coligativeproperties.pdf compound amount, concentration, ions and colligative...

29
Compound amount, concentration, ions and colligative – osmolar osmosis Water circulation attractors: evaporation<=>condensation, osmosis through membrane aquaporin channels Latin colligatus - its working as bound or working together, Greek Osmos - water squeeze through (membrane) Oxidation, reduction, http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf Nernst’s and membrane potential Oxidation-reduction Nernst’s half reactions electron balancing and on phases inerface of metals or of cell membranes formed potential Latin oxidation meaning add oxygen, Latin reduction meaning oxygen reduce, Latin potencia meaning might and force is electrochemistry power in volts http://aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf

Upload: others

Post on 11-Mar-2021

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Compound amount, concentration, ionsand colligative – osmolar osmosis

Water circulation attractors:evaporation<=>condensation, osmosis through membrane aquaporin channels

Latin colligatus - its working as bound or working together,Greek Osmos - water squeeze through (membrane)

Oxidation, reduction,

http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

Oxidation, reduction,Nernst’s and membrane potentialOxidation-reduction Nernst’s half reactions electron balancing and

on phases inerface of metals or of cell membranes formed potential

Latin oxidation meaning add oxygen,Latin reduction meaning oxygen reduce,

Latin potencia meaning might and force is electrochemistry power in volts

http://aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf

Page 2: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Water circulation attractor evaporation-condensation Roul's I law

Relative vapor depression Δp/p ̊ is equal to non electrolyte solute x

mol fraction N concentration

evapo ration

conde nsation

inter face

H2Oliquid H2Ogas

(a) p ̊ > pH2O (b)

=

p°- H O2

p

p

3rd page :http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

solute x water solublecompound nx

number of moles

mol fraction Nx concentration

H2O waternH2O

number of moles

= Nx=n x

H O2

n + n x

p

Page 3: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Relative vapor depression Δp/p ̊ is equal to non electrolyte solute x mol fraction Nx

C6H12O6 1 M water solution of glucose mol fraction is calculated from expression

= NxC6H12O6=

One liter contains glucose nC6H12O6= 1 mol.

Molar mass is MC6H12O6=6C+12H+6O=6*12+12*1+6*16=180 g•mol-1.

nC6H12

H O2

n+

O6

nC6H12 O6

p

3rd page:http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

Water circulation attractor evaporation-condensation Roul's I law

If density ρ = 1.0 g•cm-3 mass of water mH2O=1000g – 180g=820g .

Molar mass MH2O=2H+O=2*1+16=18 g•mol-1.

Water Number of moles nH2O= = =45.5(5) mol .

Solute x glucose mol fraction NxC6H12O6 concentration is

NxC6H12O6= = =0.0215=nC6H12

H O2

n+

O6

nC6H12 O6

H O2

M

H O2

m

1molg18

g820

mol1mol5.45

mol1

p

Page 4: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

ISOTONIC COEFFICIENT

Isotonic coefficient i (or Vant Hoff’s coefficient) is the proportionality factorbetween the total concentration in to water dissolved solute molecules and

concentration of water dissolved particles.

Cparticles= i*Ctotal

Swante Arrenius, Wilhelms Ostwalds in Riga during year 1886.recovering acid, base and salt propereties in

dissociation degree α principlesfor strong (α =>1) and weak (α =>0) electrolytes:

α = ; C = α * C .Cdiss

1st page :http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

α = ; Cdiss= α * Ctotal .where α is dissociation degree ,

Ctotal is total concentration of molecules andCdiss is dissociated molecule concentration .

So isotonic coefficient calculates as : i = 1 + α (m–1) ,where m is the number of formed ions:

electrolyte dissociationFeCl3 => Fe3+ + Cl–+ Cl–+ Cl– (1 + 1+ 1+ 1) = 4 = m ions

Ctotaldiss

Fe3+

ClCl

Cl

Fe3+

Cl Cl Cldissociation

+ + +formed number of ions in products

Page 5: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Solubility products as strong and weak electrolytes THERMODYNAMICS

O:O

O

O

Na+

:O

:OH

H

H

H H

H

H

H

HH

H

H

hexagonal

H

H

OOH

H

O HH

OHH

OH

H

Cl

OH

H

hexagonal

6th page : http://aris.gusc.lv/BioThermodynamics/CO2O2Thermodynamic15A.pdfCl

ClCl

Cl

Cl

Cl

Cl

ClCl

Cl

ClCl

Cl

Na+

Na+

Na+

Na+

Na+

Na+

Na+ Na

+

Na+

Na+

Na+

Na+

Na+

Na+

1) crystalline Na+Cl- =>Na+aqua+Cl- aqua

Solubility 36 g/100g H2O, demsity 1,23 g/mL, CNaCl= 5,571039 mol/L ; w%=26,5%;

2) hydration with six water molecules .

Hess solubility free energy change: ΔGHess = ΔHHess–TΔSHess negative, exoergic, favored;ΔGHess = 3,82•1000 – 298,15•43,5 = -9150 J/mol = -9,15 kJ/mol;

Dissociation degree α=1,as Na+Cl- dispersed in separate ionos.

The ionic crystalline solubility and dissociation of electrolyte solution (4.1)

Heat accumulates in productes endothermic

cooling ΔHHess= -240.1-167.2+411.12=+3.82 kJ/mol.

Solid compound mol fraction is one [Na+Cl-]solid=1 and solubility constant Keq = e-ΔGeq/RT. (4.3)is ions solubility product K = K =[Na+ ]*[ Cl-- ]=5,43516* 5,43516=31,0365=101,492; (4.2)

Strong electrolytes ΔGr<0 negative exoergic, favored and Keq>1are water soluble salt, bases and strong acids.

Weak electrolytes ΔGr>0 positiveendoergic, unfavoredare water insoluble salts, basesbut weak acids are water soluble.

Conclusions: Na+Cl- salt solubility exoergic, favored and Ksp=Keq=31,036 >1

unfavored

Note: human bodyconstitute onlyweak acids whichare water soluble.

is ions solubility product Ksp= Keq=[Na+aqua]*[ Cl--aqua]=5,43516* 5,43516=31,0365=101,492; (4.2)

ΔGsp= -R•T•ln(Ksp)=-8,3144•298,15•ln(31,0365)= -8,51556 kJ/mol,

0% 50% 100%

A 50% B+CNa+Cl-ciets izejvielaproduktiNa+

aq+Cl-aq

favored

Reaching solubility constant Ksp= Keq=[Na+aqua]*[ Cl--aqua]=31,036 for mixture free energy change

minimised 8,516 kJ/mol =ΔGeq2<ΔGHess2=9,15 kJ/mol . Absolute value decreases.

Keq<1

Page 6: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Phase diagram water evaporation condensation3rd page: http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

water

0 ° 100 °

water

ice

vapor

Page 7: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Freezing point depression II Roul’s law states: Δtfreezing= i KcrCm

Kcr =1.86 is the

Molal non-electrolyte (i = 1)

solution concentration Cm shows

mole number of solute

present in 1000 grams of solution.

4th page:http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

0 °

cryoscopy constant of the water(Greek kryos is freezing)

Cryoscopy constant of water 1.86 shows the freezing point depression in a 1 molalnon-electrolyte solution (where i = 1)

which freezes at temperature –1,86°C less zero 0 ̊ C.

180 grams of glucose dissoluted in water 820 grams has freezing point –1,86 ̊ C

Page 8: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Boiling point raise II Roul’s law states: Δtboiling= i Keb Cm

Keb =0.52 is the

non-electrolyte (where i = 1)

solution concentration Cm shows

mole number of solutepresent in 1000 grams of solution.

4th page:http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

100 °

ebullioscopy constant of the water(Greek ebulios means boiling)

Ebullioscopy constant of water 0.52 shows the boiling point raise in a 1 molal nonelectrolyte solution (where i = 1)

which boils at temperature 100,52 ̊ C over 100 ̊ C.

180 grams of glucose dissoluted in water 820 grams has boiling point 100,52 ̊ C

Page 9: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Prigogine attractor in osmosis of aquaporins is concentration gradient

Osmosis organise through an membrane aquaporins pressure by flux of H2O andO2aqua against osmolar concentration gradient ΔCosm across membrane

Pressure π=ΔCosmRT (kPa=J/L) shows free energy amount the Joules in 1 liter volumeof cells, where R=8,3144 J/(mol•K) universal gas constant,

T temperature in Kelvin’s degree T=t ̊+273.15=37 ̊+273.15=310.15 K.

Osmosis is water flow right side against concentration gradient 0<ΔCosm. , as Na+Cl-

ions close flow of water to left side and make osmo molar concentration gradient

Na+Cl- =Na++Cl- electrolyte dissociation α =1 double pressure on cell membrane, asosmolarity ΔCosm=2CM ; i=1+α(m–1)=1+1(2-1)=2; π= iCM RT = 2CM RT = ΔCosm RT .

6th page: http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

O

H

H

O

H

H

OOOO

Cl

Na+

aquaporines

membrane

membrane

+

gradient

Cright- Cleft =CNa++CCl- - CNaCl = iCM - 0 = 2CM- 0 = ΔCosm :

left side zero

CNaCl=0

osm

ions close flow of water to left side and make osmo molar concentration gradient

<= pressure π= ΔCosm RT , (kPa)<= pressure on cell membrane withright side ions Na+, Cl- summaryconcentration make gradient ΔCosm

CNa+ + CCl- = Cosm = Cright = ΔCosm

right side of membraneCright = Cosm= iCM :

Note:Water rate 3•109 sec-1 through membrane aquaporins in erythrocytes both directionstransfer 3000 oxygen molecules per second.Blood Cosm =0,305 M, beet Cosm =0,1 M, alveola epithelia Cosm from 0,25 M to 0,20 M

Page 10: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Na+Cl- measured values of α are smaller than 1 - they often are around α = 0.8-0.9.

For medical application of 0.305 M isotonic solution osmo molar concentrationis necessary to keep constant 0.305 M.

Total ionic strength I = μ = α 1/2 Σ Cizi2 of salts in to solution should be evaluated

by real α=0.8-0.9 for maintenance constant osmo molar concentration 0.305 M.

For 0.01 M solution of Na2SO4 evaluated ionic strength I = μ = α 1/2 Σ Cizi2 calculated

from electrolyte dissociation stoichiometry Na SO => 2 Na+ + SO 2- are m=3 ions

Strong electrolyte ions concentration sum as ionic forceis total electrolyte ions stoichiometry sum half for concentration Ci times

ion charge exponent zi2 times dissociation degree α

I=μ= α 1/2Σ Cizi2

2nd page :http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

from electrolyte dissociation stoichiometry Na2SO4 => 2 Na+ + SO42- are m=3 ions

Stoichiometry, molarity of total ions concentration if α =1 :

[Na+]= 2•0.01 M= 0.02 M, [SO42-] = 0.01 M .

Electrolyte Na2SO4 ionic strength is sum: 2•0.01 M + 0.01 M=0.03 M as

μ = 1 ½(12•0.02+22•0.01)= ½(1•0.02+4•0.01)= ½ (0.02+0.04) = ½ (0.06) = 0.03 M

total ions stoichiometry molarity concentration sum 0.03 M (2+1=3; 2Na++1SO42- ).

Note: (CRC Handbook of Chemistry and Physics, 2010, biochemistry conditions),constant water concentration [H2O]=55,3 M

Ionic force cytosolic I = μ from 0,20 M to 0,25 M, in plants from 0,05 M to 0,10 M .

Page 11: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Human blood osmo molar concentration sum of all solutes:Cosm = i1•C1 + i2•C2 + i3•C3 + .... = Σ ik•Ck = 0,305 M,Glucose, salts, amino acids, proteins, bicarbonate etc.

Hypertonic, isotonic, hypotonic H2O, O2aqua osmosis - movementagainst osmo molar concentration gradient across cell membranes

CHyperton >= 0,4 M ;

Hypertonic solution Isotonic medium

Cblood= 0.305 M

8th page :http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

Hypotonic medium distilled water 0 Mas well concentration CHypoton<=0,2 Mis hypotonic to osmo molar 0.305 M.

Hypertonic salt solutions to apply forpurulent wounds, because pumps outwater with toxic compounds andstimulates blood circulation.

Hypotonic medium the flow of water isgreater towards the cell (as theconcentration of solutes in the cell is higherthan outside), the cell puffs up until itsmembrane is broken.Note:

Transfer water molecule through membrane aquaporin tunnel in erythrocyteswith rate 3•109 sec-1 in both directions transfer 3000 oxygen molecules in second.

8th and 9th page: http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

Page 12: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Human blood osmo molar concentration sum of all solutes:Cosm = i1•C1 + i2•C2 + i3•C3 + .... = Σ ik•Ck = 0,305 M,Glucose, salts, amino acids, proteins, bicarbonate etc.

H2O, O2aqua osmosis through cell membrane aquaporinsdrive oxygen transport in living organisms

OH

H

O

H

H

OO OO

H

CO OH

+O

H

H

H+

OH

H H

aquaporines

channels

membrane

+

proton

+ bicarbonate

gas

HypotonC = 0.2 MosmC = 0.305 M

<=alveolar epithelial surface∆Cosm=0.105 M

∆Cosm=0.305–0.2=0.105 M

as CHypoton=0,2 M;Alveolar cells not broken, because collagenelastic frame the cells against π=270 kPa

like as plant cells cellulose frame.

Erythrocyteis broken

http://aris.gusc.lv/ChemFiles/Aquaporins/WCPsAQPsIUBMBlife09/AQP0-11.pdf

Osmosis is H2O and O2 flow against gradient of concentration ΔCosm=0.105 M ,with energy π=(Cosm-CHypoton)RT= ΔCosm RT=0,105*8,3144*310=270 J/L.

O

H

H

OC

OOH

H

H O 3

OC

OO

HC

O

H

HO

H

H

++ +

bicarbonatechannels gas

membrane

like as plant cells cellulose frame.Plant root cells osmolar concentration

Cosm= 0,1 M resist pressure π=255 kPa.

Venous deoxy HbT shuttle adsorbs four oxygen 4O2 molecules releasing 4H+, 4HCO3-

during one blood circulation cycle amounts 459*6•10–5 M=0,0275 M=[HCO3-]=[H+]

O2Solutions.pdf, which shifts equilibrium to right H+ +HCO3-+ Q↔H2O +CO2gas via membrane

channels. Physiologic pH=7,36 stabilises as removed CO2 gas right sidethrough respiration forming Chypoton=0.2 M .

8th and 9th page: http://aris.gusc.lv/BioThermodynamics/ColigativeProperties.pdf

Page 13: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Cosm = i1•C1 + i2•C2 + i3•C3 + .... = Σ ik•Ck,

Cosm = = =0,305 M

Isotonic osmo molar blood concentration

Biological Human liquid measurement(consider blood, sweat, saliva, tear, urine,

etc.).

cr

frezing

K

t

86.1

567.0

Page 14: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Osmosis drive H2O, O2aqua across cell membrane aquaporin channels

Glycolysis and Krebs cycle oxidative phosphorilation :increases cell and mitochondria osmolar concentrationfrom 1 glucose molecule to 12, forming difference 11 molecules = ΔCosm , drivingosmosis of , shift oxidative phosphorilation to produce increase ΔCosm.

By H2O, O2aqua osmosis driven exoergic and exothermic process into cellorganism maintain the body temperature with supplied heat amount Q.

Green plants Photosynthesis reaction alone:thermodynamic forbidden but joint in tandem withPhotosynthesis enzyme complexes synthesises products , decreasesconcentration from 12 molecules to 1 in chlorophyl tylakoids, forms difference11 = ΔC , driving osmosis out . At the same time creates

10th page :http://aris.gusc.lv/BioThermodynamics/ColigativePropertiesL.pdf

ΔGreact= -2570,4 kJ/mol ; ΔHreact= -2805,27 kJ/mol

exoergic exothermic

C6H12O6+ 6O2aqua+6H2O=>6HCO3-+6H3O

++ΔGreact +Q

6O2aqua+6H2O

ΔGreakc= +2570,4 kJ/mol ; ΔHreakc= +2805,27 kJ/mol

endoergic endothermic

6HCO3-+6H3O

++ΔGreakc +Q => C6H12O6+ 6O2aqua+6H2O

C6H12O6+ 6O2aqua+6H2O

6HCO3-+6H3O

+

11 = ΔCosm , driving osmosis out for synthesised products. At the same time createsconcentration gradient increasing influx in tylakoid from environmentaccording Le Chatelier principle shift equilibrium to products .Photosynthesis drive H2O, O2aqua osmosis process endoergic and endothermic coolingserrouding in summer time but in winter stop the process.

O

H

H

O

H

H

OOOO

O

H+

H O 3OC

OOH

H+

OH

H

C

aquaporins

membrane

membrane

|-20Å-| gradientsC H6 12 6

+

+

membrane

channels

+

gradients

Krebscycle

Glycolysis-

6O2aqua+6H2O

6HCO3-+6H3O

+

C6H12O6+ 6O2aqua+6H2O

O

H

H

O

H

H

O O O O

H+

OC

OO H

H+O

H

H

O

H OC 3

aquaporins

membrane

membrane

|-20Å-|gradients

+

+

membrane

channels

+

gradientsplantsenvironment

Photosynthesis

C H6 12 6

Page 15: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Type of electrodes:

free electrons transfer Type I,

free electrons transfer Type II

free electrons transfer Red-Ox electrode

Ionic transfer through channels in Membrane electrode

Page 16: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Product energy G2 minus initial metal freeenergy G1 is free Gibbs energy change

ΔG ̊ = G2 - G1

Nernst’s metallic electrode potential expression formationNernst’s awarded Nobel Prize 1920

free electrons in metal n e-

nFE = RT ln Keq

E= ln KeqnF

RT

Keq = = ٠[e-]n]d[Re

]e[]Ox[ n

]d[Re

]Ox[

E ̊ = •log [e-]n

Electric charge work equal to electrochemicalMen+ transfer work from metal to solution

half reaction Red Oxn+ + n e- ;metal free electrons n e- surface molfraction [e-]n is constant and standard

potential calculates E ̊ = log [e-]n constant

2nd page: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

nF

RT

W = qE = nFE = - ΔG ̊ = Wwork = nFE = RTlnKeq,where F=96485 Coulombs Faraday constant

E = E ̊ + •log n

0591.0

]d[Re

]Ox[

]d[Re ]d[Re

n

0591.0

E = log [e-]n + log

]d[Re

]Ox[n

0591.0

n

0591.0

Page 17: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Half reaction metallic hydrogen (Pt)H, water and hydronium ion H3O+ :

Nernst’s equation

Metal interface / to its cation solution classic zero hydrogen electrode

(Pt)H + H2O H3O+ + e- ; equilibrium constant K = [H3O

+]/[H2O]

EH=E ̊H+0,0591•log([H3O+]/[H2O])= 0,103 V+0,0591•log([H3O

+]/[H2O])

saturated platinum (Pt)H sheet represents metallic hydrogenelectrode immersed in hydronium ions H3O

+ acid solutions.

EoH =E ̊H+0,0591•log(1/[H2O])= 0 is classic hydrogen scale.

In hydrogen potential scale reference point zero incorporatewater constant concentration [H O]=55,3 M,

3rd page: http://aris.gusc.lv/BioThermodynamics/ElectrodsAM.pdf

water constant concentration [H2O]=55,3 M,which converts thermodynamic E ̊H= 0,103 V to classic Eo=0 V.

Standard potentials given half reactions values in volts refers to thermodynamic

hydrogen potential including water real concentration [H2O]=55,3 M application and in

brackets like 0 V classic values after. These absolute

values from brackets 0 V are unusable in thermodynamic equilibrium calculations.

OH

H O

E,V(0.00 V)

(E = -0.0591*pH)

0.103 V

H/H+ E =E° + 0.0591*log( )(Pt)H/H+

[ ]2

[ ]+3

H

Page 18: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Oxidation – Reduction half reaction (RED-OX system Table)

Half reaction shows two states of compound at equilibriumby gaining electrons for oxidized changes to reduced form and

loosing electrons for reduced changing to oxidized form.Half reactions are present in standard potential tables for all known

studied and complete redox systems.Five columns refers to: 1. Chemical element symbol of responsible atom;

2. oxidized form;3. number of loosing electrons reduced form and gaining electrons to oxidized form;

4. reduced form;5. standard potential E ̊ in volts.

Number of Standard potential

3rd page: http://aris.gusc.lv/BioThermodynamics/OxRedBiologicalW.pdf

Element Oxidized formNumber ofelectrons e- Reduced form

Standard potential E ̊H2O , V(classik Eo standard potential)

HH3O

+ 1 (Pt)H + H2O +0,103 (0,00 Nernsta skala)

O O2(g) + 4 H3O

+ 4 6H2O +1,383 (1,229) SuhotinaH2O2+ 2 H3O

+ 2 4H2O +1,982 (1,776) Suhotina

O2aq + 2 H3O+ 2 H2O2 + 2 H3O +0,7975 (0,6945) Alberta University

Mn (H+) MnO4– + 8 H3O

+ 5 Mn2+ + 12H2O +1,76 (1,51)(H2O) MnO4

– + 2H2O 3 MnO2↓+ 4OH– +0,531 (0,60)(OH-) MnO4

– 1 MnO42– +0,56

Fe Fe3+ 1 Fe2+ +0,77

Page 19: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Silver /silver chloride/chloride ion II-type electrode consists

of silver metal, AgCl precipitate insoluble salt and

K+Cl- solution, containing the counter-ions Cl- of

AgCl insoluble salt half reaction is:

AgCl +e- Ag++ Cl-

Metal/insoluble salt/ion II-type electrode

Nernst’s equation

Eag/AgCl = E ̊AgCl - 0.0591•log [Cl-]

The main application of II-type electrodes is their use as reference electrodes,

because potential value depends only on chloride ion concentration.

Chloride concentration is precise controlled technology for instruments use.

4th page: http://aris.gusc.lv/BioThermodynamics/ElectrodsAM.pdf

Page 20: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Electric potential in volt measurement by couple of electrodesElectric Motion Force

http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

+

e -

+

+

++++

+ + + + +

VV

- +

EMF

J=0

Voltmeter with minus "-" andplus "+" clamps measuresdifference of potentials

EMF = EI - EII , called

Electric Motion Force

Between two MeI (Indicator) and MeII (Standard)on electric circuit linked electrodes

can be expressed MeI Indicator EI as sum : EI = EMF + EII

Indicator electrode having EI –has reactivity with solution - electrode of investigations,

Standard reference electrode having EII =constant -and has no reactivity with environment into solution.

+

e - MeIMeIIElectric Motion Force

EMF .

Page 21: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Nernst’s potential studies two half reaction balanced electrons sum

Ox oxidising reagent half reaction: MnO4- + 8H3O

+ + 5e- Mn2++12H2O ; E˚MnO4-=-1,76 V

Red reducing reagent half reaction: 5(Pt)H + 5H2O 5H3O+ + 5e- ; E˚H =0,103 V

Balanced electrons Red-Ox reaction: 5(Pt)H + MnO4- + 3H3O

+ Mn2++8H2O ;

5

0591.0

OH

Mn

Mn

H OO[ ]-

[ ].[ ]22+

.[ ]+34

8

12 mol/g_18

L/g_996EMnO4=1.76 V + •lg ; [H2O]=55,3 M=

OH

H O

[ ]2

[ ]+3EH=E ̊ +0,0591•lg = 0,103 V +0,0591•lg

OH

H O

[ ]2

[ ]+3 Viela ΔH˚H,kJ/mol ΔS˚H,J/mol/K ΔG˚H,kJ/mol

H2O -285,85 69,9565 -237,191H2O -286,65 -453,188 -151,549H3O

+ -285,81 -3,854 -213,2746H2(aq) 23,4 -130 99,13MnO4

- -541,4 -191,2 -447,2

Exothermic and exoergic MnO4- reduction by 5(Pt)H

Hess free energy change negativeΔGHess=ΔGOxRed=-1286 kJ/mol , but minimises reachingΔGmin= ΔGeq= -799,38 kJ/mol equilibrium mixture

5th page: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

MnO4- -541,4 -191,2 -447,2

Mn2+ –220,8 -73,6 -228,1

GHess=G˚Mn2+8G˚H2O-3G˚H3O-G˚MnO4-5G˚(Pt)H= -1286 kJ/mol

ΔGeq=(E˚H-E˚MnO4-)•F•1•5=(0,103-1,76)*96485*5=-1,863*96485*5=-799378,225 J/mol=-799,38 kJ/mol

Keq=exp(-ΔGeq/R/T)=exp(799378,225/8,3144/298,15)= 1,112*10140;

ΔGmin= ΔGeq= -799,38 kJ/mol equilibrium mixture

1,112*10140 =Keq=OH

Mn

Mn

H OO[ ]-

[ ].[ ]22+

.[ ]+34

3

8

[(Pt)H] .5

Prigogine attractor free energy change minimum ΔGmin .Free energy change minimum reaching establishes equilibrium.

ΔGmin=ΔGeq = -799,4 kJ/mol < GHess= -1286 kJ/mol;5A+B+3C 50% D+8E5(Pt)H+MnO4

-+3H3O+

produkti Mn2++8H2O

Page 22: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Ox oxidising reagent half reaction: O2aqua + 4H3O+ + 4e- <=> 6 H2O ;

Red reducing reagent half reaction:: 4(Pt)H + 4H2O 4 H3O+ + 4e- ;

Balanced electrons Red-Ox reaction : 4(Pt)H + O2aqua- 2 H2O ;

OH

H O

[ ]2

[ ]+3EH = E ̊ +0,0591•lg = 0,103 V +0,0591•lg

OH

H O

[ ]2

[ ]+3

Substanc ΔH˚Hess,kJ/mol

ΔS˚Hess,J/mol/K

ΔG˚Hess,kJ/mol

H2O -285,85 69,9565 -237,191H2O -286,65 -453,188 -151,549H3O

+ -285,81 -3,854 -213,2746H2(aq) 23,4 -130 99,13

Exothermic and exoergic O2aqu reduction by 4(Pt)H Hess freeenergy change negative ΔGHess=ΔGOxRed= -689 kJ/mol , butminimises ΔGmin=ΔGeq= -494 kJ/mol reaching equilibrium

5

0591.0OH

H OO2[ ]

[ ]2

.[ ]+3

4

6aqua

E=E ̊O2 + •lg5

0591.0OH

H OO2[ ]

[ ]2

.[ ]+3

4

6aqua

=1.383 V + •lg

Nernst’s potential O2aqu /(Pt)H studies two half reaction balansed electrons sum

OH[ ]2

5th page: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

H2(aq) 23,4 -130 99,13O2aqua -11.70 -94,2 16,4O2aqua -11.715 110.876 16,4

mixture ; 3,518*1086 =Keq= ;

Prigogine attractor free energy change minimum ΔGmin .Free energy change minimum reaching establishes equilibrium.

4A+B 50% 2D4(Pt)H+ O2aqu

products 2H2O

ΔGmin=ΔGeq = -494 kJ/mol < GHess= -689 kJ/mol;

ΔGeq=(E˚H-E˚O2)•F•1•4=(0,103-1,383)*96485*4=-1,28*96485*4=-494003,2 J/mol=-494 kJ/mol

Keq=exp(-ΔGeq/R/T)=exp(799378,225/8,3144/298,15)= ; 3,518*1086;

OH

O2

[ ]22

[(Pt)H] .4 aqua[ ]

GHess= 2G˚H2O-4G˚(Pt)HG˚O2= -689 kJ/mol

Page 23: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

O2aqua/ H2O red-ox system biochemic mechanism of acidosis andoxidative stress (forced oxidising agent power by potential E increase)

ΔE>0 as oxidative stres acidify and increase O2aqua concentration:1) as ΔE= +0.236 V if increases hydrogen ion concentration [H3O

+] 10 times acidosis;2) ΔE>0 increase about ΔE= +0.01 V if increases oxygen concentration 5 times ;

3) water concentration [H2O] = 55.3 M diminishing oxidative stress risk potential aboutΔE= - 0.154 V from thermodynamic E ̊=1,383 V to classic Eo=1,229 V.

6th page: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

Note: Oxidative stress causes chaos of non enzymatic oxidation in multiple radical-chain reactions and parallel products!

O2aqua + 4 H3O+ + 4 e- 6 H2O ; E ̊ = 1,383 V

oxidised form free electrons reduced form

Oxygen solubility Prigogine attractor free energy change minimum as Hess law isendoergic change positive unfavored :endoergic change positive unfavored :

but minimises reaching equilibrium mixture ΔGmin=ΔGeq=26,58 kJ/mol

GHess=G ̊H2O+G ̊O2aqua-G ̊H2O-G ̊O2gas=16,4 -(-61,166)= 77,57 kJ/mol ,

Keq =O

O

OH[ ]2 air

[ ]2 aqua

[ ]2

. =2,205*10-5= 10-4,66;

ΔGeq=-R•T•ln(Keq)=-8,3144*298,15*ln(2,2*10-5)=26,58 kJ/molA+B 50% C+Dreactants O2↑air+H2Oproducts O2aqua-Asinis

Free energy change minimisation ΔGmin is Prigogine attractor.

ΔGmin=ΔGeq =26,58 kJ/mol < GHess= 77,57 kJ/mol ;

O2air + H2O <=> O2aqua ;

[O2air]=0,2095oxygen mol fraction

Physiologic equilibrium constant is KO2blood=[O2aqua]/[O2air]= 9,768·10-5/0,2095=4,663*10-4=10-3,3314.Arterial [O2aqua]=6·10-5 M and venous [O2aqua]=1,85·10-5 M concentration determines pKO2blood=3,33.

Page 24: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Nernst’s potential studies reducing with vitamin B3 ethanal H3CCH=Oand oxidising H3CCH2OH ethanol

8th page: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf

ΔE˚ =E˚2H2O-E˚1=0,2415-(-0,113)= 0.3545 V, ΔGeq=ΔE˚•F•n=0.3545•2•96485= 68,408 kJ/mol

Aerobic H3C-CH2-OH+NAD++H2O+ΔG+Q => H3C-CH=O+NADH+H3O+

Ox NAD+ + H-(2e-) <=> NADH ; E˚1 = -0,113 VRed CH3CH2OH+2H2O<=>CH3CHO+2H3O

++H(2e-); E˚2H2O=0,2415 V=0,190+0,0591/2*log([H2O]2)

OHOH

H O

CH3CH

2

OHCH3C

.[NAD ]

[NADH].[ ]2

+ [ ]

.[ ]+3[ ].

TR

Geq

e

15.298314.8

68408

e ΔGeq= -R•T•ln(Keq); Keq= = = =1,036•10-12=10-11,985

GHess=G˚H3O+G˚CH3CHO+G˚NADH-G˚CH3CH2OH-G˚H2O-G˚NAD+=159,1 kJ/mol;

anaerobic

aerobic

Prigogine attractor free energy change absoluteminimum ΔGmin reachable at inverse equilibria points:

anaerobic

A+B+C 50% D+E+FNAD++H3CCH2OH+H2ONADH+H3CCHO+H3O

+

Anaerobic H3C-CH=O+NADH+H3O++ΔG+Q =>H3C-CH2-OH+NAD++H2O;

GHess=G˚CH3CH2OH+G˚H2O+G˚NAD+-G˚H3O-G˚CH3CHO-G˚NADH= -159,1 kJ/mol;

Red NADH <=> NAD+ + H-(2e-); E˚1 = -0,113 VOx CH3CHO+2H3O

++H(2e-)<=>CH3CH2OH+2H2O; E˚2H2O=0,2415 V

ΔE˚=E˚1-E˚2H2O=-0,113 -0,2415=-0.3545 V, ΔGeq=ΔE˚•F•n=0.3545 V•2 mol•96485 C/mol= -68,408 kJ/mol

OHOH

H O

CH3CH2

OHCH3C

.[NAD ][NADH]

. [ ]2+ [ ]

.[ ]+3[ ]. TR

Geq

e

15.298314.8

68408

e

ΔGeq= -R•T•ln(Keq); Keq= = = =9,65•1011=1011,985

anaerobic

D+E+F 50% A+B+CNADH+H3CCHO+H3O

+

NAD++H3CCH2OH+H2O

minimum ΔGmin reachable at inverse equilibria points:

ΔGmin=68,4....... kJ/mol=ΔGeq<ΔGHess= 159........kJ/mol.

10-11,985 = Keq_aerobi; Keq_anaerobi=1011,985;Keq_aerobi=

anaerobieqK _

1

Page 25: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

H+

H+

H+

H+

H+

H+

H+

H+

H+

membrane

channels

membranepH=5

pH=7.36

mitochondria extramitochondria

space

Membrane potentials for hydrogen ions concentration gradient as H+ protons movementin to channel based on mitochondria pH=7.36 and extra mitochondria space pH=5

Wwork=qE=nFE=ΔGr=RTlnKeq;chondriaextra_mito]H[

http://aris.gusc.lv/BioThermodynamics/MembraneElektrodsAM.pdf

Wwork=qE=nFE=ΔGr=RTlnKeq;n charge of ion; Keq =

nF

RT

iamitochondr

chondriaextra_mito

]H[

]H[Emembrane = *ln = *log

EH+ =Plg = 0.06154V*lg = 0.06154V*log(102.36) = 0,14523V

F

T·R)·10ln(C96485

K15.310)·K/mol/J(3144.8·3,2 P= = =0.06154 V

iamitochondr

chondriaextra_mito

]H[

]H[

iamitochondr

chondriaextra_mito

]H[

]H[

pH

pH

10

10

iamitochondr

iamitochondrextra

36.7

5

10

10

1

06154,0

Page 26: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Membrane potentials for ions H3O+ concentration gradient in mitochondria

[H3O+

Mitochon]=10-7,36 M and extra inter membrane space [H3O+

extraMi]= 10-5 M

H+

H+

O

H

H

H+

O

H

H

H+

H+

O

H

H

H+

O

H

H

membrane

channels

membrane

MitochondriaextraMitochondrialmembranespace pH=5

pH=7,36

[ ]-

Emembrane = 0.06154*log( )

EH3O+Mitochon=-Plg( )= -0,06154V*log = 0,14523 V

F

T·R)·10ln(P= = =0.06154 V

[ ]O3-

extraMi

[ ]O3-

mitochondria

H

H

C96485

K15.310)·Kmol

J(3144.8)·10ln(

3rd page: http://aris.gusc.lv/BioThermodynamics/MembraneElektrodsAM.pdf

[ ]O3-

extraMi

[ ]O3-

mitochondria

H

H

36,7

5

10

10

Page 27: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Membrane potentials for ions HCO3- concentration gradient

in mitochondria [HCO3-Mitochon]=0.0338919 M and cytosol [HCO3

-cytosol]= 0.0154 M

H C O

H

OC

OO

H

OC

OO

H C O

HO

C OO

HO

C O

O

3

membrane

channels

membrane

3Mitochondria

cytosol

[ ]=0,0154 MHCO3-

[ ]=0,03389 MO3-HC

[ ]-Emembrane = 0.06154/(-1)*log( )

EHCO3-Mitochon,=-Plg( )= -0,06154V*log( ) = 0,0210821 V

F

T·R)·10ln(P= = =0.06154 V

[ ]HCO3-

cytosol

[ ]O3-

mitochondriaHC

[ ]HCO3-

cytosol

[ ]O3-

mitochondriaHC 0338919.0

0154.0

C96485

K15.310)·Kmol

J(3144.8)·10ln(

3rd page: http://aris.gusc.lv/BioThermodynamics/MembraneElektrodsAM.pdf

Page 28: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Hydrogen and bicarbonate total membrane potential sum is :EH3O+Mitochon,+EHCO3-Mitochon=0,14523V+0.0210821V = Emembr=0,1663V

Electric free energy change for H+ :ΔG=-Emembr•F•n=-0,1663*96485*+1=-16,045 kJ/mol

Free energy change for concentration gradient driven through proton H+ channelscrossing lipid bilayer membranes:

3rd page: http://aris.gusc.lv/BioThermodynamics/MembraneElektrodsLat.pdf

The proton H+ concentration gradient sum with electrochemical free energy change:ΔG= ΔGmembr+Gkanāls = -16,045 kJ/mol+ -14,013 kJ/mol = -30,058 kJ/mol

drive ATPase nano engine to synthesizing ATP molecules.

GH+=RTln([H3O+]extraMit/[H3O

+]Mitohon) =8,3144*310,15*ln(10-5/10-7,36) = -14,013 kJ/mol

Both free energy negative changes sum, consuming four protons 4 H+,4*-30,058 kJ/mol = -120,232 kJ/mol

drive ATPase nano engine rotation to synthesizing one ATP mole 503 grams.

drive ATPase nano engine to synthesizing ATP molecules.

Macro ergic ATP phosphate anhydride bond in human erythrocyte hydrolyze releasesΔG = -55,16 kJ/mol free energy. ATP accumulated chemical free energy efficiency 45,9 %of theoretically 100% (-120.2 kJ/mol) . Oxidative phosphorylation at least 54,1 % of used

four proton transfer energy consumes the friction of ATPase rotor to heat production andATP movement in cytosol water medium forming the concentration gradients across lipid

bilayer membranes as transportation free energy source to drive ATP molecules.

http://aris.gusc.lv/BioThermodynamics/BioThermodynamics.pdf. (19th. lpage)

Page 29: ColigativeProperties.pdf Compound amount, concentration, ions and colligative ...aris.gusc.lv/BioThermodynamics/ColigatConcOsmosOxRed.pdf · 2020. 6. 14. · For medical application

Kin= Glass membrane electrode Kout= [H+out]

↓↓↓↓↓↓↓↓↓

Kmembrane=Kin*Kout=

Innerconcentration

is constant[H+ ]=const

Emembrane=0.0591/(+1)*log ;

Emembrane= 0.0591*log +0.0591*log([H+out]) ;

[H+in]=const ; Econst= 0.0591*log ;

]H[

]H[

in

out

]H[

]H[

in

out

]H[

1

in

]H[

1

]H[

1

in

H+in + SiO−

3−SiO2 HSiO3−SiO2 /////SiO2//// SiO2−SiO3H SiO2−SiO−3+ H+

out

[H+in]=const

[H in]=const ; Econst= 0.0591*log ;

Emembrane= Econst +0.0591*log([H+out]) ;

as pH= -log([H+out])

Eglass= Econst -0.0591*pH .

Glass electrode potential is

proportional to pH of solution.

]H[ in

7th, 8th pages: http://aris.gusc.lv/BioThermodynamics/ElektrodsAM.pdf