concentrated solar power on demand-cspond - mit - massachusetts institute of technology...

43
Charles Forsberg Department of Nuclear Science and Engineering (NSE) Massachusetts Institute of Technology 77 Massachusetts Ave; Bld. 42-207a; Cambridge, MA 02139 Tel: (617) 324-4010; Email: [email protected] November, 2011 Concentrated Solar Power on Demand CSPond: Solar Harvesting and Storage CSPond Faculty: Alexander Slocum (ME), Jacopo Buongiorno (NSE), Charles Forsberg (NSE), Thomas McKrell (NSE), Alexander Mitsos (ME), Jean-Christophe Nave (ME) CSPond Students: Daniel Codd (ME), Amin Ghobeity (ME), Corey J. Noone (ME), Stefano Passerini (NSE), Jennifer Rees (ME), Folkers Rojas (ME)

Upload: others

Post on 19-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Charles ForsbergDepartment of Nuclear Science and Engineering (NSE)

Massachusetts Institute of Technology77 Massachusetts Ave; Bld. 42-207a; Cambridge, MA 02139

Tel: (617) 324-4010; Email: [email protected]

November, 2011

Concentrated Solar Power on Demand CSPond: Solar Harvesting and Storage

CSPond Faculty:Alexander Slocum (ME), Jacopo Buongiorno (NSE), Charles Forsberg (NSE), Thomas McKrell (NSE), Alexander Mitsos (ME), Jean-Christophe Nave (ME)

CSPond Students:Daniel Codd (ME), Amin Ghobeity (ME), Corey J. Noone (ME), Stefano Passerini (NSE), Jennifer Rees (ME), Folkers Rojas (ME)

Page 2: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Joint Mechanical and Nuclear Science and Engineering Project

Shared Liquid-Salt Technology Base

L

D Z

Molten Salt

Pond

Gra

phite

Insu

latio

n

Sola

r bea

m

Aperture (closes at night or in bad

weather)

Salt to/from salt in loop at steam generator

Ground

Fluoride-Salt High-Temperature Reactor (FHR)

Concentrated Solar Power on Demand (CSPonD)

2

Page 3: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

OutlineExisting solar systemsCSPond Base Case DesignExperimental ValidationAlternative Design OptionsPath Forward

3

A. Slocum, J. Buongiorno, C. W. Forsberg, T. McKrell, A. Mitsos, J. Nave, D. Codd, A. Ghobeity, C. J. Noone, S. Passerini, F. Rojas,

“Concentrated Solar Power on Demand,” J. Solar Energy

Page 4: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Existing Solar Power Towers

Mirrors reflect sunlight to boilerBoiler tubes on top of tall tower absorb lightHeat water and convert to steamSteam turbine produces electricityPoor economics High capital cost Low thermal efficiency

PS-10, 11MWe peak, image courtesy of N. Hanumara

4

Page 5: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

The Challenge is CostLow efficiency system In theory: high efficiency In practice

Low steam temperatures to avoid boiler-tube thermal fatigue from variable light

Wind and sunlight always changing energy fluxes

High heat loses from exposed boiler tubes

High costs Mirrors

Largest cost component Incentives for efficient light to

electricity system

Tall tower PS-10, Spain, 11MWe peak, image courtesy of N. Hanumara

5

Page 6: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPondBase-Case Design

6

Page 7: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPond CharacteristicsCombining Many Technologies in a New Way

Concentrated solar thermal power systemBuilt-in thermal storageHeliostat field similar to solar power towerRadically different light receiver to: Boost light-to-electricity efficiency Provide thermal heat storage

Unique features: Light volumetrically absorbed in liquid salt bath Salt bath could operate to 1000°C

7

Page 8: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPond DescriptionFigure Next Page

Mirrors shine sunlight to receiver Receiver is a high-temperature liquid salt bath inside

insulated structure with open window for focused light Light volumetrically absorbed through several meters of liquid salt Building minimizes heat losses by receiver Enables salt temperatures to 900 C

Small window minimizes heat losses but very high power density of sunlight through open window Power density would destroy conventional boiler-tube collector Light absorbed volumetrically in several meters in salt

Requires high-temperature (semi-transparent) salt—Similar salt requirements as for FHR heat transfer loop

8

Page 9: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

(Not to scale!)

Two Component System

Light Reflected From Hillside Heliostat rows to CSPonD System

Light Collected Inside Insulated Building With Open Window

9

Cold Salt from HX

Hot Salt to HX

Lid Heat Extraction

Non-Imaging Refractor Lid

Page 10: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Advantages of Hillside Heliostat Field

Eliminate tower-based receiver—heavy equipment on ground

Avoid remote storage and high pressure pumps

Downward focused light

Potentially lower land costs

10

Page 11: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPond Light Receiver

Light Volumetrically Absorbed in Liquid Salt Bath

Efficient light-to-heat collection Concentrate light Focus light through

small open window Minimize heat losses

Challenge Light energy per

unit area very high Will vaporize solid

collectors

11

Cold Salt from HX

Hot Salt to HX

Lid Heat Extraction

Non-Imaging Refractor Lid

Page 12: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

12

Light volumetrically absorbed through several meters of saltMolten salt experience Metal heat treating

baths (right bottom) Molten salt nuclear

reactorAdvantages No light-flux limit No thermal fatigue Can go to extreme

temperatures

Light Focused On “Transparent” Salt

Molten Chloride Salt Bath (1100°C)

12

Page 13: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Cooled ceiling: Lid Heat ExtractionSalt buildup until “liquid” salt layer with flow back to salt bathSelf-protecting, self-healing ceilingHighly reflective

Salt Vapor Condenses On Ceiling13

Cold Salt from HX

Hot Salt to HX

Lid Heat Extraction

Non-Imaging Refractor Lid

Page 14: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Qin

Qsalt

System Losses:

Qrad, lid-aperture

Qconv, lid-aperture

Qrad, pond-aperture

Qtank

Heat to lid:

Qconv, pond-lid

Qrad, pond-lid

Qvaporization

Qreflected

ηcapture =Qsystem

Qin

=Qin – (Qrad, l-a + Qconv, l-a + Qrad, p-a + Qtank)

Qin

Qin – Qlosses

Qin

=

Capture Efficiency: Energy Balance

14

Page 15: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Two Classes Of Molten Salts

Appearance of molten

NaCl-KCl salt at 850°C

Near-term: Nitrates Used in some concentrated

thermal energy solar systems

Off the shelf Temperature limit of ~550°C

(Degradation) Longer-term: Chlorides

and Carbonates Thermodynamically stable Peak temperatures >

1000°C

15

Page 16: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

System Design Enables Efficient Light Collection and High Temperatures

16/29

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 500 1000 1500 2000 2500 3000 3500Peak Concentration (kW/m^2, 'suns')

fract

ion

of in

cide

nt e

nerg

y at

ape

rture

Chloride Salt: 950Clid temp 660C

Aperture to Illuminated Pond Area ratio

NREL Solar II: salt 565C

NREL Solar I: steam 500C

Nitrate Salt: 550Clid temp 240C

Peak & average values

NREL (2003)

Compares favorably with measured values for CSP Power Tower

Systems

system output (MWe): 4

nominal pond size

diameter (m): 25.0

depth (m): 5.0

avg beam down angle (deg): 21.4

Nitrate Salt, Lid peak temp (C): 550/240

Chloride Salt, Lid peak temp (C): 950/660

16

Page 17: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPond IntegralHeat Storage

17

Salt tank has insulated separator plate

Plate functions Separates hot and cold salt Bottom light absorber

Storage role If excess heat input, plate

sinks to provide hot salt storage volume

If power demand high, plate raised with cold salt storage under plate

Nighttime

Divider plate (moves up)

Divider plate (moves down)

Daytime

Page 18: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Divider plate (moves up)

Nighttime

Hot salt

Cold salt

Divider plate (moves down)

24/7 “hot salt” as the average temperature of the tank decreases when the sun is not shining

∅28m

5m

4 MWe System Sizing:2500 m3 salt

40 hours storage

Daytime = charging

Virtual Two-Tank Concept18

Page 19: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

system output (MWe): 4

nominal pond size

diameter (m): 25.0

depth (m): 5.0

avg beam down angle (deg): 21.4

Nitrate Salt, Lid peak temp (C): 550/240

Chloride Salt, Lid peak temp (C): 950/660

Lid αvis /εir 0.44

Low-temp heat rejection (C): 25

System PerformanceUses for lid heat:

Low temp (Nitrate)•Power cycle pre/reheat•RO feedwater heat•MED feedwater heat

High temp (Chloride)•Power cycle primary heat

Lid Useful Energy

Salt Useful Energy

Overall System Useful Energy

Nitrate (550/240)

Chloride (950/660)

19

Page 20: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPondExperimental Testing and Analysis

20

Page 21: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

NaNO3-KNO3(60-40wt%)

NaCl-KCl (50-50wt%)

Molten Salt Optical Characterization

(l) Variable optical path length transmission apparatus

(r) Appearance of molten NaCl-KCl salt at 850°C

Stefano Passerini, Dr. Tom McKrell, Prof. Jacopo Buongiorno, MIT

Solar Irradiance Attenuation of NaCl-KCl (50-50wt%) salt at 850°C

Experimental Range

21

Page 22: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

7x 1500 W metal halide lights

60 kW/m2 peak

∅38 cm aperture

Adjustable:

height (0-1 m)

angle (0-90° tilt)

60-Sun Solar Simulator

MIT CSP Solar Simulator

10.5 kWe

300 400 500 600 700 800 900 1000

wavelength (nm)

Spec

tral

Inte

nsity

(arb

itrar

y un

its)

MIT CSP Simulator

Terrestrial solar spectrum

Commercial Xenon Solar Simulator

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

X = radial offset from aperture center (cm)

Cal

cula

ted

Opt

ical

Pow

er (k

W/m

2 )

x

ε n = 0.06 α solar = 0.14

ε n = 0.05 α solar = 0.11

ε n = α solar = 0.11

22

Page 23: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

200 220 240 260 280 300 320 340 360

Temperature (°C)

Hei

ght (

x/L)

0 h salt

0 h tank

2.8 h salt

2.8 h tank

8.3 h salt

8.3 h tank

Increasing time

Volumetric Light Absorption

Temperature distribution of NaNO3-KNO3 (60-40wt%) heated optically

Increasing time

t = 0 2.8 h

8.3 h

23

Page 24: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Virtual Two-Tank System Testing

Ceramic (high temp) insulation

Fiberglass insulation

Salt tank @ 300°C with nitrate salt

Inside Solar Simulator

24

Page 25: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Divided Thermocline Storage

Temperature distribution of NaNO3-KNO3 (60-40wt%) heated optically

UP

25

DOWN

Enables 24/7 power

25

Page 26: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Tank Wall Design

Flexible alloy liner Reduces thermal

shock in refractory lining

“Internal” firebrick insulation allows for mild steel tank shell

from Kolb (1993) and Gabbrielli (2009)

Flexible protective liner made of AISI 321H stainless steel

26

Page 27: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Solar Flux Distribution Modeling

iairtsalt nn θθ sinsin =

ir θθ =

φθ −°= 90i

0

1

0 45 90

CSPonD beam-down systems are in this range

Beam-down angle

Reflected intensity

2

)sin()sin(

+−

=it

itsR

θθθθ

2

)tan()tan(

+−

=it

itpR

θθθθ

( ) 2/ps RRR +=

Reflected

θi θr

θt

Beam-down angle =ϕ

Incident

Transmitted

Flux distribution in receiver from a single central

heliostat

27

Page 28: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPondAlternative Design Options

28

Page 29: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Heliostat Field Placement Options

Mirrors to Hilltop

CollectorHillside Mirrors

to CollectorTower Reflects

Light Downward

29

Page 30: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Multiple Power Cycle OptionsSalt Temperature: 500°C, 700°C, and 700+°C

Steam power cycles--TodaySupercritical carbon dioxide power cycle High efficiency Very compact and potentially low cost Advanced technology

Air Brayton power cycle Existing technology No cooling water options Requires 700 C salt temperatures

30

Page 31: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Carbon Dioxide Properties Result in Very Small Equipment

Main compressor wheel: 85kW

Manufactured by Barber & Nichols for SNL

31

Page 32: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

50-MWe Power Conversion Unit

Small UnitsShop Fabricated

32

Page 33: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Air-Brayton Power Cycles

Air Brayton power cycles have low cooling requirements relative to other power cyclesViable at salt peak temperatures of ~700 C Significant efficiency penalties at lower

temperaturesSeveral different options

33

Page 34: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Open-Air RecuperatedBrayton Liquid-Salt

Power Conversion Cycle

Reheatersalt

HeatersaltRecuperator

TurbinesGenerator

Compressor

Air Inlet

Stack

Liquid SaltAir

34

Page 35: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Open-Air Brayton Liquid-Salt Combined Cycle Power Cycle

Reheatersalt

Reheatersalt

Heatersalt

TurbinesGenerator

Compressor

Air Inlet

Stack

Heat Recovery Steam Generator

High Temperature SaltAirWater or Steam

35

Page 36: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Comparison of Brayton Power Cycles700 C1 Salt; 100 MW(t) Plant

Cycle Air Brayton Combined CycleEfficiency 40% 44%

Condenser Heat

Rejection*

None(No water

requirement)

28 MW(t)

1Efficiency drops rapidly with peak temperature2Traditional closed power cycles (Steam, Carbon Dioxide, Helium) with 50% efficiency reject 50 MW(t) to Condenser

36

Page 37: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

CSPond StatusPatents Pending

37

Page 38: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Two Parallel or Sequential Paths Forward

Small 100 kw systems integration test using nitrate salts Uses proven existing solar salt Rapid testing possible

Develop higher-temperature chloride or carbonate CSPond Higher efficiency with potentially lower costs Robust against salt degradation Follow-on integration test with different salts

38

Page 39: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

salt loop to/from HX

Not shown: aperture cover, concentration “booster”, lid heat rejection system and divider plate actuator

Hot salt

Cold salt

Lid geometry T.B.D. for 1-bounce down

Overall receiver size:

~ 4m dia x 3m (w/o lid)

Salt Tank:

•2m dia x 2m depth

•6.2 m3 salt capacity (11.2 metric tons)

•Nitrate salt (550C/275C)

•15 h storage (1.5 MWh)

•2.4 MWh daily solar input required for continuous operation

Next Step: 100 kWt Research System39

Page 40: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

NaNO3-KNO3(60-40wt%)

NaCl-KCl (50-50wt%)

Next Step: Alternative SaltsInsufficient Data for Non-Nitrate Systems

Higher temperature salts more robust (no possibility of thermal decomposition)

Higher efficiency with open air Brayton power cycles and no water requirements

Stefano Passerini, Dr. Tom McKrell, Prof. Jacopo Buongiorno, MIT

Solar Irradiance Attenuation of NaCl-KCl (50-50wt%) salt at 850°C

Experimental Range

40

Page 41: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

ConclusionsAnalysis and experiments indicate significantly better economics than existing concentrated solar power-tower systems (Higher efficiency)Significant uncertainties (Path forward) No small pilot plant under realistic conditions Limited review (Wider review underway now that patent filings

complete) Large incentives for higher-temperature salt than nitrate (more robust

system and dry cooling) but limited experimental dataLarge incentives to determine commercial viability of CSPond

41

Page 42: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Questions

42

42

Page 43: Concentrated Solar Power on Demand-CSPond - MIT - Massachusetts Institute of Technology Forsberg... · 2011. 11. 29. · Concentrated solar thermal power system Built-in thermal storage

Biography: Charles Forsberg

Dr. Charles Forsberg is the Executive Director of the Massachusetts Institute of Technology Nuclear Fuel Cycle Study, Director and principle investigator of the High-Temperature Salt-Cooled Reactor Project, and University Lead for Idaho National Laboratory Institute for Nuclear Energy and Science (INEST) Nuclear Hybrid Energy Systems program. Before joining MIT, he was a Corporate Fellow at Oak Ridge National Laboratory. He is a Fellow of the American Nuclear Society, a Fellow of the American Association for the Advancement of Science, and recipient of the 2005 Robert E. Wilson Award from the American Institute of Chemical Engineers for outstanding chemical engineering contributions to nuclear energy, including his work in hydrogen production and nuclear-renewable energy futures. He received the American Nuclear Society special award for innovative nuclear reactor design on salt-cooled reactors. Dr. Forsberg earned his bachelor's degree in chemical engineering from the University of Minnesota and his doctorate in Nuclear Engineering from MIT. He has been awarded 11 patents and has published over 200 papers.

43