concrete research at the university of wollongong, australiafrp bars/strips cross-section of...

49
Concrete Research at the University of Wollongong, Australia Assoc Prof. Muhammad Hadi 1

Upload: others

Post on 06-Feb-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

  • Concrete Research at the University of Wollongong, Australia

    Assoc Prof. Muhammad Hadi

    1

  • Tim McCarthy Muhammad Hadi Alex Reminnokov Neaz Sheikh Tao Yu Shishum Zhang Lip Teh (Steel)

    2

  • Faez Alhussainy, Hayder Alaa Hasan, Sime Rogic, M. Neaz Sheikh, Muhammad N.S. Hadi

    3

  • 4Details of direct tensile test for Concrete

  • 5

  • 6

  • Muhammad N. S. Hadi Faez Alhussainy M. Neaz Sheikh

    7

  • Steel bars are traditionally used inreinforced concrete members.

    In general steel bars are solid in crosssection.

    Steel tubes that have the same crosssectional area as solid bars will havehigher second moment of area andstiffness.

    Using steel tubes in lieu of solid bars willincrease the stiffness of concretemembers.

    8Steel tubes

    Steel bars

  • Self-Compacting Concrete is an innovative concrete that can

    flow and consolidate under its only weight.

    Placement of SCC by pump tremie

    (Goodier, 2003)9(Mott MacDonald Ltd)

  • Self-Compacting Concrete Mix proportion

    • Type of mix EFNARC (2002) method.

    Self-compacting concrete mix proportion

    Material Quantity/1m3 of concrete

    Cement 280 kgMineral admixtures 170 kg

    Fine aggregate 950 kgCoarse aggregate 780 kg

    Water 182 kgHigh Range Water Reducer 3.375 l/ m3

    Water/Powder ratio 0.4

    10

  • Check fresh concrete properties with ASTM Methodsa) Slump flow test

    Slump flow test

    Calculate the slump flow (SF) according to the flowing equation:

    Where :dmax = The maximum diameter of the circular spread of the SCC.

    .

    dperp = The perpendicular diameter to dmax.

    This test was carried out according to ASTM C1611 (2014).

    2max perpddSF

    11

  • b) J- Ring test

    J-Ring test

    Calculate J-Ring flow (RF) according to the following equation:

    Where:jmax= The maximum diameter of the circular spread of the SCC.jperp= The perpendicular diameter to jmax .

    2max perpjjRF

    12

    This test was carried out according to ASTM C1621 (2014).

    Passing Ability= slump flow – J-Ring flow

  • (250 mm)

    (510 mm)

    (170 mm)

    (50 mm)

    (115 mm)

    (220 mm)

    (230 mm)

    (515 mm)

    Detail of column mould Detail of collector plate

    c) Column segregation test

    • ASTM C-1610 (2014).

    • This test evaluates the static stability of a concrete mixture.

    • This test consists of filling a 660 mm high cylindrical mould with concrete.

    (Based on ASTM C-1610, 2014)13

  • c) Column segregation test (cont'd)

    WhereS % = percent static segregation.CAT = mass of coarse aggregate in the top section of the column.CAB= mass of coarse aggregate in the bottom section of the column.

    Column test

    Percent static segregation is calculated from equation:

    100CACACACA2%S

    TB

    TB

    ,0%S

    if CAB > CAT

    if CAB ≤ CAT

    14

  • b) Tensile testing of steel tube

    • ASTM A370, (2014). • A design that used for such plugs is shown in Figure.

    Gauge Length

    d

    d

    d

    d

    d

    Testing machine jaws should not extend beyond this limit

    dd

    2d

    Metal plugs for testing tubular specimens

    Metal plugs

    (Based on ASTM A370, 2014)15

  • C) Compression testing of steel bars and tubes

    (a) Steel bars (b) Steel tubes

    Compressive test of samples16

  • Axial tension load-deformation curves for Specimens N12 and ST26.9

    17

    N12

    ST26.9

  • Axial tension load-deformation curves for Specimens N16 and ST33.7

    18

    ST33.7

    N16

  • 19

    Group 1 Group 2 Group 3 Group 4 Group 5

    Experimental Program

  • 20

    GroupNo.

    SpecimenLabels

    Diameter (mm)

    Height(mm)

    Longitudinal Reinforcement Transverse Reinforcement Loading ModesNo.

    of Bars or Tubes

    External Diameterof Bars or

    Tubes (mm)

    Thickness of Tubes,

    (mm) %

    Diameter of Bars (mm)

    Pitch (mm)

    %

    1

    N16H50C 240 800 6 16 (N16) ‐‐‐‐‐ 2.67 R10 50 3.3 Concentric

    N16H50E25 240 800 6 16 (N16) ‐‐‐‐‐ 2.67 R10 50 3.3 e = 25 mmN16H50E50 240 800 6 16 (N16) ‐‐‐‐‐ 2.67 R10 50 3.3 e = 50 mmN16H50F 240 800 6 16 (N16) ‐‐‐‐‐ 2.67 R10 50 3.3 Flexural

    2

    ST33.7H50C 240 800 6 33.7 2 2.64 R10 50 3.3 Concentric

    ST33.7H50E25 240 800 6 33.7 2 2.64 R10 50 3.3 e = 25 mm

    ST33.7H50E50 240 800 6 33.7 2 2.64 R10 50 3.3 e = 50 mm

    ST33.7H50F 240 800 6 33.7 2 2.64 R10 50 3.3 Flexural

    3

    ST33.7H75C 240 800 6 33.7 2 2.64 R10 75 2.2 Concentric

    ST33.7H75E25 240 800 6 33.7 2 2.64 R10 75 2.2 e = 25 mm

    ST33.7H75E50 240 800 6 33.7 2 2.64 R10 75 2.2 e = 50 mm

    ST33.7H75F 240 800 6 33.7 2 2.64 R10 75 2.2 Flexural

    4

    ST26.9H50C 240 800 6 26.9 2.6 2.63 R10 50 3.3 Concentric

    ST26.9H50E25 240 800 6 26.9 2.6 2.63 R10 50 3.3 e = 25 mm

    ST26.9H50E50 240 800 6 26.9 2.6 2.63 R10 50 3.3 e = 50 mm

    ST26.9H50F 240 800 6 26.9 2.6 2.63 R10 50 3.3 Flexural

    5

    ST26.9H75C 240 800 6 26.9 2.6 2.63 R10 75 2.2 Concentric

    ST26.9H75E25 240 800 6 26.9 2.6 2.63 R10 75 2.2 e = 25 mm

    ST26.9H75E50 240 800 6 26.9 2.6 2.63 R10 75 2.2 e = 50 mm

    ST26.9H75F 240 800 6 26.9 2.6 2.63 R10 75 2.2 Flexural

    Details of Tested Specimens

  • 21

    Construction of formwork

    Fabricated reinforcing cages

  • 22

    Strain Gauges

    3D View 3D View 3D ViewSide Elevation View Side Elevation View Side Elevation View

    Front Elevation ViewFront Elevation ViewFront Elevation View

    Plan View Plan View Plan View

    Positions of PFL‐10 Gauges for longitudinal reinforcement

    Positions of FCA‐10 Biaxial  Gauges for longitudinal 

    reinforcement

    Positions of FLA‐5 Gauges for transvers  reinforcement

    Photo of Strain Gauge Gluing

  • 23

    After casting of specimensBefore casting of specimens

  • 24 Typical set up of a column Specimen

    Loading heads

    Four point loading method 

  • 25

    Columns groups N16H50 ST33.7H50 ST26.9H50 ST33.7H75 ST26.9H75

    Maximum load (kN) 2734 2729 2598 2633 2443

  • 26

    Failure Modes

  • Tao [email protected]

    FRP = Fiber-Reinforced Polymer

  • 0

    10

    20

    30

    40

    50

    60

    70

    0 0.01 0.02 0.03

    axial strain

    axia

    l stre

    ss (M

    Pa)

    unconfined concrete

    Steel confined concrete

    FRP confined concrete

  • 1. Corrosion-resistant skin 2. Stay-in-place formwork for

    casting concrete3. Confining device for

    improved strength and ductility

    FRP tube

  • Hybrid FRP-concrete-steel double-skin tubular structural columns (DSTCs)

    Excellent ductility & seismic resistance Excellent durability Ease for construction

    FRP tube

    Concrete

    Steel tube

  • No. Specimen ID.Thickness of FRP wrap

    (ply)

    Steel tube diameter (d/mm)

    Steel tube thickness (t/mm)

    Void ratio D/t

    1 DSTC-A2-I, II 2 plies 139.7 3.5 (A) 0.68 39.9

    2 DSTC-A3-I, II, III 3 plies 139.7 3.5 (A) 0.68 39.9

    3 DSTC-A4-I, II 4 plies 139.7 3.5 (A) 0.68 39.9

    4 DSTC-B3-I, II, III 3 plies 139.7 5.4 (B) 0.69 25.9

    5 CFDSTC-A3-I, II 3 plies 139.7 3.5 (A) N/A 39.9

    6 CFDSTC-B3-I, II 3 plies 139.7 5.4 (B) N/A 25.9

    7 FCSC-2-I, II 2 plies - - - -

    8 FCSC-3-I, II 3 plies - - - -

    9 FCSC-4-I, II 4 plies - - - -

    10 CESC-A-I N/A 139.7 3.5 0.68 39.9

    11 CESC-B-I N/A 139.7 5.4 0.69 25.9

    12 FCESC-H2-I, II 2 plies Dimensions of the H-section steel column

    13 FCESC-H3-I, II 3 plies b h tf tw14 FCESC-H4-I, II 4 plies 100 152.6 6.8 6.131

    Columns with a PET FRP Tube

  • 0 10 20 30 40 50 60 70 80 900

    500

    1000

    1500

    2000

    2500

    3000

    3500

    Axi

    al L

    oad

    (kN

    )

    Total Axial shortening (mm)

    DSTC-A2-I DSTC-A3-I DSTC-A4-I Concrete Filled DSTC-A3-I

  • 0 10 20 30 40 50 60 70 800

    600

    1200

    1800

    2400

    3000

    3600

    4200

    Axi

    al L

    oad

    (kN

    )

    Axial Shortening (mm)

    CFDSTC-B3-II FCSC-3-II DSTC-B3-II CESC-B

  • Near-surface mounted (NSM) fiber-reinforced polymer (FRP) reinforcement: An emerging and promising technique for

    structural strengthening

    Shishum Zhang

  • Flexural Strengthening of concrete members

    Tension rebar

    Stirrup

    Adhesive FRP

    Tension rebar

    Stirrup

    2c

    1c

    ea eagagagagw gw gw gw

    ghghghgh

    Groove Groove filler

    fhbhbbbd

    bb bwft

    Externally bonded FRP laminates

    Near-surface mounted FRP bars/strips

    Cross-section of strengthened RC beams

    The most important advantage of the NSM FRP method over the EB FRP method is the improved bond effectiveness between FRP and concrete, leading to a higher debonding strain of the FRP.

  • Bond between NSM FRP and concrete

    Adjustablesupports

    Rollers

    Base plate

    Bearing plate

    Grip

    Support block

    Concrete block

    lbPositioning frame

    l

    FRP strip/barEstablishment of the first ever 3-D meso-scale finite element model for bonded joints between a near-surface mounted (NSM) FRP strip and concrete.

    Teng, J.G., Zhang, S.S., Dai, J.G. and Chen, J.F. (2013). “Three-dimensional meso-scale finite element modeling of bonded joints between a near-surface mounted FRP strip and concrete.”Computers & Structures, Vol. 117, pp. 105–117. (A* journal according to ERA ranking)

  • Bond-slip model between FRP and concrete

    0

    2

    4

    6

    8

    10

    12

    14

    0 0.2 0.4 0.6 0.8 1 1.2 1.4

    Loca

    l bon

    d st

    ress

    (MP

    a)

    S l ip (mm)

    Proposed model (h_g/w_g=2.33)

    Proposed model (h_g/w_g=4)

    Proposed model (h_g/w_g=5.67)

    FE analysis (h_g/w_g=2.33)

    FE analysis (h_g/w_g=4)

    FE analysis (h_g/w_g=5.67)

    Can be :1) used to establish the bond strength model of NSM CFRP strip-to-

    concrete bonded joints; and2) incorporated into FE models of RC structures strengthened with CFRP

    strips to simulate the debonding failure process.

    Formulation of the first accurate bond-slip model for CFRP strips near-surface mounted to concrete.

    )22

    sin()2( 2B

    sBB

    sBA

    619.0422.04.0 cf fG 613.0138.0

    max 15.1 cf

    0.138 0.6130.72 cA f

    0.284 0.0060.37 cB f

    Zhang, S.S., Teng, J.G., Yu, T. (2013). “Bond-slip model for CFRP strips near-surface mounted to concrete.” Engineering Structures, Vol. 56, pp. 945–953. (A* journal according to ERA ranking)

  • Bond strength model between FRP and concrete

    2u f f f failureP G E A C

    2u L f f f failureP G E A C

    66.1

    eL

    fff

    failure

    AEGC

    2

    2max2

    0.0

    50.0

    100.0

    150.0

    200.0

    250.0

    300.0

    0.0 50.0 100.0 150.0 200.0 250.0 300.0

    Test

    bon

    d st

    reng

    th (k

    N)

    P rediction of the proposed model

    5.67

    Average=0.924STD=0.109CoV=0.118

    Work done before joining UOW:Development of a bond strength model for NSM CFRP strip-to-concrete bonded joints, which is the first model that can accurately account for the effect of bond length on bond strength

    FRP element cohesive element

    P

    Zhang, S.S., Teng, J.G., and Yu, T. (2014). “Bond strength model for CFRP strips near-surface mounted to concrete.” Journal of Composites for Construction, ASCE, in press. (A journal according to ERA ranking)

  • FE modelling of NSM FRP-Strengthened RC beamsTest FE prediction

    Work done before joining UOW:Development of an accurate finite element model for predicting end cover separation failures in RC beams strengthened with FRP in flexureZhang, S.S. and Teng, J.G. (2014). “Finite element analysis of end cover separation in RC beams strengthened in flexure with FRP”, Engineering Structures, Vol. 75, pp.550-560. (A* journal according to ERA ranking)

  • Simplified FE model for debonding failure

    Development of an accurate simplified finite element model

    Zhang, S.S. and Teng, J.G. (2015). “End cover separation in RC beams strengthened in flexure with bonded FRP reinforcement: simplified finite element approach”, Materials and Structures, 49 (6), 2223-2236

  • Strength model for debonding failure in strengthened concrete beams

    cearDbAEscR fbcl/separation 6.3

    16.025.015.16.0008.0952.0

    PP

    PPR if

    if

    )08.0100

    )(05.15.4( 023.1266.0 c

    ccsc

    ss

    cs

    19.04860 ff

    AE EA

    094.0

    85.0

    t

    clear

    Db D

    bt

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    0 1000 2000 3000 4000 5000 6000 7000

    ε db

    from

    Sim

    plifie

    d FE

    mod

    el (μ

    ε)

    εdb from proposed model (με)

    Average: 1.00STD: 0.070CoV: 0.070

    Establishment of an accurate strength model for end cover separation failures in RC beams strengthened with FRP in flexure

    Teng J.G., Zhang S.S. and Chen J.F. (2015). “Strength Model for End Cover Separation Failure in RC Beams Strengthened with Near-surface Mounted (NSM) FRP Strips”, submitted to Engineering Structures, under review. (A*journal according to ERA ranking)

  • Analytical solution to interaction forces between NSM FRP and beam

    Analytical and numerical investigations on the prediction of interaction forces in beams strengthened with near-surface mounted FRP bars.

    Zhang, S.S. and Yu T. (2015). “Analytical solution for interaction forces in beams strengthened with near-surface mounted round bars”, submitted to Construction and Building materials, under review. (A journal according to ERA ranking)

    0)(

    )(11)(2

    2

    2

    xVIEIE

    dk

    xFAEAEIEIE

    dk

    dxxFd

    Tffbb

    fbl

    lffbbffbb

    fbl

    l

    01

    )()(11)(44

    qIE

    k

    dxxdF

    IEy

    IEykxF

    IEIEk

    dxxFd

    bbv

    l

    ff

    f

    bb

    bvv

    ffbbv

    v

    0

    10

    20

    30

    40

    50

    60

    0 10 20 30 40 50

    Tang

    entia

    l inte

    ract

    ion

    forc

    e (N

    / mm

    )

    Distance from the NSM bar end (mm)

    FE modelPresent method

    -2

    0

    2

    4

    6

    8

    10

    12

    0 10 20 30 40 50Nor

    mal in

    terac

    tion f

    orce

    (N / m

    m)

    Distance from the NSM bar end (mm)

    FE modelPresent method

  • Novel FRP anchorage system

  • Novel FRP anchorage system

    Adjacent concrete wall

    Optical fibers with FBG sensors (to Optical Sensing Interrogator )

    GFRP sheets

    GFRP anchor

  • Novel FRP anchorage system

    0

    1500

    3000

    4500

    6000

    7500

    9000

    0 10 20 30M

    icro

    stra

    in

    Load (kN)

    FBGStrain guage

    Tensile tests

    Bond tests

  • Novel FRP anchorage system

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 5 10 15 20

    Mic

    rost

    rain

    Root moment (kN*m)

    FBG-L-3FBG-L-4Strain guage

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 5 10 15 20 25

    Mic

    rost

    rain

    Root Moment (kN*m)

    FBG-L-1FBG-L-2FBG-R-1FBG-R-2

    0

    500

    1000

    1500

    2000

    2500

    3000

    0 5 10 15 20

    Mic

    rost

    rain

    Root moment (kN*m)

    FBG-R-3FBG-R-4Strain guage

    0

    5

    10

    15

    20

    25

    30

    0 10 20 30 40 50 60

    Roo

    t mom

    ent (

    kN*m

    )

    Free end deflection(mm)

    SS-1SS-2

    Unstrengthened SS-2: 17.5 kN*m

    Unstrengthened SS-1: 15.3 kN*mSlab tests

  • Other projects

  • Smart FRP bars

    Fiber-optic monitoring of FRP-strengthened RC slabs

    Fiber-optic monitoring of underground jacking pipes

    Alkaline Resistance of GFRP Bars

  • 49