confronng(( simula&ons(and(observa&ons( of(type(iasupernovae( ·...

13
Confron&ng Simula&ons and Observa&ons of Type Ia Supernovae Benedikt Diemer, 10 th GLCW, 06/15/2010

Upload: others

Post on 03-Aug-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Confron&ng    Simula&ons  and  Observa&ons  of  Type  Ia  Supernovae  

Benedikt  Diemer,  10th  GLCW,  06/15/2010  

Page 2: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Studying  dark  energy  with  Type  Ia  

Riess  et.  al.  1998,  PerlmuNer  et.  al.  1999  (Figure)  RedshiR  z   2  

  Predic&ve  theore&cal  models  of  SN  explosions  may  improve  calibra&on  for  use  as  standard  candles  

ΩΛ  =  0.5  ΩΛ  =  0  

Page 3: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Explosion  models  

  Pure  Deflagra&on     Can  only  account  for  low-­‐luminosity  outliers  

  Deflagra&on-­‐Detona&on-­‐Transi&on  (DDT)   Detona&on  caused  by  turbulence  tearing  flame  apart   Symmetry  depends  on  flame  igni&on  points  

  Gravita&onally  Confined  Detona&on  (GCD)   Detona&on  caused  by  pulsa&on  /  contrac&on  and  inward  jet  

  Inherently  asymmetric  with  azimuthal  symmetry  

3  

Page 4: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

The  GCD  model  

Jordan    et.  al.  2008  

4  

Page 5: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Simula&on  pipeline  

Hydrodynamics  simula&on  (FLASH)  

Nuclear  post-­‐processing  

Radia&on  transfer  (SEDONA)  

Lightcurve  fibng  (SNANA)  

5  

Observer-­‐frame  lightcurve  simula&on  (SNANA)  

Page 6: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Simplified  2D  models  

  Deflagra&on  phase  replaced  by  ar&ficial  pre-­‐expansion  

  No  ash  on  the  surface  (reduced  opacity)  

  Density  structure  for  model  with  MNickel-­‐56  =  0.75  MSun:      

6  t  =  1.5  s   t  =  2.5  s   t  =  5  s  

θ = 0°

θ = 180°

  Viewing  angle:  

Page 7: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Lightcurves  (B-­‐Band)  

7  

Page 8: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Comparison  with  observa&ons  

  Comparison  with  overall  popula&on  of  observed  SNae  rather  than  individual  ones  

  Lightcurve  fits  with  data-­‐driven  models  represent  SN  as  two-­‐parameter  family   Stretch  (rise  /  fall-­‐off  &me)   Color  

8  

Page 9: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Data-­‐driven  models  

Time  since  peak  (days)  

Flux  (arbitrary  un

its)  

9  

2D  Model  with MNi = 0.75 MSun, viewed from near the South Pole (θ = 165°)

SALT2  lightcurve  fit    

Page 10: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Stretch-­‐magnitude  rela&onship  

10  

  Parameters  from  fibng  explosion  models  and  survey  data  with  SALT2  

  Philips  rela&on  not  obeyed  by  explosion  models  

  Viewing  angle  dependence  could  contribute  to  intrinsic  scaNer  in  Philips  rela&on  

θ  =  180°  

θ  =  0°  

θ  =  0°  

θ  =  180°  

Survey  data  from  Kessler  et  al.  2009  

Page 11: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Stretch-­‐color  rela&onship  

11  

Survey  data  from  Kessler  et  al.  2009  

θ  =  180°  

θ  =  180°  

Page 12: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Next  steps  

  Verify  validity  of  simplified  2D  models  vs.  proper  deflagra&on  calcula&ons  

  Systema&cally  compare  to  other  models  (like  DDT)  and  observa&ons  

12  

Page 13: Confronng(( Simula&ons(and(Observa&ons( of(Type(IaSupernovae( · Confronng((Simula&ons(and(Observa&ons(of(Type(IaSupernovae(BenediktDiemer,(10thGLCW,06/15/2010

Conclusion  

  Together  with  Rick  Kessler,  enhanced  SNANA  and  developed  pipeline  to  enable  comparisons  with  observa&ons  

  Lightcurves  match  data-­‐driven  model  predic&ons  

  Significant  dependence  of  lightcurve  proper&es  on  viewing  angle     1D  simula&ons  are  spherically  symmetric  and  hence  inadequate  

 May  be  contributor  to  scaNer  in  Philips  rela&on  

13