computation of corrosion

114
COMPUTATION OF CORROSION Ernesto Gutierrez-Miravete Universidad IberoAmericana June 1998

Upload: freeuser3

Post on 03-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 1/114

COMPUTATION OF

CORROSION

Ernesto Gutierrez-Miravete

Universidad IberoAmericanaJune 1998

Page 2: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 2/114

CONTENTS

1 INTRODUCTION

2 CORROSION

THERMODYNAMICS

3 ELECTRODE KINETICS

4 CORROSION KINETICS5 COMPLEX CORROSION

SYSTEMS

Page 3: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 3/114

1 INTRODUCTION

1.1 ECONOMIC SIGNIFICANCE

1.2 DEFINITION OF CORROSION1.3 THERMODYNAMICS

1.4 ELECTROCHEMISTRY

1.5 KINETICS

Page 4: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 4/114

1.1 ECONOMIC

SIGNIFICANCE• CONSEQUENCES OF CORROSION

 –  WASTE OF UP TO ~ 3% OF GNP

 –  WASTE OF NATURAL RESOURCES

 –  ECOLOGICAL DAMAGE

• UP TO ~ 1% OF THE WASTED GNP

COULD BE SAVED IF EXISTINGKNOWLEDGE IS APPLIED!

Page 5: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 5/114

1.2 DEFINITION OF

CORROSION• ELECTROCHEMICAL WEAR OF

METALS EXPOSED TO REACTIVE

AQUEOUS ENVIRONMENTS

• WEAR PRODUCTS ARE STABLE

METAL COMPOUNDS

• THERE ARE MANY DIFFERENTFORMS OF CORROSION

Page 6: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 6/114

1.3 THERMODYNAMICS

• SYSTEM; SURROUNDINGS;

EQUILIBRIUM

• STANDARD STATE

• LAWS OF THERMODYNAMICS

• CHEMICAL POTENTIAL

• EQUILIBRIUM CONSTANT

• REACTION ISOTHERM

Page 7: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 7/114

1.4 ELECTROCHEMISTRY

• ELECTROCHEMICAL POTENTIAL

• ELECTROCHEMICAL CELLS

 –  OXIDATION REACTION (ANODE) –  REDUCTION REACTION (CATHODE)

• HALF CELL AND SINGLE POTENTIAL

 –  NERNST EQUATION

• ELECTROCHEMICAL SERIES

Page 8: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 8/114

1.5 KINETICS

• CHEMICAL REACTION RATE

• ARRHENIUS RATE EQUATION

• ACTIVATED COMPLEX• ACTIVATION ENERGY

• REACTION MECHANISMS AT AN

ELECTRODE-ELECTROLYTEINTERFACE

Page 9: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 9/114

2 CORROSION

THERMODYNAMICS2.1 CHEMICAL SYSTEMS

2.2 ELECTROCHEMICALSYSTEMS

2.3 DIAGRAMS POTENTIAL-pH

2.4 IMMUNITY, PASSIVITY ANDCORROSION

2.5 EXAMPLES

Page 10: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 10/114

2.1 CHEMICAL SYSTEMS I

• GIBBS FREE ENERGY

G = H - T S

• EQUILIBRIUM CRITERION

DG = 0

•CHEMICAL POTENTIAL

mi = dG/dni = mio + RT ln ai

Page 11: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 11/114

2.1 CHEMICAL SYSTEMS II

• GENERIC CHEMICAL REACTION

S  ni Mi = 0

• CRITERION FOR REACTIONEQUILIBRIUM 

S ni mio + RT S ni ln ai = 0

• IN TERMS OF EQUILIBRIUM

CONSTANT

-S ni mio = RT S ni ln ai = RT ln K 

Page 12: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 12/114

2.1 CHEMICAL SYSTEMS III

• EXAMPLES

 –  DISSOCIATION OF WATER 

H2O = H+ + OH-

K = aH+ aOH-/aH2O = aH+ aOH- = 10-14

 –  PRECIPITATION OF METAL HYDROXIDE

K = (aH+ )2/ aMg2+ = 10-16.95

Page 13: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 13/114

2.2 ELECTROCHEMICAL

SYSTEMS I• GENERIC ELECTROCHEMICAL

REACTION

S  ni Mi + ne = 0

• CRITERION FOR ELECTROCHEMICAL

EQUILIBRIUM 

S ni mio + RT S ni ln ai - 23061 n Eo = 0

• WHERE Eo IS THE EQUILIBRIUM

POTENTIAL

Page 14: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 14/114

2.2 ELECTROCHEMICAL

SYSTEMS II• IN TERMS OF THE EQUILIBRIUM

POTENTIAL (NERNST EQUATION)

Eo = Eoo +  (2.3RT/nF)S ni log ai

• WHERE

Eoo

S ni mio /(23061 n)• IS THE STANDARD EQUILIBRIUM

POTENTIAL

Page 15: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 15/114

2.2 ELECTROCHEMICAL

SYSTEMS III• EXAMPLE: THE STANDARD

HYDROGEN ELECTRODE

2 H+ + 2 e = H2

• DATA 

mH+

o = mH2

o = 0 cal/mol

• THUS

Eoo = S ni mi

o /(23061 n) = 0

Page 16: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 16/114

2.2 ELECTROCHEMICAL

SYSTEMS IV• THUS

Eo = Eoo +  (2.3RT/nF)S ni log ai

= 0.0 + 0.059 log aH+ - 0.0295 log PH2

• AND FOR PH2 = 1 atm

Eo = 0.0 - 0.059 pH

Page 17: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 17/114

2.2 ELECTROCHEMICAL

SYSTEMS V• POSSIBILITY OF

ELECTROCHEMICAL REACTIONS

 –  IF E = Eo >> EQUILIBRIUM (NO

REACTION)

 –  IF E > Eo >> OXIDATION

POSSIBLE

 –  IF E < Eo >> REDUCTION

POSSIBLE

Page 18: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 18/114

2.2 ELECTROCHEMICAL

SYSTEMS VI• THE VELOCITY OF A REACTION (AS

MEASURED BY THE INTENSITY OF

THE REACTION CURRENT i ) ISEITHER ZERO OR OF THE SAME

SIGN AS ITS OVERPOTENTIAL 

(E - Eo) i = 0 OR  

(E - Eo) i >  0

Page 19: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 19/114

2.3 DIAGRAMS E-pH I

• FIRST PRESENTED BY POURBAIX

• GRAPHICAL REPRESENTATIONS OF

Eo-pH RELATIONSHIPS FOR 

SELECTED REDOX COUPLES

• OBTAINED FROM NERNST

EQUATIONS

• USED TO IDENTIFY REGIONS OF

PREDOMINANCE

Page 20: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 20/114

2.3 DIAGRAMS E-pH II

• HYDROGEN EVOLUTION (LINE a)

2 H+ + 2 e = H2

E = 0.0 - 0.059 pH

• OXYGEN REDUCTION (LINE b)

O2 + 2 H2O + 4 e = 4 OH- 

E = 1.228 - 0.059 pH

Page 21: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 21/114

2.3 DIAGRAMS E-pH III

• MAIN REACTION TYPES

 –  REACTIONS DEPENDING ON pH ONLY

Fe3+ + H2O = Fe(OH)2+ + H+

 –  REACTIONS DEPENDING ON E ONLY

Fe = Fe2+ + 2 e

 –  REACTIONS DEPENDING ON pH AND E

Fe3+ + H2O = Fe(OH)2+ + H+ + e

 –  REACTIONS INDEPENDENT OF pH AND E

CO2 + H2O = H2CO3

Page 22: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 22/114

2.3 DIAGRAMS E-pH IV

• DIAGRAM CONSTRUCTION

PROCEDURE

 –  DETERMINE SPECIES INVOLVED

 –  WRITE DOWN REACTIONS FOR ALL

SPECIES INVOLVED

 –  WRITE DOWN NERNST EQUATIONS

FOR ALL REACTIONS USING ai = 10-6 

 –  FIND E AND pH VALUES FOR 

INTERSECTIONS BETWEEN

REACTIONS

Page 23: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 23/114

2.4 IMMUNITY , PASSIVITY

AND CORROSION• IMMUNITY: DOMAIN IN E-pH SPACE

WHERE THE METAL PHASE IS

THERMODYNAMICALLY STABLE• PASSIVITY: DOMAIN IN E-pH SPACE

WHERE AN INSOLUBLE FILM IS

THERMODYNAMICALLY STABLE• CORROSION: DOMAIN IN E-pH SPACE

WHERE SOLUBLE PRODUCTS ARE

THERMODYNAMICALLY STABLE

Page 24: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 24/114

2.5 EXAMPLES I 

Fe/Fe2+/Fe3+/Fe3O4/Fe2O3 SYSTEM

• REACTIONS (NUMBERS FROM ATLAS)

Fe2+ = Fe3+ + 1e ............(4)

3Fe + 4H2O = Fe3O4 + 8H+ + 8e ......(13)

2Fe3O4 + H2O = 3Fe2O3 + 2H+ + 2e ...(17)

2Fe3+ + 3H2O = Fe2O3 + 6H+ .....(20)

Fe = Fe2+ + 2e .............(23)

3Fe2+ + 4H2O = Fe3O4 + 8H+ + 2e ...(26)

2Fe2+ + 3H2O = Fe2O3 + 6H+ + 2e ...(28)

Page 25: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 25/114

2.5 EXAMPLES II 

Fe/Fe2+/Fe3+/Fe3O4/Fe2O3 SYSTEM

• EQUILIBRIUM POTENTIALS/EQNS

E4 = 0.771 + 0.0591 log( Fe3+/Fe2+)

E13 = -0.085 - 0.0591 pH

E17 = 0.221 - 0.0591 pH

log(Fe3+)20

= -0.72 - 3 pH

E23 = -0.44 + 0.0295 log( Fe2+)

E26 = 0.98 - 0.2364 pH - 0.0886 log( Fe2+)

E28 = 0.728 - 0.1773 pH - 0.0591 log( Fe2+)

Page 26: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 26/114

2.5 EXAMPLES III 

Fe/Fe2+/Fe3+/Fe3O4/Fe2O3 SYSTEM

• INTERSECTION 1: 20-28

• INTERSECTION 2: 17-26-28

• INTERSECTION 3: 13-23-26

• VERTICAL LINES: 20

• HORIZONTAL LINES: 23

Page 27: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 27/114

2.5 EXAMPLES IV 

• EXERCISE: CONSTRUCT POURBAIXDIAGRAMS

 –  Mg/Mg2+/Mg(OH)2 SYSTEM 

Mg2+ + 2e = Mg 

E3 = -2.363 + 0.0295 log(Mg2+)

 –  OTHER SYSTEM OF YOUR 

CHOICE 

Page 28: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 28/114

3 ELECTRODE KINETICS

3.1 MECHANISMS OF ELECTRODE

REACTIONS

3.2 EXCHANGE CURRENT

3.3 POLARIZATION AND

OVERVOLTAGE

3.4 TYPES OF OVERVOLTAGE

3.5 EXAMPLES

Page 29: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 29/114

3.1 MECHANISMS OF

ELECTRODE REACTIONS I• ELECTRODE PROCESSES ARE

HETEROGENOEUS REACTIONS

• THE ELECTRODE-ELECTROLYTEINTERFACE HAS COMPLEX

STRUCTURE (ELECTROCHEMICAL

DOUBLE LAYER/DIFFUSE LAYER)• THE STRUCTURE OF THE ECDL

INFLUENCES REACTION RATES

Page 30: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 30/114

3.1 MECHANISMS OF

ELECTRODE REACTIONS II

1.- MASS TRANSFER OF REACTANTS

FROM BULK OF SOLUTION TO

ELECTRODE BOUNDARY LAYER 2.- ADSORPTION OF REACTANTS

ONTO ELECTROCHEMICAL DOUBLE

LAYER 3.- DEHYDRATION/DESOLVATION

Page 31: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 31/114

3.1 MECHANISMS OF

ELECTRODE REACTIONS III4.- CHEMICAL CHANGES LEADING

TO INTERMEDIARIES

5.- ELECTRON TRANSFER 

6.- ADSORPTION OF REACTION

PRODUCTS

7.- DESORPTION OF REACTION

PRODUCTS

Page 32: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 32/114

3.1 MECHANISMS OF

ELECTRODE REACTIONS IV8.- SECONDARY CONVERSION OF

PRIMARY PRODUCTS

9.- MASS TRANSFER OF PRODUCTS

FROM BOUNDARY LAYER INTO

BULK OF THE SOLUTION

Page 33: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 33/114

3.1 MECHANISMS OF

ELECTRODE REACTIONS VTHE MOST CHARACTERISTIC

FEATURE OF ELECTRODE

PROCESSES IS THE DEPENDENCEOF THE ACTIVATION ENERGY FOR 

THE ELECTRON TRANSFER STEP

ON THE POTENTIAL DIFFERENCEBETWEEN ELECTRODE AND

SOLUTION.

Page 34: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 34/114

3.2 EXCHANGE CURRENT I

THE CURRENT DENSITY i (A/m2) IS A

MEASURE OF THE RATE OF

ELECTROCHEMICAL REACTIONi = z F v

z = number of electrons/molecule

F = Faraday’s constant = 96487 Coulomb/mol 

v = reaction rate (mole/ m2 s)

Page 35: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 35/114

3.2 EXCHANGE CURRENT II

• THE EQUILIBRIUM AT A REVERSIBLE

ELECTRODE IS DYNAMIC

va = vc

ia = ic 

• WHERE

va = RATE OF ANODIC (OXIDATION) PROCESS

vc = RATE OF CATHODIC (OXIDATION) PROCESS

Page 36: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 36/114

3.2 EXCHANGE CURRENT III

EQUILIBRIUM SINGLE ELECTRODE

M = M+z + z e

ia = z F k a exp( aa z F fo/RT)

ic = z F k c aMz+ exp(-ac z F fo/RT)

inet = ia+ ic = 0

io = ia = - ic

Page 37: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 37/114

3.2 EXCHANGE CURRENT IV

k a , k c = RATE CONSTANTS FOR 

ANODIC AND CATHODIC PROCESSES

aa , ac = TRANSFER COEFFICIENTSFOR ANODIC AND CATHODIC

PROCESSES

fo  = (EQUILIBRIUM) ELECTRODEPOTENTIAL

io = EXCHANGE CURRENT

Page 38: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 38/114

3.2 EXCHANGE CURRENT V

• FROM THE CONDITION inet = 0

fo  =[RT/zF(a

a+ a

c)] ln[k 

ca

M

z+ / k a]

• FROM THE CONDITION io = ia = - ic

io = zF k a [k c aMz+ / k a](aa /(aa + ac))

Page 39: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 39/114

3.2 EXCHANGE CURRENT VI

• EXAMPLES

Ag = Ag+ + e ; io = 104 A/m2

Cu = Cu2+ + 2e ; io = 5  A/m2

Zn = Zn2+ + 2e ; io = 10-2 A/m2

H2

= 2H+ + 2e (on Pt) ;io

= 102 A/m2

H2 = 2H+ + 2e (on Fe) ; io = 10-2 A/m2

H2 = 2H+ + 2e (on Pb) ; io = 10-9 A/m2

Page 40: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 40/114

3.3 POLARIZATION AND

OVERVOLTAGE IIN A NON-EQUILIBRIUM EQUILIBRIUM

ELECTRODE f IS DISTINCT FROM fo 

ia = z F k a exp( aa z F f/RT)= io exp( aa z F [f - fo]/RT)

ic = z F k c aMz+ exp(-ac z F f/RT)= io exp(-ac z F [f - fo]/RT)

Page 41: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 41/114

3.3 POLARIZATION AND

OVERVOLTAGE II

IN A NON-EQUILIBRIUM EQUILIBRIUM

ELECTRODE THERE IS A NET FLOW OF

CURRENT, THE POTENTIAL IS f ANDh = f - fo IS THE (ACTIVATION)

OVERVOLTAGE

inet = io {exp(aa z F h/RT) -exp(-ac z F h/RT) }

BUTLER-VOLMER EQUATION

Page 42: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 42/114

3.3 POLARIZATION AND

OVERVOLTAGE III• “SMALL” h APPROXIMATION

IF | h | < 0.01 V SINCE e

x

~ 1 + x 

inet = io (z F h/RT)

THE LINEAR “LAW” 

Page 43: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 43/114

Page 44: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 44/114

3.3 POLARIZATION AND

OVERVOLTAGE V• “LARGE” h APPROXIMATION

(CATHODIC POLARIZATION)

IF h < - 0.1 V THEN inet ~ ic

inet = io exp(-ac z F h/RT) OR 

h = bc log(inet / io )

CATHODIC TAFEL EQUATION

Page 45: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 45/114

3.3 POLARIZATION AND

OVERVOLTAGE VI• EXAMPLES 

Ag = Ag+ + e ; ba = 0.12  V/decade 

Cu = Cu2+ + 2e ; ba = 0.06  V/decade 

Zn = Zn2+ + 2e ; ba = 0.06  V/decade 

H2 = 2H+ + 2e (on Pt) ; bc = -0.12  V/decade 

H2 = 2H+ + 2e (on Fe) ; bc = - 0.12  V/decade 

H2

= 2H+ + 2e (on Pb) ; bc

= -0.12 V/decade

Page 46: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 46/114

3.4 TYPES OF

OVERVOLTAGE I• ACTIVATION OVERVOLTAGE

• CONCENTRATION OVERVOLTAGE

• RESISTANCE OVERVOLTAGE

• REACTION OVERVOLTAGE

• NUCLEATION OVERVOLTAGE

Page 47: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 47/114

3.4 TYPES OF

OVERVOLTAGE II• WHEN THE ELECTRON TRANSFER 

PROCESS IS FAST, IONIC

CONCENTRATION GRADIENTS ATTHE ELECTRODE SURFACE GIVE

RISE TO CONCENTRATION

OVERVOLTAGEhconc = (RT/zF) ln(Csurf /Cbulk )

Page 48: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 48/114

3.4 TYPES OF

OVERVOLTAGE III• IONIC CONCENTRATION GRADIENTS

PRODUCES CURRENT

i = - z F D (dC/dx)

= - z F D (Csurf - Cbulk )/d

D = DIFFUSION COEFFICIENT (m2/s)

d = CONCENTRATION BOUNDARY

LAYER THICKNESS (m)

Page 49: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 49/114

3.4 TYPES OF

OVERVOLTAGE IV• IN THE LIMIT WHEN Csurf  ~ 0, THIS

BECOMES THE LIMITING CURRENT

DENSITY iL 

iL = z F D Cbulk /d THUS

i/iL = 1 - Csurf /Cbulk  AND

hconc = (RT/zF) ln(1 - i/iL)

Page 50: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 50/114

3.4 TYPES OF

OVERVOLTAGE V• THE BOUNDARY LAYER THICKNESS

DEPENDS ON FLUID FLOW

• IN A ROTATING DISK ELECTRODE(RDE) SYSTEM, LEVICH FOUND

d = 1.61 D1/3 n 1/6 w -1/2

n = KINEMATIC VISCOSITY (m2/s)

w = DISK ROTATION RATE (rad/s)

Page 51: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 51/114

3.4 TYPES OF

OVERVOLTAGE VI• IF THE ELECTRICAL RESISTANCE

(R ) TO THE FLOW OF CURRENT ( I )

IN THE ELECTROLYTE BETWEENANODE AND CATHODE IS

SIGNIFICANT THERE CAN BE

(ELECTROLYTE) RESISTANCEOVERVOLTAGE

hres = I R 

Page 52: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 52/114

3.5 EXAMPLES I

• EXERCISE: SHOW THAT A NET

CURRENT DENSITY OF 1 A/m2 IS

APPROXIMATELYEQUIVALENT TO A UNIFORM

CORROSION WASTAGE RATE

OF 1 mm/year

Page 53: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 53/114

3.5 EXAMPLES II

Fe = Fe2+ + 2e 

aM

z+ = aFe

2+ = 10-6

aa = ac = 0.5 

k a = 14.9 ; k a = 1.8*10-14 THUS

fo  = - 0.617 V

io = 10-4 A/m2

Page 54: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 54/114

3.5 EXAMPLES III

• EXERCISE: VERIFY THE GIVEN

EXPRESSIONS FOR fo AND io 

• EXERCISE: FIND THE VALUES OF k a 

AND k c FOR THE Mg = Mg2+ + 2e

SYSTEM

• EXERCISE: FIND THE VALUES OF k a 

AND k c FOR OTHER SYSTEM OF

YOUR CHOICE

Page 55: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 55/114

3.5 EXAMPLES IV

• Fe ELECTRODE 

inet

= io

{e38.94h - e-38.94h }

h (V) 0.01 0.02 0.05 0.1

e38.94h 1.47 2.18 7.00 49.11 

e-38.94h 0.68 0.46 0.14 0.02 

inet / io 0.80 1.72 6.85 49.09

Page 56: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 56/114

Page 57: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 57/114

Page 58: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 58/114

4 CORROSION KINETICS

4.1 ANODIC AND CATHODIC

REACTIONS

4.2 POLARIZATION4.3 WAGNER AND TRAUD’S

SUPERPOSITION PRINCIPLE

4.4 STERN AND GEARY’S ANALYSIS 

4.5 EXAMPLES

Page 59: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 59/114

Page 60: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 60/114

4.1 ANODIC AND

CATHODIC REACTIONS II• AT ANODIC SITES OXIDATION

OCCURS ( ia )

• AT CATHODIC SITES REDUCTION

OCCURS ( ic )

• ALL THE ELECTRONS PRODUCED

BY THE ANODIC REACTION ARECONSUMED BY THE CATHODIC

PROCESS

Page 61: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 61/114

4.1 ANODIC AND

CATHODIC REACTIONS III• SIMPLEST ANODIC REACTION

(SINGLE STEP)M = Mz+ + ze

• EVEN IN THIS CASE A COMPLEX

MECHANISM MAY BEINVOLVED

Page 62: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 62/114

4.1 ANODIC AND

CATHODIC REACTIONS IV• COMPLEX ANODIC REACTION

(MULTIPLE STEP)

STEP 1 

M + nH2O = [M(H2O)n]z1 + z1e

Page 63: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 63/114

4.1 ANODIC AND

CATHODIC REACTIONS V• STEP 2a: INHIBITION 

M + nH2O = [M(H2O)n]z1

+ z1e• STEP 2b: COMPLEX IONISATION

[M(H2O)n]z1 = Mz+ + n H2O + (z-z1 )e

• STEP 2c: PASSIVATION 

M + (z/2)H2O = MOz/2 + zH+ + ze

Page 64: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 64/114

4 1 ANODIC AND CATHODIC

Page 65: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 65/114

4.1 ANODIC AND CATHODIC

REACTIONS VII• FOR NON-UNIFORM CORROSION

IS BETTER TO USE THE TOTAL

CURRENTS ( I ) RATHER THANTHE CURRENT DENSITIES ( i )

• PLOTS OF E vs Ia 

AND Ic

ARE

CALLED EVANS DIAGRAMS

Page 66: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 66/114

Page 67: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 67/114

4.2 POLARIZATION II

• BECAUSE OF POLARIZATION THE

ELECTRODE POTENTIALS OF THE

TWO REACTIONS MOVE TOWARDS

EACH OTHER AND IF THEELECTROLYTE RESISTANCE IS LOW 

fa

= Ea

= fc

= Ec

= f* = Ecorr

 

ia = ic = icorr

Ia = Ic = Icorr

Page 68: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 68/114

4.2 POLARIZATION III

• A FREQUENTLY USED ASSUMPTION

IS THAT THE ANODIC AND

CATHODIC OVERVOLTAGES AREADDITIVE 

hT = h + hconc + hres + hother

Page 69: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 69/114

4.2 POLARIZATION IV

log i

E

ANODIC

CURVE

CATHODIC

CURVE

Ecorr

log icorr

Page 70: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 70/114

4.2 POLARIZATION V

I

EANODIC

CURVE

CATHODIC

CURVE

Icorr

Ecorr

4 3 WAGNER AND TRAUD’S

Page 71: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 71/114

4.3 WAGNER AND TRAUD S

SUPERPOSITION

PRINCIPLE I

• IN A HOMOGENOUS SURFACE

WITH MULTIPLE REACTIONSWITH CURRENT DENSITIES iia

iic 

iaT = S iia = - S iic = - icT

Page 72: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 72/114

Page 73: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 73/114

Page 74: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 74/114

Page 75: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 75/114

Page 76: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 76/114

Page 77: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 77/114

4 4 STERN AND GEARY’S

Page 78: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 78/114

4.4 STERN AND GEARY’S

ANALYSIS IVIF ON A FREELY CORRODING

SPECIMEN (f*), A SMALL

OVERVOLTAGE IS APPLIED, THE

POTENTIAL INCREASES BY D f AND

THE NET CURRENT DENSITY

INCREASES BY

D i = D f {(ba + |bc|)/(ba |bc|)}

4 4 STERN AND GEARY’S

Page 79: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 79/114

4.4 STERN AND GEARY’S

ANALYSIS VE

i

icorr

Ecorr

Df

Di

slope = ba

slope = bc

Page 80: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 80/114

Page 81: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 81/114

4.5 EXAMPLES I

• THE EVANS SALT DROP EXPERIMENT

 –  3% NaCl SOLUTION IN H2O

 –  POTASIUM FERRICYANIDE (BECOMES

BLUE IN PRESENCE OF Fe2+)

 –  PHENOLPHTALEIN (BECOMES PINK IN

PRESENCE OF ALKALI)

 – FINELY ABRADED Fe SURFACE

• FORMATION OF PINK-RUST-BLUE

RINGS AFTER SOME TIME

Page 82: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 82/114

Page 83: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 83/114

4.5 EXAMPLES III

• EXERCISE: ASSUMING 

aaa = aac = aca = acc = 1/2 

FOR  SINGLE METAL DISSOLUTION

COUPLED WITH A SINGLE

CATHODIC REACTION FIND AN

EXPRESSION FOR f*

Page 84: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 84/114

4.5 EXAMPLES IV• EXERCISE: VERIFY THE GIVEN

STERN&GEARY EXPRESSION FOR 

inet 

• EXERCISE: USE THE GIVEN

STERN&GEARY EXPRESSION FOR 

inet USE THE GIVEN TO COMPUTE

THE f - log inet POLARIZATION

CURVE FOR THE FOUR SYSTEMS IN

EXAMPLES II ABOVE

Page 85: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 85/114

4.5 EXAMPLES V

• DETERMINE THE CORROSION

POTENTIALS AND CORROSION

CURRENT DENSITIES FOR THEFOUR SYSTEMS IN EXAMPLE II

ABOVE

Page 86: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 86/114

4.5 EXAMPLES VI

• EXERCISE: VERIFY THE GIVEN

EXPRESSIONS FOR ba AND bc IN

THE STERN-GEARY ANALYSIS

Page 87: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 87/114

5 COMPLEX CORROSION

Page 88: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 88/114

5 COMPLEX CORROSION

SYSTEMS5.1 GOVERNING EQUATIONS

5.2 BOUNDARY CONDITIONS5.3 ANALYTICAL SOLUTIONS

5.4 NUMERICAL SOLUTIONS

5.5 EXAMPLES

Page 89: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 89/114

5 1 GOVERNING

Page 90: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 90/114

5.1 GOVERNING

EQUATIONS II• CURRENT DENSITY EQUATION 

i = F S zi Ni 

• MATERIAL BALANCE 

dCi/dt = - div Ni 

•ELECTRONEUTRALITY CONDITION 

S zi Ci = 0

Page 91: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 91/114

5 1 GOVERNING

Page 92: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 92/114

5.1 GOVERNING

EQUATIONS IV• SIMPLIFICATIONS FOR POTENTIAL

THEORY

 – 

WHEN CONCENTRATION GRADIENTS,ARE NOT IMPORTANT

i = - k grad f

 –  WHERE k IS THE CONDUCTIVITY OF

THE SOLUTION

5 1 GOVERNING

Page 93: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 93/114

5.1 GOVERNING

EQUATIONS V• SIMPLIFICATIONS FOR POTENTIAL

THEORY (contd)

 –  FROM THE MASS BALANCE EQUATION

div grad f = 0

LAPLACE’S EQUATION 

5 2 BOUNDARY

Page 94: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 94/114

5.2 BOUNDARY

CONDITIONS I• FLUX NORMAL TO ELECTRODE

SURFACE 

Nin = - (ni/zF) in = f(hs,Ci)• NO-SLIP AT FLUID-SOLID

BOUNDARIES

vf  = vs

Page 95: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 95/114

5 3 ANALYTICAL

Page 96: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 96/114

5.3 ANALYTICAL

SOLUTIONS I• ANALYTICAL SOLUTIONS OF

POTENTIAL PROBLEMS ARE

POSSIBLE IN A FEW SELECTEDCASES

• ANALYTICAL SOLUTIONS CAN BE

OBTAINED BY FOURIER SERIES OR CONFORMAL MAPPING METHODS

5.3 ANALYTICAL

Page 97: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 97/114

5 3 N C

SOLUTIONS II• WABER SOLUTION : GALVANIC

SYSTEM AS BEFORE x1 = 0, x2 = a

AND x3 = c AND f = Ea ON 1-2 ANDf = 0 ON 2-3

f(x,y) = Ea (p a/c) + (2 Ea / p)

S (1/n) e -n p y/c sin(n p a/c) cos(n p x/c)

Page 98: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 98/114

5 4 NUMERICAL

Page 99: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 99/114

5.4 NUMERICAL

SOLUTIONS I• DISCRETIZED VERSIONS OF THE

MODELING EQUATIONS ARE

SOLVED USING COMPUTERS• DISCRETIZATION METHODS

 –  FINITE DIFFERENCES

 – 

CONTROL VOLUME (BOX) METHOD –  FINITE ELEMENTS

 –  BOUNDARY ELEMENTS

5 4 NUMERICAL

Page 100: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 100/114

5.4 NUMERICAL

SOLUTIONS II• FINITE DIFFERENCE METHOD FOR 

POTENTIAL PROBLEMS

1.- SUBDIVIDE THE DOMAIN OFINTEREST INTO A LATTICE OF

MESH POINTS OR NODES

2.- REPLACE DERIVATIVES IN THELAPLACE’S EQUATION FOR f BY

FINITE DIFFERENCES

Page 101: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 101/114

Page 102: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 102/114

Page 103: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 103/114

5.5 EXAMPLES II

• GALVANIC CORROSION (contd)

 –  ELECTROLYTE (LAPLACE’S

EQUATION) 

d2f/dx2 + d2f/dy2 = 0 –  BOUNDARIES 3-4, 5-1

df/dx = 0

5 5 EXAMPLES III

Page 104: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 104/114

5.5 EXAMPLES III

• GALVANIC CORROSION (contd)

 –  BOUNDARY 4-5

df/dy

 

= 0 –  BOUNDARY 1-2

df/dy = iA/k

 –  BOUNDARY 2-3

df/dy = iB/k

Page 105: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 105/114

5.5 EXAMPLES IV

• GALVANIC CORROSION (contd)

• FINITE DIFFERENCE FORMULAE

(ELECTROLYTE; INTERIOR NODES)

(fE + fW - 2 fP )/Dx2 +

(fN + fS - 2 fP )/Dy2 = 0

Page 106: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 106/114

5.5 EXAMPLES V

N

S

EW

P

Dx

Dy

INTERIOR NODES

Page 107: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 107/114

5.5 EXAMPLES VI

• FINITE DIFFERENCE FORMULAE

(BOUNDARY NODES; BOUNDARY

1-2-3)

fP = [1/(2(1+l2))] {(fE + fW) l2 +

2 fN + (2Dy/k) i }WITH l = Dy/Dx

Page 108: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 108/114

5.5 EXAMPLES VII

• FINITE DIFFERENCE FORMULAE

(BOUNDARY NODES; BOUNDARY

3-4)

fP = [1/(2(1+(1/l2)))]

{(fN + fS)(1/ l2 ) + 2 fE }

Page 109: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 109/114

5.5 EXAMPLES VIII

BOUNDARY NODES

 N

EW

-N

P

Page 110: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 110/114

5.5 EXAMPLES IX

• SOLUTION BY SUCCESIVE OVER-

RELAXATION ITERATION FOR ALL

MESH POINTS. SOR EQUATION FOR MESH POINT i IS

fin+1 = fi

n +

(w/aii) { bi - S aij f jn+1 - S aij f j

n }

• WHERE w = RELAXATION FACTOR 

Page 111: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 111/114

5.5 EXAMPLES X

• EXERCISE: DERIVE THE FINITE

DIFFERENCE FORMULAE GIVEN

•EXERCISE: DERIVE THE S.O.R.FORMULAE GIVEN

• EXERCISE: EXPLORE THE

SENSITIVITY OF THE GALVANICSYSTEM

Page 112: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 112/114

Page 113: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 113/114

REFERENCES II

• Charlot, Badoz-Lambling & Tremillon,“Las Reacciones Electroquimicas”,

Toray-Mason, Barcelona, 1969

• Bockris & Ready, “ModernElectrochemistry”, 2 V, Plenum, New

York, 1977

• Pourbaix, “Atlas of ElectrochemicalEquilibria in Aqueous Solutions”,

NACE, Houston, 1974

Page 114: Computation of Corrosion

7/28/2019 Computation of Corrosion

http://slidepdf.com/reader/full/computation-of-corrosion 114/114

REFERENCES III

• Gileadi, “Electrode Kinetics”, VCH, New

York, 1993

•Newman, “Electrochemical Systems”,2nd ed., Prentice-Hall, Englewood Cliffs,

1991

Iserles, “A First Course in NumericalAnalysis of Differential Equations”,

Cambridge UP Cambridge 1996