organic soils, cultivation and drainage (assumed

to occur for land-use transitions: semi-natural

vegetation ⁄ permanent grassland to cropland or temporary

grassland) were assumed to follow the pattern used by Smith

et al. (2008) and result in a large carbon loss, a small decrease

in methane emissions and a slight decrease in nitrous oxide

emissions (Table 3). Reversion of croplands or temporary

grassland to semi-natural vegetation or permanent grassland on

Table 2 Estimates of change in SOC stocks and nitrous oxide emissions resulting from land-use change on mineral and organo-mineral soils. All

estimates expressed in t CO2-eq. ⁄ ha ⁄ yr as per Smith et al. (2008). For derivation of estimates, see text

Land-use Change

CO2 (t CO2 ⁄ ha ⁄ yr) N2O (t CO2-eq. ⁄ ha ⁄ yr) All GHG (t CO2-eq. ⁄ ha ⁄ yr)

Mean

estimate Low High

Mean

estimate Low High

Mean

estimate Low High

Permanent grass to cropland )9.50 )8.40 )10.60 0.00 0.00 0.00 )9.50 )8.40 )10.60Permanent grass to temporary grass )7.85 )7.40 )8.30 0.00 0.00 0.00 )7.85 )7.40 )8.30Permanent grass to forestry )2.25 )1.50 )3.00 0.00 0.00 0.00 )2.25 )1.50 )3.00Cropland to permanent grass 3.04 1.17 4.91 2.30 0.00 4.60 5.34 1.17 9.51

Cropland to temporary grass 0.30 0.12 0.49 0.23 0.00 0.46 0.53 0.12 0.95

Cropland to forestry 1.59 1.59 1.59 0.00 0.00 0.00 1.59 1.59 1.59

Temporary grass to permanent grass 7.85 7.40 8.30 0.00 0.00 0.00 7.85 7.40 8.30

Temporary grass to cropland )1.54 )0.62 )2.46 0.00 0.00 0.00 )1.54 )0.62 )2.46Temporary grass to forestry 1.59 1.59 1.59 0.00 0.00 0.00 1.59 1.59 1.59

Forestry to permanent grassland 1.54 1.54 1.54 0.00 0.00 0.00 1.54 1.54 1.54

Forestry to cropland )6.16 )4.62 )7.70 0.00 0.00 0.00 )6.16 )4.62 )7.70Forestry to temporary grass )6.16 )4.62 )7.70 0.00 0.00 0.00 )6.16 )4.62 )7.70

Land-use change and GB soil carbon stocks 383

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 4: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

organic soils was assumed to result in equivalent effects of

the opposite sign (Table 3; Smith et al., 2008).

Land-use change scenarios

The baseline year was taken as 2004 for land-use

comparisons. The considered land-use change scenarios

are for managed agricultural land in lowland Britain

(all managed lowland agricultural land excluding rough

grazing):

• Historical Best Case – Historical ‘best case’ – interwar

period (i.e. 1930): maximum area of grassland (and

associated soil C storage).

• Recent Best Case – Potential improvement scenario –

cropland reversion to permanent grassland in groundwater

protection zones (as classified for England and Wales in

1998).

• Worst case 5% – plough out of 5% of permanent

grassland to cropland, applied evenly to all GB counties.

• Worst case 10% – plough out of 10% permanent

grassland to cropland, applied evenly to all GB counties.

• Worst case 20% – plough out of 20% permanent

grassland to cropland, applied evenly to all GB counties.

Worst case scenarios of >20% plough out of grassland

were not examined as cropland distribution is limited by such

factors as climate, soil type and aspect, so much of the UK is

not suitable for crop production. Agricultural census statistics

back to 1890 were used to determine the area of the following

land-uses (at a county level, using current-2004 county

boundaries) in lowland GB for 1930 (Historical Best Case),

and for the Baseline in 2004 (Anon, 1968, Defra, 2005,

Comber et al., 2008):

Permanent grassland (>5 yr).

Temporary grassland (<5 yr).

Cropland (sometimes referred to as ‘tillage land’).

Additionally, the current area of forest was determined for

the Baseline scenario, using the National inventory of

Woodland and Trees (NIWT, Forestry Commission).

The Recent Best Case scenario was developed relative to

the 2004 baseline, but with all cropland within groundwater

protection zones reverted to permanent grassland. In this

case, the 1998 Nitrate Vulnerable Zones (NVZs) were

considered (SI, 1998), which were largely within England

(327 666 ha) and a small area in Wales (338 ha).

Total areas by county and for each country (England,

Wales, Scotland) for the baseline year and each scenario are

given in Table 4.

Each area was divided according to broad soil type based

on the amount of soil organic carbon present (mineral <5%

SOC; organo-mineral 5–12% SOC; organic >12% SOC)

using National Soils Inventory data for England and Wales

(McGrath & Loveland, 1992) and Scotland (Lilly et al.,

2010).

Proportions of each land-use on each soil type in each

county in the baseline year (proportions assumed to remain

the same across scenarios) are shown in Table 5.

Method of calculation

The area under each land-use for each county (Table 4) was

divided among the soil types in each county using the

proportions shown in Table 5. Area change for each land-use

within each county was calculated under each scenario by

subtracting the baseline year area from the scenario areas.

The change in area was then multiplied by the per-area

mitigation potentials for each transition given in Table 2 (for

mineral and organo-mineral soils) and Table 3 (for organic

soils).

For some scenarios, such as the Worst case 5%, 10% and

20% scenarios, the allocation of land-use transitions from

area change was trivial, with all cropland area decreases

arising from ploughing out of permanent grass. For other

scenarios, where an increase in the area in one land-use (e.g.

cropland) was accompanied by a loss in area of two or more

other land-uses (e.g. permanent grass and temporary grass),

the transitions were allocated in proportion to the area

Table 3 Estimates of change in SOC stocks and methane and nitrous oxide emissions resulting from land-use change on organic soils. All

estimates expressed in t CO2-eq. ⁄ ha ⁄ yr as per Smith et al. (2008). For derivation of estimates, see text

Land-use Change

CO2 (t CO2 ⁄ ha ⁄ yr) CH4 (t CO2-eq. ⁄ ha ⁄ yr) N2O (t CO2-eq. ⁄ ha ⁄ yr)All GHG

(t CO2-eq. ⁄ ha ⁄ yr)

Mean

estimate Low High

Mean

estimate Low High

Mean

estimate Low High

Mean

estimate Low High

Semi-natural vegetation ⁄ permanent

grassland to cropland or temporary

grassland

)36.67 )3.67 )69.67 3.32 0.05 15.30 )0.16 )0.05 )0.28 )33.51 )3.67 )54.65

Cropland or temporary grassland to

semi-natural vegetation ⁄ permanent

grassland

36.67 3.67 69.67 )3.32 )0.05 )15.30 0.16 0.05 0.28 33.51 3.67 54.65

384 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 5: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

4Areasunder

each

land-use

ineach

county

inthebaselineyearandunder

differentscenarios

UK

County

Baseline(2004)

HistoricalBestCase

(1930)

RecentBestCase

(1998)

WorstCase

5%

WorstCase

10%

Worstcase

20%

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Aberdeen

4419

2019

2014

1796

4006

4290

763

–4419

2019

2014

1796

4519

2019

1913

1796

4620

2019

1812

1796

4821

2019

1611

1796

Aberdeenshire

201509

55191

56900

98807

135582

142609

26284

–201509

55191

56900

98807

204354

55191

54055

98807

207199

55191

51210

98807

212889

55191

45520

98807

Anglesey

2560

5154

40040

2425

8316

11185

37663

–2560

5154

40040

2425

4562

5154

38038

2425

6564

5154

36036

2425

10568

5154

32032

2425

Angus

72089

9788

12371

20998

50041

33456

12845

–72089

9788

12371

20998

72708

9788

11752

20998

73326

9788

11134

20998

74563

9788

9897

20998

ArgyllandBute

499

7873

38768

206005

10220

11014

26977

–499

7873

38768

206005

2437

7873

36829

206005

4376

7873

34891

206005

8252

7873

31014

206005

Barnsley

6796

2067

6461

2482

4899

1024

13677

–6796

2067

6461

2482

7119

2067

6138

2482

7443

2067

5815

2482

8089

2067

5169

2482

Bath

andNorth

East

Somerset

7758

2966

12056

2176

3754

1159

22015

–7758

2966

12056

2176

8361

2966

11454

2176

8964

2966

10851

2176

10170

2966

9645

2176

Bedfordshire

68341

2169

10744

6996

43740

6590

47773

–55139

2169

23945

6996

68878

2169

10206

6996

69415

2169

9669

6996

70490

2169

8595

6996

Birmingham

1110

13

630

794

4441

1200

15798

–966

13

774

794

1142

13

599

794

1173

13

567

794

1236

13

504

794

Blackburn

with

Derwen

17

377

4708

983

1689

658

5761

–17

377

4708

983

252

377

4473

983

488

377

4237

983

958

377

3767

983

Blackpool

130

99

234

21

428

167

1459

–130

99

234

21

142

99

222

21

153

99

210

21

177

99

187

21

Blanaeu

Gwent

16

135

1622

1136

615

276

5697

–16

135

1622

1136

98

135

1541

1136

179

135

1460

1136

341

135

1298

1136

Bolton

346

394

2672

692

1707

665

5821

–346

394

2672

692

480

394

2538

692

613

394

2405

692

880

394

2137

692

Borders

103708

25957

72026

84045

51381

60240

77953

–103708

25957

72026

84045

107310

25957

68425

84045

110911

25957

64824

84045

118114

25957

57621

84045

Bournem

outh

152

20

336

196

920

298

1585

–152

20

336

196

169

20

319

196

186

20

303

196

219

20

269

196

BracknellForest

1246

230

1093

3480

2653

575

4442

–1246

230

1093

3480

1301

230

1038

3480

1355

230

983

3480

1465

230

874

3480

Bradford

29

1292

13289

1590

5478

1144

15291

–29

1292

13289

1590

694

1292

12624

1590

1358

1292

11960

1590

2687

1292

10631

1590

Bridgend

739

753

7580

3531

1140

874

8624

–739

753

7580

3531

1118

753

7201

3531

1497

753

6822

3531

2255

753

6064

3531

Brightonand

Hove

1400

186

1489

305

1165

288

3518

–1400

186

1489

305

1474

186

1415

305

1549

186

1341

305

1698

186

1192

305

Bristol

124

252

687

451

1466

679

6253

–124

252

687

451

159

252

652

451

193

252

618

451

262

252

549

451

Buckinghamshire

48636

8382

41427

15882

24406

5698

91620

–31974

8382

58089

15882

50708

8382

39355

15882

52779

8382

37284

15882

56922

8382

33141

15882

Bury

75

441

2963

452

1224

477

4175

–75

441

2963

452

223

441

2815

452

371

441

2666

452

667

441

2370

452

Caerphilly

324

895

8985

4525

1430

828

12219

–324

895

8985

4525

773

895

8536

4525

1222

895

8087

4525

2121

895

7188

4525

Calderdale

232

995

10199

1955

5366

1185

15200

–232

995

10199

1955

742

995

9689

1955

1252

995

9179

1955

2272

995

8159

1955

Cambridgeshire

218979

2996

20250

5825

106307

18964

56635

–215383

2996

23846

5825

219991

2996

19237

5825

221004

2996

18225

5825

223029

2996

16200

5825

Cardiff

318

400

2380

1160

653

472

5087

–318

400

2380

1160

437

400

2261

1160

556

400

2142

1160

794

400

1904

1160

Carm

arthenshire

3771

12545

139497

32944

15341

7295

143226

–3771

12545

139497

32944

10746

12545

132523

32944

17721

12545

125548

32944

31671

12545

111598

32944

Ceredigion

4039

10746

96436

26496

21275

13757

63670

–4039

10746

96436

26496

8861

10746

91614

26496

13683

10746

86792

26496

23327

10746

77149

26496

Cheshire

36960

28603

77945

9306

32214

20969

105316

–36563

28603

78342

9306

40857

28603

74048

9306

44755

28603

70150

9306

52549

28603

62356

9306

Clackmannanshire

2713

952

2640

1947

1941

1133

3382

–2713

952

2640

1947

2845

952

2508

1947

2977

952

2376

1947

3241

952

2112

1947

Conwy

1533

5176

54393

13338

8839

9487

42265

–1533

5176

54393

13338

4253

5176

51674

13338

6973

5176

48954

13338

12412

5176

43515

13338

Cornwall

65366

42592

144013

27474

61507

74866

123159

–65366

42592

144013

27474

72567

42592

136813

27474

79768

42592

129612

27474

94169

42592

115211

27474

Coventry

798

163

988

301

1408

480

6051

–798

163

988

301

847

163

939

301

896

163

889

301

995

163

790

301

Cumbria

34675

43862

251397

61975

54482

46975

251317

–34675

43862

251397

61975

47245

43862

238827

61975

59815

43862

226257

61975

84955

43862

201117

61975

Darlington

8964

1397

3831

467

3020

1304

7764

–8964

1397

3831

467

9156

1397

3639

467

9347

1397

3448

467

9730

1397

3065

467

Denbighshire

3843

5121

43136

11744

6486

6058

33309

–3660

5121

43319

11744

6000

5121

40979

11744

8157

5121

38823

11744

12471

5121

34509

11744

Derby

644

191

1049

87

746

226

4515

–644

191

1049

87

696

191

997

87

748

191

945

87

853

191

840

87

Derbyshire

37796

13919

94098

16637

24795

7912

146409

–37796

13919

94098

16637

42501

13919

89393

16637

47205

13919

84688

16637

56615

13919

75278

16637

Devon

94913

62766

290204

65704

101203

70122

275257

–94262

62766

290854

65704

109423

62766

275694

65704

123933

62766

261183

65704

152954

62766

232163

65704

Land-use change and GB soil carbon stocks 385

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 6: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

4(continued)

UK

County

Baseline(2004)

HistoricalBestCase

(1930)

RecentBestCase

(1998)

WorstCase

5%

WorstCase

10%

Worstcase

20%

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Doncaster

District

27413

1504

4950

3433

8816

1863

23701

–23550

1504

8813

3433

27660

1504

4703

3433

27908

1504

4455

3433

28403

1504

3960

3433

Dorset

74095

26819

73950

27387

36008

14751

116783

–74070

26819

73974

27387

77792

26819

70253

27387

81490

26819

66555

27387

88885

26819

59160

27387

Dudley

582

65

355

310

1595

444

5520

–582

65

355

310

600

65

337

310

618

65

320

310

653

65

284

310

Dumfriesand

Galloway

38008

40723

156147

175270

48729

71808

101313

–38008

40723

156147

175270

45816

40723

148339

175270

53623

40723

140532

175270

69238

40723

124917

175270

Dundee

1050

113

128

255

1518

964

483

–1050

113

128

255

1057

113

122

255

1063

113

115

255

1076

113

103

255

Durham

36968

8136

64499

15078

34357

14069

86176

–36968

8136

64499

15078

40193

8136

61274

15078

43418

8136

58049

15078

49868

8136

51599

15078

East

Ayrshire

7591

5452

32426

25708

9563

12863

31392

–7591

5452

32426

25708

9213

5452

30805

25708

10834

5452

29184

25708

14077

5452

25941

25708

East

Dunbartonshire

579

666

3000

2100

1444

1227

3411

–579

666

3000

2100

729

666

2850

2100

879

666

2700

2100

1179

666

2400

2100

East

Lothian

33541

2961

7070

5389

22348

11242

11838

–33541

2961

7070

5389

33894

2961

6716

5389

34248

2961

6363

5389

34955

2961

5656

5389

East

Renfrew

shire

464

727

5295

1846

1680

1525

5476

–464

727

5295

1846

728

727

5030

1846

993

727

4766

1846

1523

727

4236

1846

East

Ridingof

Yorkshire

170845

6232

20744

5857

104161

25296

74480

–158190

6232

33398

5857

171882

6232

19706

5857

172919

6232

18669

5857

174993

6232

16595

5857

East

Sussex

32293

9817

51542

29116

24238

5934

72641

–32293

9817

51542

29116

34871

9817

48965

29116

37448

9817

46388

29116

42602

9817

41234

29116

Edinburgh

6329

478

2737

1553

5281

3283

5514

–6329

478

2737

1553

6465

478

2600

1553

6602

478

2463

1553

6876

478

2190

1553

Essex

198182

6637

27031

15645

120072

24563

105213

–156160

6637

69052

15645

199533

6637

25679

15645

200885

6637

24328

15645

203588

6637

21625

15645

Falkirk

6688

1580

6534

3407

3116

2184

6607

–6688

1580

6534

3407

7014

1580

6207

3407

7341

1580

5881

3407

7994

1580

5227

3407

Fife

62766

7654

18174

14742

40684

22764

33136

–62766

7654

18174

14742

63675

7654

17265

14742

64584

7654

16356

14742

66401

7654

14539

14742

Flintshire

2986

2951

18789

3270

3994

4302

26726

–2860

2951

18915

3270

3926

2951

17850

3270

4865

2951

16910

3270

6744

2951

15031

3270

Gateshead

2355

282

1521

1732

2117

922

5471

–2355

282

1521

1732

2431

282

1445

1732

2507

282

1369

1732

2659

282

1217

1732

Glasgow

95

254

1299

1078

1672

1776

4227

–95

254

1299

1078

160

254

1234

1078

225

254

1169

1078

355

254

1040

1078

Gloucestershire

91413

18959

74109

29486

39023

19824

142396

–89091

18959

76430

29486

95118

18959

70403

29486

98824

18959

66698

29486

106234

18959

59287

29486

GreaterLondon

5719

802

4342

6417

26789

4142

43047

–5719

802

4342

6417

5936

802

4125

6417

6153

802

3908

6417

6587

802

3474

6417

Gwynedd

2905

8306

101508

35564

10158

14099

65671

–2905

8306

101508

35564

7981

8306

96433

35564

13056

8306

91358

35564

23207

8306

81207

35564

Halton

1681

329

521

240

1112

615

3694

–1681

329

521

240

1707

329

495

240

1733

329

469

240

1785

329

417

240

Hampshire

123553

13916

48591

66161

80599

24470

113115

–123553

13916

48591

66161

125982

13916

46162

66161

128412

13916

43732

66161

133271

13916

38873

66161

Hartlepool

3234

440

846

338

1403

610

3619

–3234

440

846

338

3276

440

804

338

3319

440

762

338

3403

440

677

338

Herefordshire

76936

17932

73576

20550

38385

11975

127615

–76862

17932

73649

20550

80615

17932

69897

20550

84293

17932

66218

20550

91651

17932

58861

20550

Hertfordshire

71909

3610

16580

13070

51692

14057

55275

–68750

3610

19739

13070

72738

3610

15751

13070

73567

3610

14922

13070

75225

3610

13264

13070

Highland

40223

31490

83233

390018

67026

59212

57483

–40223

31490

83233

390018

44385

31490

79071

390018

48546

31490

74909

390018

56869

31490

66586

390018

Inverclyde

98

459

2632

1682

1570

1425

5117

–98

459

2632

1682

230

459

2500

1682

361

459

2369

1682

624

459

2106

1682

Isle

ofWight

10603

2796

9405

4308

8095

2457

11172

–10603

2796

9405

4308

11073

2796

8935

4308

11543

2796

8464

4308

12484

2796

7524

4308

Kent

135563

12747

59211

37290

85065

8700

137063

–134657

12747

60118

37290

138524

12747

56251

37290

141484

12747

53290

37290

147405

12747

47369

37290

KingstonuponHull

691

63

91

30

3203

780

2144

–691

63

91

30

696

63

87

30

701

63

82

30

710

63

73

30

Kirklees

2317

2499

11046

2440

6113

1277

17064

–2317

2499

11046

2440

2869

2499

10494

2440

3421

2499

9942

2440

4526

2499

8837

2440

Knowsley

1758

145

706

674

1075

419

3668

–1758

145

706

674

1794

145

671

674

1829

145

635

674

1900

145

565

674

Lancashire

30329

18610

118421

13006

36340

13117

120381

–30329

18610

118421

13006

36250

18610

112500

13006

42171

18610

106579

13006

54013

18610

94737

13006

Leeds

12998

1793

8683

3738

8258

1725

23053

–12998

1793

8683

3738

13432

1793

8249

3738

13866

1793

7815

3738

14734

1793

6946

3738

Leicester

805

58

411

32

831

262

5093

–805

58

411

32

826

58

390

32

846

58

370

32

887

58

329

32

Leicestershire

90158

11322

55136

7454

23986

7542

145860

–88883

11322

56412

7454

92915

11322

52380

7454

95672

11322

49623

7454

101186

11322

44109

7454

Lincolnshire

440193

11055

43945

18108

167219

13845

111730

–386988

11055

97150

18108

442390

11055

41747

18108

444587

11055

39550

18108

448982

11055

35156

18108

Liverpool

308

0283

293

1383

539

4717

–308

0283

293

322

0269

293

336

0255

293

365

0227

293

Luton

596

56

94

113

1611

238

1745

–596

56

94

113

600

56

89

113

605

56

84

113

614

56

75

113

386 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 7: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

4(continued)

UK

County

Baseline(2004)

HistoricalBestCase

(1930)

RecentBestCase

(1998)

WorstCase

5%

WorstCase

10%

Worstcase

20%

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Manchester

110

43

647

310

1519

704

5118

–110

43

647

310

143

43

614

310

175

43

582

310

240

43

517

310

Medway

4787

216

2324

1012

4657

474

7486

–4787

216

2324

1012

4903

216

2208

1012

5019

216

2092

1012

5251

216

1859

1012

MerthyrTydfil

994

3163

1484

496

392

3724

–9

94

3163

1484

167

94

3005

1484

326

94

2847

1484

642

94

2531

1484

Middlesbrough

911

34

665

141

942

289

2088

–911

34

665

141

944

34

631

141

977

34

598

141

1044

34

532

141

Midlothian

10448

2005

5326

3196

6856

4345

6943

–10448

2005

5326

3196

10714

2005

5060

3196

10980

2005

4794

3196

11513

2005

4261

3196

MiltonKeynes

12265

532

5027

1437

4798

1106

18212

–424

532

16868

1437

12516

532

4775

1437

12767

532

4524

1437

13270

532

4021

1437

Monmouthshire

9985

6100

39396

12034

5243

2204

49378

–9956

6100

39425

12034

11955

6100

37427

12034

13925

6100

35457

12034

17865

6100

31517

12034

Moray

27266

14303

18713

63826

38464

36943

7633

–27266

14303

18713

63826

28202

14303

17777

63826

29138

14303

16841

63826

31009

14303

14970

63826

Neath

Port

Talbot

209

838

11539

16658

2007

1539

15185

–209

838

11539

16658

786

838

10962

16658

1363

838

10385

16658

2516

838

9231

16658

New

castle

uponTyne

1732

131

1116

406

747

588

4494

–1732

131

1116

406

1788

131

1060

406

1844

131

1004

406

1955

131

893

406

New

port

1966

665

5497

1523

1120

461

10557

–1966

665

5497

1523

2240

665

5222

1523

2515

665

4947

1523

3065

665

4397

1523

Norfolk

330760

8663

49319

45147

244030

52107

112456

–295710

8663

84369

45147

333226

8663

46853

45147

335692

8663

44387

45147

340623

8663

39455

45147

NorthAyrshire

1426

2469

15613

12921

6050

7766

15324

–1426

2469

15613

12921

2207

2469

14833

12921

2987

2469

14052

12921

4549

2469

12491

12921

NorthEast

Lincolnshire

11044

403

797

372

5420

446

3616

–10137

403

1704

372

11083

403

757

372

11123

403

718

372

11203

403

638

372

NorthLanarkshire

3336

1996

8053

7245

4362

4716

9826

–3336

1996

8053

7245

3739

1996

7650

7245

4142

1996

7248

7245

4947

1996

6442

7245

NorthLincolnshire

56104

867

3572

3208

23457

1992

16680

–48191

867

11485

3208

56283

867

3393

3208

56461

867

3215

3208

56818

867

2858

3208

NorthSomerset

3571

2859

13273

3339

3973

1224

23398

–3571

2859

13273

3339

4235

2859

12609

3339

4899

2859

11946

3339

6226

2859

10618

3339

NorthTyneside

1498

126

490

168

529

417

3194

–1498

126

490

168

1522

126

465

168

1547

126

441

168

1596

126

392

168

NorthYorkshire

242521

36350

209952

59671

151713

40583

314938

–238176

36350

214297

59671

253019

36350

199454

59671

263516

36350

188957

59671

284512

36350

167962

59671

Northamptonshire

120891

7113

48029

12674

39565

9126

138998

–99315

7113

69605

12674

123292

7113

45628

12674

125693

7113

43226

12674

130496

7113

38423

12674

Northumberland

96571

18943

130952

81388

32381

25598

195290

–96571

18943

130952

81388

103118

18943

124404

81388

109666

18943

117857

81388

122761

18943

104762

81388

Nottingham

380

0489

165

2208

562

3069

–380

0489

165

404

0465

165

429

0440

165

478

0392

165

Nottinghamshire

110125

6211

21806

16854

61569

15672

85819

–87843

6211

44089

16854

111216

6211

20716

16854

112306

6211

19625

16854

114487

6211

17445

16854

Oldham

8263

3005

230

1936

554

5916

–8

263

3005

230

158

263

2855

230

308

263

2704

230

608

263

2404

230

Orkney

Islands

6215

11851

37399

105

19302

17752

6762

–6215

11851

37399

105

8085

11851

35529

105

9955

11851

33659

105

13695

11851

29919

105

Oxfordshire

125194

9979

46916

17597

65262

18816

121178

–119573

9979

52537

17597

127540

9979

44570

17597

129885

9979

42225

17597

134577

9979

37533

17597

Pem

brokeshire

17462

15759

82757

13846

19598

14767

83656

–17462

15759

82757

13846

21599

15759

78619

13846

25737

15759

74481

13846

34013

15759

66205

13846

Perth

andKinross

65904

16577

38196

85559

40780

33082

40704

–65904

16577

38196

85559

67813

16577

36286

85559

69723

16577

34376

85559

73543

16577

30557

85559

Peterborough

22164

122

2084

1362

8116

1628

14842

–22164

122

2084

1362

22268

122

1979

1362

22373

122

1875

1362

22581

122

1667

1362

Plymouth

850

61

523

604

1234

856

3352

–850

61

523

604

876

61

497

604

902

61

471

604

954

61

419

604

Poole

417

185

490

748

913

379

3014

–417

185

490

748

442

185

466

748

466

185

441

748

516

185

392

748

Powys

11945

22673

278010

69390

30650

26147

188885

–11945

22673

278010

69390

25845

22673

264110

69390

39746

22673

250209

69390

67547

22673

222408

69390

Reading

112

2554

140

997

239

1725

–112

2554

140

139

2526

140

167

2499

140

222

2443

140

RedcarandCleveland

4925

639

2853

2672

4280

1314

9483

–4925

639

2853

2672

5068

639

2710

2672

5211

639

2567

2672

5496

639

2282

2672

Renfrew

shire

352

1029

6441

2274

2536

2302

8266

–352

1029

6441

2274

674

1029

6119

2274

996

1029

5797

2274

1641

1029

5153

2274

Rhondda,Cynon,Taff

188

924

12434

9981

1898

1478

14309

–188

924

12434

9981

810

924

11813

9981

1432

924

11191

9981

2675

924

9947

9981

Rochdale

35

402

3854

373

1924

749

6561

–35

402

3854

373

228

402

3662

373

421

402

3469

373

806

402

3084

373

Rotherham

11409

711

2824

1971

4294

900

11993

–11409

711

2824

1971

11550

711

2683

1971

11691

711

2542

1971

11974

711

2259

1971

Rutland

22923

700

6630

1980

9494

2174

24110

–21651

700

7902

1980

23254

700

6299

1980

23586

700

5967

1980

24249

700

5304

1980

Salford

1474

79

457

453

1215

476

4141

–1474

79

457

453

1497

79

434

453

1520

79

411

453

1566

79

365

453

Sandwell

61

16

315

216

1245

411

4805

–61

16

315

216

77

16

300

216

93

16

284

216

124

16

252

216

Sefton

2636

262

875

547

1812

706

6181

–2636

262

875

547

2679

262

831

547

2723

262

788

547

2811

262

700

547

Land-use change and GB soil carbon stocks 387

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 8: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

4(continued)

UK

County

Baseline(2004)

HistoricalBestCase

(1930)

RecentBestCase

(1998)

WorstCase

5%

WorstCase

10%

Worstcase

20%

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Sheffield

1559

1090

4943

3773

5178

1137

16358

–1559

1090

4943

3773

1806

1090

4696

3773

2053

1090

4449

3773

2548

1090

3955

3773

Shropshire

101415

32552

113624

24468

48383

20657

190750

–96114

32552

118925

24468

107096

32552

107943

24468

112777

32552

102262

24468

124140

32552

90900

24468

Slough

91

26

254

48

493

111

1848

–82

26

263

48

103

26

242

48

116

26

229

48

141

26

203

48

Solihull

3653

639

3085

643

2566

874

11017

–3653

639

3085

643

3808

639

2931

643

3962

639

2777

643

4270

639

2468

643

Somerset

63912

33988

149143

23976

36801

11500

214970

–63554

33988

149501

23976

71369

33988

141686

23976

78826

33988

134229

23976

93741

33988

119315

23976

South

Ayrshire

6415

6509

34682

35486

9194

12366

30179

–6415

6509

34682

35486

8149

6509

32948

35486

9883

6509

31214

35486

13351

6509

27746

35486

South

Gloucestershire

10659

3305

17392

2185

7258

3757

26718

–10659

3305

17392

2185

11529

3305

16522

2185

12398

3305

15653

2185

14137

3305

13914

2185

South

Lanarkshire

16120

9907

37995

30633

17373

19756

38582

–16120

9907

37995

30633

18019

9907

36095

30633

19919

9907

34196

30633

23719

9907

30396

30633

South

Tyneside

1023

57

541

36

946

411

2439

–1023

57

541

36

1050

57

514

36

1077

57

487

36

1131

57

433

36

SouthendonSea

44

35

311

51

1433

293

1256

–44

35

311

51

59

35

295

51

75

35

280

51

106

35

249

51

StHelens

4423

398

673

574

1663

648

5671

–4423

398

673

574

4456

398

639

574

4490

398

606

574

4557

398

538

574

Staffordshire

58679

20609

94074

18549

33961

13150

146392

–50846

20609

101907

18549

63382

20609

89370

18549

68086

20609

84666

18549

77493

20609

75259

18549

Stirling

6860

4394

20357

48456

17543

13552

26793

–6860

4394

20357

48456

7878

4394

19339

48456

8896

4394

18321

48456

10932

4394

16286

48456

Stockport

103

359

2113

687

1787

1063

6300

–103

359

2113

687

209

359

2007

687

314

359

1902

687

526

359

1690

687

Stockton

6815

853

2658

852

3203

1290

7969

–6815

853

2658

852

6947

853

2525

852

7080

853

2392

852

7346

853

2127

852

StokeonTrent

160

438

1102

102

1205

467

5188

–160

438

1102

102

215

438

1047

102

271

438

992

102

381

438

881

102

Suffolk

237508

6366

28932

28184

102388

16996

54259

–207022

6366

59418

28184

238954

6366

27486

28184

240401

6366

26039

28184

243294

6366

23146

28184

Sunderland

3132

170

831

548

2062

897

5318

–3132

170

831

548

3174

170

789

548

3215

170

748

548

3298

170

665

548

Surrey

18462

5842

26896

37440

16504

3752

46440

–18462

5842

26896

37440

19806

5842

25551

37440

21151

5842

24207

37440

23841

5842

21517

37440

Swansea

1646

1637

12475

3465

1710

1312

12940

–1646

1637

12475

3465

2270

1637

11852

3465

2894

1637

11228

3465

4141

1637

9980

3465

Swindon

8068

1111

4658

631

3730

1234

11070

–7879

1111

4847

631

8301

1111

4425

631

8533

1111

4192

631

8999

1111

3726

631

Tameside

51

137

1553

455

1445

797

4790

-51

137

1553

455

128

137

1476

455

206

137

1398

455

361

137

1243

455

Telford

andWrekin

12883

1451

4053

1982

4408

1882

17385

–9768

1451

7168

1982

13086

1451

3851

1982

13288

1451

3648

1982

13694

1451

3243

1982

Thurrock

5556

239

1586

311

5636

1153

4939

–5556

239

1586

311

5636

239

1507

311

5715

239

1427

311

5874

239

1269

311

Torbay

460

289

1365

427

942

653

2558

–460

289

1365

427

528

289

1296

427

596

289

1228

427

733

289

1092

427

Torfaen

144

218

3420

1581

749

303

7089

–144

218

3420

1581

315

218

3249

1581

486

218

3078

1581

828

218

2736

1581

Trafford

1250

507

813

168

1533

891

5068

–1250

507

813

168

1291

507

773

168

1332

507

732

168

1413

507

651

168

Vale

ofGlamorgan

4974

1808

13698

2152

1504

1153

11379

–4974

1808

13698

2152

5659

1808

13013

2152

6344

1808

12328

2152

7714

1808

10958

2152

Wakefield

13079

751

2387

1344

5058

1056

14119

–13079

751

2387

1344

13198

751

2267

1344

13318

751

2148

1344

13556

751

1909

1344

Walsall

1128

172

987

379

1357

526

5839

–856

172

1260

379

1178

172

938

379

1227

172

888

379

1326

172

790

379

Warrington

4886

962

1759

632

2444

1224

8190

–4886

962

1759

632

4974

962

1671

632

5062

962

1583

632

5238

962

1407

632

Warw

ickshire

87728

10115

44434

8455

28474

9825

121571

–76193

10115

55969

8455

89950

10115

42212

8455

92172

10115

39990

8455

96615

10115

35547

8455

WestBerkshire

30594

2765

9913

9681

16979

3713

28560

–28373

2765

12134

9681

31090

2765

9417

9681

31585

2765

8922

9681

32577

2765

7930

9681

WestDunbartonshire

244

331

2796

2964

1210

1107

2935

–244

331

2796

2964

383

331

2657

2964

523

331

2517

2964

803

331

2237

2964

WestLothian

8786

2586

7754

6793

9865

5813

11130

–8786

2586

7754

6793

9174

2586

7366

6793

9561

2586

6978

6793

10337

2586

6203

6793

WestSussex

54444

8744

41025

37997

27981

6913

84421

–54444

8744

41025

37997

56495

8744

38974

37997

58546

8744

36923

37997

62649

8744

32820

37997

Western

Isles

01331

13273

3454

7480

5914

6121

–0

1331

13273

3454

664

1331

12610

3454

1327

1331

11946

3454

2655

1331

10619

3454

Wigan

2508

912

2669

847

2293

893

7820

–2508

912

2669

847

2642

912

2535

847

2775

912

2402

847

3042

912

2135

847

Wiltshire

124176

20345

77546

26617

52529

17397

156789

–124117

20345

77605

26617

128054

20345

73668

26617

131931

20345

69791

26617

139685

20345

62037

26617

WindsorandMaidenhead

4149

386

2541

2748

4588

999

8449

–4106

386

2583

2748

4276

386

2414

2748

4403

386

2287

2748

4657

386

2033

2748

Wirral

1680

798

1572

617

2418

1575

7903

–1680

798

1572

617

1759

798

1494

617

1838

798

1415

617

1995

798

1258

617

Wokingham

3744

843

2368

1981

4324

939

7241

–3414

843

2699

1981

3863

843

2250

1981

3981

843

2132

1981

4218

843

1895

1981

388 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 9: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

change in each category losing land area, for example, if

cropland increased by 100 ha, temporary grass decreased by

40 ha and permanent grass decreased by 60 ha, the land-use

transitions were assumed to be 40 ha of temporary grass to

cropland, and 60 ha of permanent grass to cropland. If there

were anomalies in the area change data (e.g. because of the

data not including all land-uses, or because of small

allocation areas arising from projecting 1930 data onto

current county boundaries), the most conservative estimate of

area change was made, for example if cropland area increased

by 130 ha, but the only other land-use changes were a

decrease in temporary grass of 40 ha and of permanent grass

by 60 ha, the land-use transitions were assumed to be 40 ha

of temporary grass to cropland and 60 ha of permanent grass

to cropland because the remaining 30 ha increase in cropland

could not be allocated.

The resulting calculations give projected changes in SOC

for each soil type under each land-use transition for each

county in GB under each land-use change scenario. The

estimates are for yearly change in GHG emissions. All

estimates are expressed in carbon dioxide equivalents (t CO2-

eq. ⁄ha ⁄ yr) based on the global warming potentials (GWPs) in

the IPCC Third Assessment Report (TAR: IPCC WGI, 2001)

for nitrous oxide and methane of 296 and 23, respectively.

These GWPs were updated in the Fourth Assessment Report

(AR4: IPCC WGI, 2007), but the convention adopted by

parties to the United Nations Framework Convention on

Climate Change (UNFCCC) uses the GWPs from the TAR

for national GHG accounting. The yearly mitigation

potentials have also been aggregated over 20 yr to show the

total change, using the simplification employed in national

greenhouse gas inventories that soil carbon changes occur

over a 20 yr period after which a new equilibrium is achieved

(IPCC, 1997, 2006). In all cases, a GHG benefit ⁄SOC

increase is shown as a positive number and a GHG emission

increase ⁄SOC loss is shown as a negative number.

Results

Impacts of land-use change on GHG emissions ⁄SOC

storage

The Historical Best Case scenario shows a GHG benefit ⁄SOC

increase in England, (mean: 298 Mt CO2-eq. over 20 yr) but

SOC losses ⁄ increased GHG emissions in Scotland (mean:

)47 Mt CO2-eq. over 20 yr) and Wales (mean: )9 Mt CO2-

eq. over 20 yr; Figure 1a) relative to the 2004 baseline. This

largely arises from increased grassland, especially permanent

grass, in most of England, but more cropland at the expense

of grassland in Scotland and Wales. The effect in Wales is

slight, but in Scotland the most notable loss of grassland area

and thereby SOC loss occurs on the west coast, in particular

in Argyll & Bute, Dumfries & Galloway, Highland, and the

Western Isles, but also in Orkney. The total change for eachTable

4(continued)

UK

County

Baseline(2004)

HistoricalBestCase

(1930)

RecentBestCase

(1998)

WorstCase

5%

WorstCase

10%

Worstcase

20%

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Arable

Tem

p

Grass

Perm

Grass

Woodland

Wolverhampton

71

113

121

89

907

352

3906

–71

113

121

89

77

113

115

89

83

113

109

89

95

113

97

89

Worcestershire

58906

10951

47407

11168

36532

6794

98854

–57952

10951

48361

11168

61276

10951

45037

11168

63647

10951

42667

11168

68388

10951

37926

11168

Wrexham

C.B.

4171

3881

22932

3774

5129

4713

25668

–4171

3881

22932

3774

5318

3881

21785

3774

6465

3881

20639

3774

8758

3881

18345

3774

York

12084

877

3702

1025

7459

1876

9853

–12084

877

3702

1025

12269

877

3517

1025

12454

877

3332

1025

12825

877

2961

1025

Totalareas

England

4403542

6581043022222

1053389

2559661

7958485297620

–4075875

6581043349888

1053389

4554653

6581042871111

1053389

4705764

6581042720000

1053389

5007986

6581042417777

1053389

Scotland

735740

269625

749992

1339557

638817

608430

625397

–735740

269625

749992

1339557

773240

269625

712493

1339557

810739

269625

674993

1339557

885738

269625

599994

1339557

Wales

75734

106777

999689

272022

148351

123103

866926

–75396

1067771000028

272022

125719

106777

949705

272022

175703

106777

899720

272022

275672

106777

799752

272022

GB

521501610345064771904

2664968

334682815273816789943

–488701110345065099908

2664968

545361110345064533308

2664968

569220610345064294713

2664968

616939710345063817523

2664968

Land-use change and GB soil carbon stocks 389

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 10: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

5Proportion

ofeach

land-use

typein

each

county

oneach

soiltype.

See

textfordefinitionofsoiltypes

UK

County

Proportionarable

Proportiontemporary

grass

Proportionpermanentgrass

Proportionforest

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Aberdeen

0.04

0.03

0.93

0.03

0.02

0.94

0.04

0.03

0.93

0.01

0.02

0.96

Aberdeenshire

0.28

0.28

0.44

0.23

0.30

0.47

0.20

0.32

0.48

0.09

0.68

0.23

Anglesey

0.21

0.00

0.79

0.14

0.00

0.86

0.16

0.00

0.83

0.50

0.00

0.50

Angus

0.31

0.03

0.67

0.31

0.13

0.56

0.27

0.19

0.54

0.14

0.45

0.41

ArgyllandBute

0.00

0.99

0.01

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

Barnsley

0.86

0.04

0.10

0.56

0.23

0.21

0.50

0.30

0.20

0.59

0.18

0.23

Bath

andNorth

East

Somerset

0.16

0.00

0.83

0.23

0.00

0.76

0.32

0.00

0.68

0.23

0.00

0.77

Bedfordshire

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

0.99

0.00

0.01

Birmingham

0.99

0.00

0.01

0.98

0.00

0.02

0.98

0.00

0.02

0.94

0.02

0.05

Blackburn

withDerwen

0.00

0.00

1.00

0.01

0.01

0.98

0.01

0.01

0.98

0.00

0.00

1.00

Blackpool

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

Blanaeu

Gwent

0.00

0.71

0.29

0.00

0.73

0.27

0.00

0.72

0.28

0.00

0.68

0.32

Bolton

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

Borders

0.51

0.05

0.44

0.28

0.09

0.63

0.25

0.16

0.59

0.20

0.41

0.39

Bournem

outh

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.08

0.00

0.92

BracknellForest

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Bradford

0.01

0.42

0.57

0.01

0.52

0.47

0.01

0.54

0.44

0.02

0.44

0.54

Bridgend

0.77

0.01

0.22

0.42

0.09

0.49

0.25

0.15

0.60

0.15

0.20

0.66

BrightonandHove

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

Bristol

0.69

0.00

0.31

0.68

0.00

0.32

0.68

0.00

0.32

0.72

0.00

0.28

Buckinghamshire

0.80

0.00

0.20

0.74

0.00

0.26

0.72

0.00

0.28

0.93

0.00

0.07

Bury

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

Caerphilly

0.18

0.00

0.82

0.20

0.02

0.78

0.13

0.05

0.81

0.15

0.01

0.85

Calderdale

0.00

0.36

0.64

0.00

0.74

0.26

0.00

0.73

0.27

0.00

0.70

0.30

Cambridgeshire

0.36

0.01

0.63

0.41

0.00

0.59

0.45

0.01

0.55

0.42

0.00

0.57

Cardiff

0.15

0.03

0.82

0.15

0.01

0.84

0.15

0.01

0.84

0.04

0.00

0.96

Carm

arthenshire

0.44

0.02

0.54

0.31

0.12

0.57

0.26

0.12

0.62

0.14

0.13

0.73

Ceredigion

0.46

0.16

0.38

0.21

0.32

0.47

0.16

0.35

0.48

0.07

0.68

0.25

Cheshire

0.93

0.00

0.07

0.88

0.02

0.09

0.79

0.09

0.13

0.74

0.10

0.16

Clackmannanshire

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

Conwy

0.39

0.39

0.22

0.17

0.58

0.25

0.15

0.61

0.24

0.08

0.78

0.13

Cornwall

0.71

0.00

0.29

0.62

0.01

0.37

0.55

0.02

0.43

0.63

0.02

0.35

Coventry

0.97

0.00

0.03

0.97

0.00

0.03

0.94

0.00

0.06

1.00

0.00

0.00

Cumbria

0.44

0.11

0.45

0.32

0.22

0.46

0.20

0.37

0.43

0.11

0.60

0.30

Darlington

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Denbighshire

0.59

0.09

0.32

0.28

0.28

0.44

0.25

0.32

0.43

0.12

0.54

0.34

Derby

0.26

0.00

0.74

0.16

0.00

0.84

0.16

0.00

0.84

0.07

0.00

0.93

Derbyshire

0.61

0.01

0.38

0.48

0.11

0.41

0.40

0.17

0.43

0.34

0.18

0.48

390 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 11: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

5(continued)

UK

County

Proportionarable

Proportiontemporary

grass

Proportionpermanentgrass

Proportionforest

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Devon

0.79

0.01

0.20

0.72

0.04

0.24

0.65

0.08

0.27

0.60

0.11

0.29

Doncaster

District

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Dorset

0.93

0.00

0.07

0.89

0.00

0.11

0.87

0.00

0.13

0.86

0.00

0.14

Dudley

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

DumfriesandGalloway

0.00

0.62

0.38

0.00

0.64

0.36

0.00

0.67

0.33

0.00

0.87

0.13

Dundee

0.69

0.00

0.31

0.75

0.00

0.25

0.73

0.00

0.27

0.80

0.00

0.20

Durham

0.41

0.02

0.57

0.31

0.17

0.53

0.18

0.37

0.44

0.20

0.33

0.47

East

Ayrshire

0.00

0.51

0.49

0.00

0.65

0.35

0.00

0.72

0.28

0.00

0.85

0.15

East

Dunbartonshire

0.00

0.50

0.50

0.00

0.75

0.25

0.00

0.76

0.24

0.00

0.83

0.17

East

Lothian

0.01

0.00

0.99

0.01

0.00

0.99

0.02

0.00

0.98

0.01

0.00

0.99

East

Renfrew

shire

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

East

RidingofYorkshire

0.97

0.00

0.02

0.98

0.00

0.02

0.98

0.00

0.02

0.98

0.00

0.02

East

Sussex

0.70

0.00

0.30

0.73

0.00

0.27

0.79

0.00

0.21

0.91

0.00

0.09

Edinburgh

0.94

0.00

0.06

0.77

0.00

0.23

0.81

0.00

0.19

0.94

0.00

0.06

Essex

0.91

0.00

0.09

0.98

0.00

0.02

0.96

0.00

0.04

0.94

0.00

0.06

Falkirk

0.00

0.01

0.99

0.01

0.01

0.98

0.00

0.01

0.98

0.00

0.07

0.93

Fife

0.24

0.00

0.76

0.29

0.00

0.71

0.31

0.00

0.69

0.22

0.00

0.78

Flintshire

0.60

0.00

0.40

0.57

0.00

0.43

0.50

0.00

0.50

0.45

0.01

0.55

Gateshead

0.28

0.00

0.72

0.39

0.00

0.61

0.41

0.00

0.59

0.39

0.00

0.61

Glasgow

0.00

0.96

0.04

0.00

0.88

0.12

0.00

0.90

0.10

0.00

0.93

0.07

Gloucestershire

0.85

0.00

0.15

0.88

0.00

0.12

0.89

0.00

0.11

0.81

0.00

0.19

GreaterLondon

0.83

0.00

0.17

0.86

0.00

0.14

0.89

0.00

0.11

0.81

0.00

0.19

Gwynedd

0.34

0.46

0.20

0.23

0.59

0.18

0.13

0.76

0.11

0.03

0.89

0.08

Halton

0.24

0.00

0.76

0.46

0.00

0.54

0.44

0.00

0.56

0.57

0.00

0.43

Hampshire

0.51

0.00

0.49

0.58

0.00

0.41

0.58

0.00

0.41

0.51

0.00

0.48

Hartlepool

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Herefordshire

0.97

0.00

0.03

0.97

0.00

0.03

0.92

0.00

0.08

0.91

0.00

0.09

Hertfordshire

0.99

0.00

0.01

0.99

0.00

0.01

1.00

0.00

0.00

0.99

0.00

0.01

Highland

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

Inverclyde

0.00

0.51

0.49

0.00

0.80

0.20

0.00

0.80

0.20

0.00

0.95

0.05

Isle

ofWight

0.97

0.01

0.03

0.96

0.00

0.04

0.95

0.01

0.05

0.97

0.01

0.02

Kent

0.84

0.00

0.16

0.82

0.00

0.18

0.83

0.00

0.17

0.81

0.00

0.19

KingstonuponHull

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Kirklees

0.13

0.01

0.86

0.10

0.19

0.71

0.05

0.32

0.63

0.11

0.26

0.63

Knowsley

0.03

0.01

0.95

0.02

0.01

0.97

0.02

0.02

0.97

0.00

0.05

0.95

Lancashire

0.06

0.17

0.76

0.14

0.11

0.75

0.13

0.17

0.70

0.09

0.29

0.62

Leeds

0.80

0.00

0.20

0.51

0.00

0.49

0.52

0.00

0.48

0.66

0.00

0.34

Leicester

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Leicestershire

0.91

0.00

0.09

0.87

0.00

0.13

0.89

0.00

0.11

0.95

0.00

0.04

Land-use change and GB soil carbon stocks 391

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 12: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

5(continued)

UK

County

Proportionarable

Proportiontemporary

grass

Proportionpermanentgrass

Proportionforest

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Lincolnshire

0.89

0.00

0.11

0.88

0.01

0.11

0.89

0.00

0.11

0.87

0.00

0.13

Liverpool

0.05

0.00

0.95

0.00

0.00

0.00

0.01

0.00

0.99

0.05

0.00

0.95

Luton

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Manchester

0.49

0.00

0.51

0.82

0.00

0.18

0.50

0.00

0.50

0.23

0.01

0.75

Medway

0.91

0.00

0.09

1.00

0.00

0.00

0.92

0.00

0.08

0.64

0.00

0.36

MerthyrTydfil

0.00

0.59

0.40

0.01

0.38

0.62

0.01

0.39

0.61

0.01

0.41

0.58

Middlesbrough

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Midlothian

0.13

0.00

0.87

0.14

0.00

0.86

0.14

0.00

0.86

0.12

0.00

0.88

MiltonKeynes

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Monmouthshire

0.84

0.00

0.16

0.76

0.00

0.24

0.78

0.00

0.22

0.81

0.00

0.19

Moray

0.15

0.59

0.26

0.12

0.69

0.19

0.10

0.73

0.17

0.08

0.80

0.12

Neath

Port

Talbot

0.32

0.04

0.64

0.21

0.09

0.69

0.17

0.21

0.62

0.08

0.11

0.81

New

castle

uponTyne

0.06

0.00

0.94

0.10

0.00

0.90

0.06

0.00

0.94

0.06

0.00

0.94

New

port

0.50

0.00

0.50

0.63

0.00

0.37

0.63

0.00

0.37

0.60

0.00

0.40

Norfolk

0.84

0.05

0.12

0.77

0.07

0.16

0.86

0.03

0.11

0.84

0.02

0.14

NorthAyrshire

0.00

0.63

0.37

0.00

0.58

0.42

0.00

0.59

0.41

0.00

0.90

0.10

NorthEast

Lincolnshire

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

NorthLanarkshire

0.00

0.15

0.85

0.00

0.26

0.74

0.00

0.27

0.73

0.00

0.30

0.70

NorthLincolnshire

0.96

0.00

0.04

0.98

0.00

0.01

0.99

0.00

0.01

0.99

0.00

0.01

NorthSomerset

0.75

0.00

0.25

0.87

0.00

0.13

0.84

0.00

0.16

0.80

0.00

0.20

NorthTyneside

0.00

0.04

0.96

0.00

0.02

0.98

0.00

0.02

0.98

0.00

0.14

0.86

NorthYorkshire

0.83

0.01

0.16

0.52

0.19

0.29

0.30

0.40

0.30

0.30

0.24

0.46

Northamptonshire

0.89

0.00

0.11

0.82

0.00

0.17

0.84

0.00

0.15

0.96

0.00

0.04

Northumberland

0.52

0.03

0.46

0.44

0.15

0.41

0.34

0.30

0.35

0.18

0.64

0.18

Nottingham

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Nottinghamshire

0.86

0.00

0.14

0.90

0.00

0.10

0.92

0.00

0.08

0.63

0.01

0.36

Oldham

0.00

0.85

0.15

0.00

0.77

0.23

0.00

0.82

0.18

0.00

0.83

0.17

Orkney

Islands

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

Oxfordshire

0.96

0.00

0.04

0.96

0.00

0.04

0.95

0.00

0.05

0.95

0.00

0.05

Pem

brokeshire

0.90

0.00

0.10

0.83

0.00

0.17

0.78

0.00

0.22

0.77

0.01

0.23

Perth

andKinross

0.60

0.03

0.37

0.41

0.17

0.42

0.29

0.28

0.44

0.16

0.59

0.26

Peterborough

0.31

0.00

0.68

0.66

0.00

0.34

0.56

0.00

0.44

0.73

0.00

0.27

Plymouth

0.04

0.00

0.96

0.05

0.00

0.95

0.05

0.00

0.95

0.14

0.00

0.86

Poole

0.64

0.00

0.36

0.61

0.00

0.39

0.57

0.00

0.43

0.57

0.00

0.43

Powys

0.60

0.07

0.33

0.31

0.22

0.47

0.24

0.28

0.49

0.15

0.50

0.35

Reading

0.99

0.00

0.01

1.00

0.00

0.00

0.98

0.00

0.02

1.00

0.00

0.00

RedcarandCleveland

0.32

0.00

0.68

0.17

0.02

0.81

0.25

0.03

0.72

0.27

0.00

0.73

Renfrew

shire

0.00

0.82

0.18

0.00

0.94

0.06

0.00

0.95

0.05

0.00

0.93

0.07

Rhondda,Cynon,Taff

0.09

0.24

0.67

0.02

0.37

0.61

0.02

0.42

0.56

0.01

0.67

0.32

392 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 13: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

Table

5(continued)

UK

County

Proportionarable

Proportiontemporary

grass

Proportionpermanentgrass

Proportionforest

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Rochdale

0.02

0.10

0.88

0.03

0.24

0.73

0.03

0.24

0.73

0.04

0.09

0.88

Rotherham

0.86

0.00

0.14

0.83

0.00

0.17

0.79

0.00

0.21

0.85

0.00

0.15

Rutland

0.99

0.00

0.01

0.99

0.00

0.01

0.99

0.00

0.01

1.00

0.00

0.00

Salford

0.01

0.04

0.96

0.01

0.02

0.97

0.01

0.02

0.96

0.00

0.00

1.00

Sandwell

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

0.96

0.00

0.04

Sefton

0.03

0.04

0.93

0.02

0.05

0.93

0.04

0.08

0.88

0.05

0.03

0.92

Sheffield

0.15

0.40

0.45

0.08

0.69

0.23

0.07

0.65

0.28

0.08

0.63

0.29

Shropshire

0.88

0.00

0.12

0.78

0.00

0.22

0.78

0.00

0.22

0.85

0.00

0.15

Slough

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Solihull

0.99

0.01

0.00

0.99

0.01

0.00

0.98

0.01

0.01

0.99

0.00

0.01

Somerset

0.41

0.01

0.58

0.38

0.02

0.60

0.31

0.07

0.62

0.49

0.04

0.48

South

Ayrshire

0.00

0.44

0.56

0.00

0.44

0.56

0.00

0.59

0.41

0.00

0.90

0.10

South

Gloucestershire

0.14

0.00

0.86

0.20

0.00

0.80

0.29

0.00

0.71

0.21

0.00

0.79

South

Lanarkshire

0.00

0.46

0.54

0.00

0.51

0.49

0.00

0.57

0.43

0.00

0.75

0.25

South

Tyneside

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

SouthendonSea

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

StHelens

0.03

0.01

0.96

0.03

0.00

0.96

0.03

0.01

0.96

0.01

0.02

0.97

Staffordshire

0.71

0.01

0.29

0.54

0.06

0.40

0.41

0.08

0.51

0.46

0.07

0.47

Stirling

0.00

0.05

0.95

0.00

0.13

0.87

0.00

0.19

0.81

0.00

0.72

0.28

Stockport

0.03

0.03

0.93

0.05

0.05

0.90

0.06

0.04

0.90

0.02

0.10

0.87

Stockton

0.98

0.00

0.02

0.98

0.00

0.02

0.98

0.00

0.02

0.98

0.00

0.02

StokeonTrent

0.67

0.00

0.33

0.80

0.00

0.20

0.77

0.00

0.23

0.80

0.00

0.20

Suffolk

0.92

0.00

0.08

0.93

0.01

0.06

0.93

0.00

0.06

0.96

0.00

0.03

Sunderland

0.02

0.00

0.98

0.00

0.00

1.00

0.01

0.00

0.99

0.00

0.00

1.00

Surrey

0.99

0.00

0.01

1.00

0.00

0.00

0.99

0.00

0.01

1.00

0.00

0.00

Swansea

0.03

0.01

0.96

0.02

0.03

0.95

0.02

0.04

0.94

0.02

0.02

0.96

Swindon

0.39

0.00

0.61

0.22

0.00

0.78

0.24

0.00

0.76

0.16

0.00

0.84

Tameside

0.01

0.75

0.24

0.01

0.75

0.24

0.01

0.75

0.24

0.00

0.69

0.31

Telford

andWrekin

0.89

0.00

0.11

0.91

0.00

0.09

0.91

0.00

0.09

0.86

0.00

0.14

Thurrock

0.71

0.00

0.29

0.69

0.00

0.31

0.69

0.00

0.31

0.47

0.00

0.53

Torbay

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Torfaen

0.01

0.09

0.89

0.01

0.18

0.81

0.02

0.15

0.84

0.01

0.15

0.84

Trafford

0.04

0.00

0.96

0.15

0.00

0.85

0.17

0.00

0.83

0.12

0.00

0.88

Vale

ofGlamorgan

0.53

0.00

0.47

0.52

0.00

0.48

0.47

0.00

0.53

0.21

0.00

0.79

Wakefield

0.90

0.00

0.10

0.73

0.00

0.27

0.84

0.00

0.16

0.95

0.00

0.05

Walsall

0.98

0.00

0.02

0.97

0.00

0.03

0.97

0.00

0.03

0.93

0.00

0.07

Warrington

0.03

0.01

0.96

0.02

0.00

0.98

0.02

0.01

0.97

0.00

0.01

0.99

Warw

ickshire

0.79

0.00

0.21

0.80

0.00

0.19

0.77

0.00

0.23

0.89

0.00

0.11

WestBerkshire

0.84

0.00

0.16

0.88

0.00

0.12

0.84

0.00

0.16

0.84

0.00

0.16

Land-use change and GB soil carbon stocks 393

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 14: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

county under the Historical Best Case scenario is shown in

Figure 2a.

The Recent Best Case scenario (based on cropland

reversion to permanent grass as per 1998 land-use under

NVZ legislation) affects only England, with no land-use

change in Scotland and only very small area changes (338 ha;

SOC change mean: 0.07 Mt CO2-eq. over 20 yr) in Wales

(Figure 1b). Even for England, the change in GHG emission

reduction ⁄SOC increase is an order of magnitude lower than

for the Historical Best Case scenario (mean: 37 Mt CO2-

eq. over 20 yr). The total change for each county under the

Recent Best Case scenario is shown in Figure 2b.

The Worst Case grassland plough out to cropland

scenarios are all applied evenly to all counties in GB, so the

effect is proportional to the grassland area in each county. A

change of 5% permanent grassland to cropland in GB under

the Worst Case 5% scenario would result in increased GHG

emissions ⁄decreased SOC stocks, giving a net impact of

)70 Mt CO2-eq. over 20 yr, comprised of )37, )18 and

)16 Mt CO2-eq. over 20 yr for England, Scotland and Wales,

respectively (Figure 1c). Equivalent figures for the Worst

Case 10% and Worst Case 20% are as follows: Worst Case

10% = )75, )35 and )32 Mt CO2-eq. over 20 yr for

England, Scotland and Wales, respectively, and Worst Case

20% = )150, )70, )64 Mt CO2-eq. over 20 yr for England,

Scotland and Wales, respectively (Figure 1d,e for Worst Case

10% and Worst Case 20%, respectively). The total changes

for each county under the Worst Case 5%, 10% and 20%

scenarios are shown in Figure 2c,d,e, respectively.

The difference between the broad soil types (mineral and

organo-mineral vs. organic) in each country largely reflects

the proportion of organic to mineral soils in each country,

with mineral soils dominating in England, large contributions

from organic soils in Scotland, and significant contributions

from organic soils in Wales. For example, in the Historical

Best Case scenario, only 2% of the increase in SOC occurs on

organic soils whereas in Scotland, a small gain on mineral

soils (0.1 Mt CO2-eq. ⁄ yr) is offset by large losses

(>3 Mt CO2-eq. ⁄ yr) on organic soils, whilst in Wales,

though the total SOC losses are small, 79% occurs on

organic soils.

Discussion

Land-use change within the agricultural sector may not be a

feasible large-scale option for climate mitigation with land-

use primarily being determined by agricultural market

conditions. Indeed, much of the potential global mitigation

within this sector will be by changing management on land

that remains in agricultural use (Smith et al., 2007, 2008). We

are therefore not proposing large-scale land-use change as a

mitigation option, but instead have examined the

consequences in terms of GHGs should land-use change

occur through other pressures.Table

5(continued)

UK

County

Proportionarable

Proportiontemporary

grass

Proportionpermanentgrass

Proportionforest

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

Mineral

Organic

Organo-m

ineral

WestDunbartonshire

0.00

0.64

0.36

0.00

0.93

0.07

0.00

0.94

0.06

0.00

0.93

0.07

WestLothian

0.24

0.00

0.76

0.08

0.00

0.92

0.07

0.00

0.93

0.07

0.00

0.93

WestSussex

0.90

0.00

0.10

0.84

0.00

0.16

0.86

0.00

0.14

0.95

0.00

0.05

Western

Isles

0.00

0.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

Wigan

0.03

0.00

0.97

0.01

0.00

0.99

0.01

0.00

0.99

0.00

0.00

1.00

Wiltshire

0.47

0.00

0.53

0.45

0.00

0.55

0.38

0.00

0.62

0.60

0.00

0.39

WindsorandMaidenhead

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

0.98

0.00

0.02

Wirral

1.00

0.00

0.00

0.99

0.00

0.01

0.99

0.00

0.01

0.98

0.00

0.02

Wokingham

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Wolverhampton

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

Worcestershire

1.00

0.00

0.00

0.99

0.00

0.01

0.99

0.00

0.01

1.00

0.00

0.00

Wrexham

C.B.

0.87

0.01

0.13

0.72

0.11

0.18

0.58

0.19

0.23

0.40

0.22

0.38

York

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

1.00

0.00

0.00

394 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 15: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

The Historical Best Case scenario presents land-use as it

has been in the past (1930), but agricultural land-use is not

considered likely to return to conditions similar to these in

the near future. We included this scenario as it presents a real

case of land-use for GB to show what SOC stocks ⁄GHG

emissions would have been under such circumstances.

However, the historical best case for GB as a whole is clearly

not a ‘best case’ for Scotland in terms of GHG

emissions ⁄SOC storage with SOC storage higher in the

baseline. A best case scenario from a soil C perspective for

Scotland and Wales would see less cropland and more

grassland as seen in England in this scenario. The Recent Best

Case scenario is probably closer to what could feasibly be

achieved in the near term, but it only has a significant impact

–10

0

10

20

30

40

50

60

70

England Scotland Wales

Country

–120

–100

–80

–60

–40

–20

00England Scotland Wales

Country

Cha

nge

in G

HG

(M

t CO

2-eq

.)C

hang

e in

GH

G (

Mt C

O2-

eq.)

–150

–100

–50

0

50

100

150

200

250

300

350

England

Scotland

Wales

Country

Cha

nge

in G

HG

(kt

CO

2-eq

.)

–60

–50

–40

–30

–20

–10

England Scotland Wales

Country

Cha

nge

in G

HG

(M

t CO

2-eq

.)

(b)(a)

(d)(c)

–250

–200

–150

–100

–50

0England Scotland Wales

Country

Cha

nge

in G

HG

(M

t CO

2-eq

.)

(e)

Figure 1 The total change in GHG emissions (Mt CO2-eq. ⁄ ha over 20 yr) for England, Scotland and Wales under each land-use change

scenario. Different scales are used to show the differences between countries and scenarios. (a) Historical Best Case scenario, (b) Recent Best

Case scenario, (c) Worst Case 5% scenario, (d) Worst Case 10% scenario and (e) Worst Case 20% scenario. Soil C gains are shown in white,

losses in black. The bars represent the range of estimates and boxes would represent the equivalent of 1 SE about the mean estimate, if the

range were a true 95% CI about the mean. For some mitigation measures (e.g. those based on Smith et al., 2008), the range does represent the

statistical 95% CI, for others (where the range is derived from limited data) it does not, so the bars and boxes should be taken as indicative of

range and confidence about the mean, but are not robust 95% CIs and SEs.

Land-use change and GB soil carbon stocks 395

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 16: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

in England, with no significant impact in Wales or Scotland.

Even for England, the impact is an order of magnitude lower

than that of the historical best case scenario. Conversion of

cropland to grassland is not a feasible mitigation option if a)

there is no market incentive to convert (i.e. demand for

livestock products derived from the grassland), or b)

cropland increases elsewhere to meet the demand for

cropland products. In such a circumstance, GHG emissions

are simply displaced with no net GHG benefit (see Berry

et al., 2008; Carlton et al., 2009, 2010). In any case, increased

livestock emissions from the new grassland if used to raise

more livestock would increase, thus negating at least some if

not all of the GHG benefit.

The Worst Case scenarios, with 5, 10 and 20% plough out

of permanent grassland, represent potential futures should

cropland products (largely cereals in the UK) increase in

N

N N

N

N

–20 –10 0 2010

–20 –10 0 2010 –20 –10 0 2010 –20 –10 0 2010

–20 –10 0 2010

(a) (b)

(d) (e)(c)

Figure 2 The total change in GHG emissions (Mt CO2-eq. ⁄ ha over 20 yr – estimates using the mean mitigation factor shown) for each county

under each land-use change scenario. (a) Historical Best Case scenario, (b) Recent Best Case scenario, (c) Worst Case 5% scenario, (d) Worst

Case 10% scenario and (e) Worst Case 20% scenario.

396 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 17: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

market value to favour more crop production. High cereal

commodity prices in recent years have seen cropland areas

increase, and with demand for food growing with increasing

population, and competition for land potentially increasing in

the future (Smith et al., 2010), an increase in cropland area at

the expense of grasslands is a possibility leading to a trade-off

with grazed livestock production.

The Historical Best Case scenario delivers a GB emission

reduction of ca. 243 Mt CO2-eq. over 20 yr, or an annual

GHG emission reduction of ca. 12 Mt CO2-eq. ⁄ yr relative to

the 2004 baseline. The Worst Case 20% grassland plough out

scenario increases GB emissions by a similar magnitude

()283 Mt CO2-eq. over 20 yr; )14 Mt CO2-eq. ⁄ yr). In the

context of overall UK GHG emissions (635 Mt CO2-eq. ⁄ yrin 2007; Committee on Climate Change, 2010), the yearly

reductions ⁄ increases examined here are small accounting for

ca. 2% of yearly annual GHG emissions even for the most

extreme scenario (Worst Case 20%). However, in the context

of current UK Land-use, Land-Use Change and Forestry

(LULUCF) emissions, the changes in GHG emissions

examined here are considerable. UK LULUCF emissions in

1990 (source) were ca. 3 Mt CO2-eq. ⁄ yr and around

)2 Mt CO2-eq. ⁄ yr in 2005 (sink; Dyson, 2009). The Recent

Best Case scenario would deliver further emission reductions

of around half of the 2005 LULUCF sink (i.e. )1.4 Mt CO2-

eq. ⁄ yr) whereas even limited grassland plough out (5% Worst

Case scenario: 3.5 Mt CO2-eq. ⁄ yr) would reverse the 2005

sink and leave a LULUCF source approaching 1990 levels.

Conclusions

Land-use change between agricultural land-uses (transitions

between permanent and temporary grassland and cropland)

in GB is likely to be a limited option for GHG mitigation as

land-use is largely determined by market factors for

agricultural products and the climatic ⁄ edaphic suitability of

the land. However, external factors such as agricultural

product commodity markets could influence future land-use.

The impacts of such agricultural land-use change in GB could

have significant impacts on LULUCF emissions, with

relatively small changes in land-use (e.g. 5% plough out of

grassland to cropland, or reversion of cropland to the

grassland cover in NVZs of 1998) having an impact on GHG

emissions of a similar order of magnitude as the current UK

LULUCF sink. However, in terms of total UK GHG

emissions even the most extreme feasible land-use change

scenarios account for ca. 2% of current emissions.

Acknowledgements

Funding for this study came from Defra under project

SP0567 ‘Assembling UK-wide data on soil carbon (and

greenhouse gas fluxes) in the context of land management’.

PS is a Royal Society-Wolfson Research Merit Award holder.

References

Anon. 1968. A century of agricultural statistics; Great Britain, 1866-

1966. Ministry of Agriculture, Fisheries and Food, London.

Barker, T., Bashmakov, I., Bernstein, L., Bogner, J., Bosch, P.,

Dave, R., Davidson, O., Fisher, B., Grubb, M., Gupta, S.,

Halsnaes, K., Heij, B., Kahn Ribeiro, S., Kobayashi, S., Levine,

M., Martino, D., Masera Cerutti, O., Metz, B., Meyer, L.,

Nabuurs, G.-J., Najam, A., Nakicenovic, N., Rogner, H.-H., Roy,

J., Sathaye, J., Schock, R., Shukla, P., Sims, R., Smith, P., Swart,

R., Tirpak, D., Urge-Vorsatz, D. & Zhou, D. 2007. Summary for

Policy Makers. In: Climate change 2007: mitigation. Contribution

of Working group III to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change (eds B. Metz, O.R.

Davidson, P.R. Bosch, R. Dave & L.A. Meyer), p. 35. Cambridge

University Press, Cambridge, United Kingdom and New York,

NY, USA.

Berry, P.M., Kindred, D.R. & Paveley, N.D. 2008. Quantifying the

effects of fungicides and disease resistance on greenhouse gas

emissions associated with wheat production. Plant Pathology, 57,

1000–1008.

Bradley, R.I., Milne, R., Bell, J., Lilly, A., Jordan, C. & Higgins, A.

2005. A soil carbon and land-use database for the United

Kingdom. Soil Use and Management, 21, 363–369.

Carlton, R., Berry, P. & Smith, P. 2009. Investigating the interplay

between UK crop yields, soil organic carbon stocks and

greenhouse gas emissions. Aspects of Applied Biology, 95, 60–64.

Carlton, R., Berry, P. & Smith, P. 2010. Impact of crop yield

reduction on GHG emissions from compensatory cultivation of

pasture and forested land. International Journal of Agricultural

Sustainability, 8, 164–175.

Comber, A., Procter, C. & Anthony, S. 2008. The creation of a

national agricultural land-use dataset: combining pycnophylactic

interpolation with dasymetric mapping techniques. Transactions in

GIS, 12, 775–791.

Committee on Climate Change 2010. UK and regions. Available at:

http://www.theccc.org.uk/topics/uk-and-regions accessed 3 ⁄ 2 ⁄ 2010.Dawson, J.J.C. & Smith, P. 2007. Carbon losses from soil and its

consequences for land management. Science of the Total

Environment, 382, 165–190.

Defra 2005. MAGPIE: updating and re-developing structure,

databases and models for wider application. Final Report of

Defra Project NT2503. Available at: http://randd.defra.gov.uk/

Document.aspx?Document=NT2503_3457_FRP.doc accessed

18 ⁄ 5 ⁄ 2010.Dyson, K.E. (ed.) 2009. Inventory and projections of UK emissions

by sources and removals by sinks due to land-use, land-use change

and forestry. Annual Report, July 2009. DEFRA Contract

GA01088. Available at: http://www.edinburgh.ceh.ac.uk/ukcarbon/

reports.htm#2009 (accessed June 2010).

Freibauer, A., Rounsevell, M., Smith, P. & Verhagen, A. 2004.

Carbon sequestration in the agricultural soils of Europe.

Geoderma, 122, 1–23.

Guo, L.B. & Gifford, R.M. 2002. Soil carbon stocks and land-use

change: a meta analysis. Global Change Biology, 8, 345–360.

IPCC 1997. IPCC 1996 revised good practice guidelines for

greenhouse gas inventories. Intergovernmental Panel on Climate

Change (IPCC), Institute for Global Environmental Strategies,

Tokyo, Japan.

Land-use change and GB soil carbon stocks 397

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398

Page 18: Consequences of feasible future agricultural land-use change on soil organic carbon stocks and greenhouse gas emissions in Great Britain

IPCC 2006. IPCC 2006 revised good practice guidelines for

greenhouse gas inventories. Intergovernmental Panel on Climate

Change (IPCC), Institute for Global Environmental Strategies,

Tokyo, Japan.

IPCC WGI 2001. Climate change: the scientific basis. Cambridge

University Press, Cambridge, UK.

IPCC WGI 2007. Climate change 2007: the physical science basis.

Cambridge University Press, Cambridge, UK.

Jenkinson, D.S. 1990. The turnover of organic carbon and nitrogen

in soil. Philosophical Transactions of the Royal Society, London B,

329, 361–368.

Johnston, A.E. 1973. The effects of ley and arable cropping systems

on the amounts of soil organic matter in the Rothamsted and

Woburn Ley-Arable Experiments. Rothamsted Report for 1972,

Part 2, 131–159.

Johnston, A.E., Poulton, P.R. & Coleman, K. 2009. Soil organic

matter: its importance in sustainable agriculture and carbon

dioxide fluxes. Advances in Agronomy, 101, 1–57.

Lilly, A., Bell, J.S., Hudson, G., Nolan, A.J. & Towers, W. 2010.

National Soil Inventory of Scotland 1 (NSIS_1): site location,

sampling and profile description protocols. (1978-1988). Technical

Bulletin, Macaulay Institute (in press).

McGrath, S.P. & Loveland, P.J. 1992. The soil geochemical atlas of

England and Wales. Blackie Academic and Professional, Glasgow.

SI 1998. The Action Programme for Nitrate Vulnerable Zones

(England and Wales) Regulations, 1998. SI 1998 ⁄ 1202. The

Stationary Office, London, ISBN 011 079114 2.

Smith, P. 2004. Soils as carbon sinks – the global context. Soil Use

and Management, 20, 212–218.

Smith, P. & Olesen, J.E. 2010. Synergies between mitigation of, and

adaptation to, climate change in agriculture. Journal of

Agricultural Science, doi:10.1017/S0021859610000341.

Smith, P., Powlson, D.S., Glendining, M.J. & Smith, J.U. 1997.

Potential for carbon sequestration in European soils: preliminary

estimates for five scenarios using results from long-term

experiments. Global Change Biology, 3, 67–79.

Smith, P., Powlson, D.S., Glendining, M.J. & Smith, J.U. 1998.

Preliminary estimates of the potential for carbon mitigation in

European soils through no-till farming. Global Change Biology, 4,

679–685.

Smith, P., Powlson, D.S., Smith, J.U., Falloon, P.D. & Coleman, K.

2000a. Meeting Europe’s climate change commitments:

quantitative estimates of the potential for carbon mitigation by

agriculture. Global Change Biology, 6, 525–539.

Smith, P., Milne, R., Powlson, D.S., Smith, J.U., Falloon, P.D. &

Coleman, K. 2000b. Revised estimates of the carbon mitigation

potential of UK agricultural land. Soil Use and Management, 16,

293–295.

Smith, P., Goulding, K.W., Smith, K.A., Powlson, D.S., Smith,

J.U., Falloon, P.D. & Coleman, K. 2000c. Including trace gas

fluxes in estimates of the carbon mitigation potential of UK

agricultural land. Soil Use and Management, 16, 251–259.

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Kumar,

P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, R.J.,

Sirotenko, O., Howden, M., McAllister, T., Pan, G.,

Romanenkov, V., Rose, S., Schneider, U. & Towprayoon, S. 2007.

Agriculture. In: Chapter 8 of Climate change 2007: mitigation.

Contribution of Working group III to the Fourth Assessment Report

of the Intergovernmental Panel on Climate Change (eds B. Metz,

O.R. Davidson, P.R. Bosch, R. Dave & L.A. Meyer), pp. 497–

540. Cambridge University Press, Cambridge, United Kingdom

and New York, NY, USA.

Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H.H., Pushpam,

K., McCarl, B., Ogle, S., O’Mara, S., Rice, C., Scholes, B.,

Sirotenko, O., Howden, M., McAllister, T., Pan, G.,

Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach,

M. & Smith, J. 2008. Greenhouse gas mitigation in agriculture.

Philosophical Transactions of the Royal Society, B., 363, 789–813.

Smith, P., Gregory, P., van Vuuren, D., Obersteiner, M.,

Rounsevell, M., Woods, J., Havlik, P., Stehfest, E. & Bellarby, J.

2010. Competition for land. Philosophical Transactions of the

Royal Society, B., 365, 2941–2957.

398 P. Smith et al.

ª 2010 The Authors. Journal compilation ª 2010 British Society of Soil Science, Soil Use and Management, 26, 381–398